Properties

Label 245.10.a.b
Level 245245
Weight 1010
Character orbit 245.a
Self dual yes
Analytic conductor 126.184126.184
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 245=572 245 = 5 \cdot 7^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 126.183779860126.183779860
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+28q2+116q3+272q4625q5+3248q66720q86227q917500q1025548q11+31552q12+42306q1372500q15327424q16+526342q17174356q18++159087396q99+O(q100) q + 28 q^{2} + 116 q^{3} + 272 q^{4} - 625 q^{5} + 3248 q^{6} - 6720 q^{8} - 6227 q^{9} - 17500 q^{10} - 25548 q^{11} + 31552 q^{12} + 42306 q^{13} - 72500 q^{15} - 327424 q^{16} + 526342 q^{17} - 174356 q^{18}+ \cdots + 159087396 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
28.0000 116.000 272.000 −625.000 3248.00 0 −6720.00 −6227.00 −17500.0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.10.a.b 1
7.b odd 2 1 35.10.a.a 1
21.c even 2 1 315.10.a.a 1
35.c odd 2 1 175.10.a.a 1
35.f even 4 2 175.10.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.a.a 1 7.b odd 2 1
175.10.a.a 1 35.c odd 2 1
175.10.b.a 2 35.f even 4 2
245.10.a.b 1 1.a even 1 1 trivial
315.10.a.a 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S10new(Γ0(245))S_{10}^{\mathrm{new}}(\Gamma_0(245)):

T228 T_{2} - 28 Copy content Toggle raw display
T3116 T_{3} - 116 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T28 T - 28 Copy content Toggle raw display
33 T116 T - 116 Copy content Toggle raw display
55 T+625 T + 625 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+25548 T + 25548 Copy content Toggle raw display
1313 T42306 T - 42306 Copy content Toggle raw display
1717 T526342 T - 526342 Copy content Toggle raw display
1919 T350060 T - 350060 Copy content Toggle raw display
2323 T+621976 T + 621976 Copy content Toggle raw display
2929 T6720430 T - 6720430 Copy content Toggle raw display
3131 T6412208 T - 6412208 Copy content Toggle raw display
3737 T+2317682 T + 2317682 Copy content Toggle raw display
4141 T10224678 T - 10224678 Copy content Toggle raw display
4343 T30114004 T - 30114004 Copy content Toggle raw display
4747 T23644912 T - 23644912 Copy content Toggle raw display
5353 T57292654 T - 57292654 Copy content Toggle raw display
5959 T+84934780 T + 84934780 Copy content Toggle raw display
6161 T+14677822 T + 14677822 Copy content Toggle raw display
6767 T+244557812 T + 244557812 Copy content Toggle raw display
7171 T61901952 T - 61901952 Copy content Toggle raw display
7373 T283763726 T - 283763726 Copy content Toggle raw display
7979 T276107480 T - 276107480 Copy content Toggle raw display
8383 T72995956 T - 72995956 Copy content Toggle raw display
8989 T896368470 T - 896368470 Copy content Toggle raw display
9797 T+1205809578 T + 1205809578 Copy content Toggle raw display
show more
show less