Properties

Label 245.10.a.b
Level $245$
Weight $10$
Character orbit 245.a
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 28 q^{2} + 116 q^{3} + 272 q^{4} - 625 q^{5} + 3248 q^{6} - 6720 q^{8} - 6227 q^{9} - 17500 q^{10} - 25548 q^{11} + 31552 q^{12} + 42306 q^{13} - 72500 q^{15} - 327424 q^{16} + 526342 q^{17} - 174356 q^{18}+ \cdots + 159087396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
28.0000 116.000 272.000 −625.000 3248.00 0 −6720.00 −6227.00 −17500.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.10.a.b 1
7.b odd 2 1 35.10.a.a 1
21.c even 2 1 315.10.a.a 1
35.c odd 2 1 175.10.a.a 1
35.f even 4 2 175.10.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.a.a 1 7.b odd 2 1
175.10.a.a 1 35.c odd 2 1
175.10.b.a 2 35.f even 4 2
245.10.a.b 1 1.a even 1 1 trivial
315.10.a.a 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(245))\):

\( T_{2} - 28 \) Copy content Toggle raw display
\( T_{3} - 116 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 28 \) Copy content Toggle raw display
$3$ \( T - 116 \) Copy content Toggle raw display
$5$ \( T + 625 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 25548 \) Copy content Toggle raw display
$13$ \( T - 42306 \) Copy content Toggle raw display
$17$ \( T - 526342 \) Copy content Toggle raw display
$19$ \( T - 350060 \) Copy content Toggle raw display
$23$ \( T + 621976 \) Copy content Toggle raw display
$29$ \( T - 6720430 \) Copy content Toggle raw display
$31$ \( T - 6412208 \) Copy content Toggle raw display
$37$ \( T + 2317682 \) Copy content Toggle raw display
$41$ \( T - 10224678 \) Copy content Toggle raw display
$43$ \( T - 30114004 \) Copy content Toggle raw display
$47$ \( T - 23644912 \) Copy content Toggle raw display
$53$ \( T - 57292654 \) Copy content Toggle raw display
$59$ \( T + 84934780 \) Copy content Toggle raw display
$61$ \( T + 14677822 \) Copy content Toggle raw display
$67$ \( T + 244557812 \) Copy content Toggle raw display
$71$ \( T - 61901952 \) Copy content Toggle raw display
$73$ \( T - 283763726 \) Copy content Toggle raw display
$79$ \( T - 276107480 \) Copy content Toggle raw display
$83$ \( T - 72995956 \) Copy content Toggle raw display
$89$ \( T - 896368470 \) Copy content Toggle raw display
$97$ \( T + 1205809578 \) Copy content Toggle raw display
show more
show less