Properties

Label 245.10.a.e.1.2
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 648x^{2} + 6926x - 8308 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.37673\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.9629 q^{2} +209.523 q^{3} +162.070 q^{4} +625.000 q^{5} -5439.82 q^{6} +9085.18 q^{8} +24216.9 q^{9} -16226.8 q^{10} +43490.0 q^{11} +33957.4 q^{12} -67126.8 q^{13} +130952. q^{15} -318857. q^{16} +261183. q^{17} -628740. q^{18} -744649. q^{19} +101294. q^{20} -1.12912e6 q^{22} -2.12319e6 q^{23} +1.90355e6 q^{24} +390625. q^{25} +1.74280e6 q^{26} +949956. q^{27} +2.19162e6 q^{29} -3.39989e6 q^{30} +1.20634e6 q^{31} +3.62683e6 q^{32} +9.11216e6 q^{33} -6.78107e6 q^{34} +3.92484e6 q^{36} -7.82577e6 q^{37} +1.93332e7 q^{38} -1.40646e7 q^{39} +5.67824e6 q^{40} -2.84010e7 q^{41} -836250. q^{43} +7.04843e6 q^{44} +1.51356e7 q^{45} +5.51241e7 q^{46} -4.69259e7 q^{47} -6.68079e7 q^{48} -1.01417e7 q^{50} +5.47240e7 q^{51} -1.08793e7 q^{52} -1.18469e7 q^{53} -2.46636e7 q^{54} +2.71813e7 q^{55} -1.56021e8 q^{57} -5.69006e7 q^{58} -1.31445e8 q^{59} +2.12234e7 q^{60} +1.79312e8 q^{61} -3.13200e7 q^{62} +6.90919e7 q^{64} -4.19543e7 q^{65} -2.36578e8 q^{66} -2.11309e8 q^{67} +4.23300e7 q^{68} -4.44857e8 q^{69} -3.50475e8 q^{71} +2.20015e8 q^{72} +2.82794e8 q^{73} +2.03179e8 q^{74} +8.18449e7 q^{75} -1.20685e8 q^{76} +3.65158e8 q^{78} -3.47506e6 q^{79} -1.99286e8 q^{80} -2.77624e8 q^{81} +7.37370e8 q^{82} -1.95999e8 q^{83} +1.63240e8 q^{85} +2.17115e7 q^{86} +4.59194e8 q^{87} +3.95115e8 q^{88} +3.37238e8 q^{89} -3.92962e8 q^{90} -3.44106e8 q^{92} +2.52755e8 q^{93} +1.21833e9 q^{94} -4.65406e8 q^{95} +7.59905e8 q^{96} +1.63718e8 q^{97} +1.05319e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 19 q^{2} + 18 q^{3} + 1729 q^{4} + 2500 q^{5} + 144 q^{6} - 30495 q^{8} + 5382 q^{9} - 11875 q^{10} + 82438 q^{11} - 41328 q^{12} + 72962 q^{13} + 11250 q^{15} + 64257 q^{16} + 357542 q^{17} - 965367 q^{18}+ \cdots + 1222369524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −25.9629 −1.14741 −0.573704 0.819063i \(-0.694494\pi\)
−0.573704 + 0.819063i \(0.694494\pi\)
\(3\) 209.523 1.49343 0.746717 0.665142i \(-0.231629\pi\)
0.746717 + 0.665142i \(0.231629\pi\)
\(4\) 162.070 0.316543
\(5\) 625.000 0.447214
\(6\) −5439.82 −1.71358
\(7\) 0 0
\(8\) 9085.18 0.784203
\(9\) 24216.9 1.23035
\(10\) −16226.8 −0.513136
\(11\) 43490.0 0.895617 0.447809 0.894129i \(-0.352205\pi\)
0.447809 + 0.894129i \(0.352205\pi\)
\(12\) 33957.4 0.472736
\(13\) −67126.8 −0.651855 −0.325928 0.945395i \(-0.605677\pi\)
−0.325928 + 0.945395i \(0.605677\pi\)
\(14\) 0 0
\(15\) 130952. 0.667884
\(16\) −318857. −1.21634
\(17\) 261183. 0.758448 0.379224 0.925305i \(-0.376191\pi\)
0.379224 + 0.925305i \(0.376191\pi\)
\(18\) −628740. −1.41171
\(19\) −744649. −1.31087 −0.655437 0.755250i \(-0.727515\pi\)
−0.655437 + 0.755250i \(0.727515\pi\)
\(20\) 101294. 0.141562
\(21\) 0 0
\(22\) −1.12912e6 −1.02764
\(23\) −2.12319e6 −1.58203 −0.791013 0.611799i \(-0.790446\pi\)
−0.791013 + 0.611799i \(0.790446\pi\)
\(24\) 1.90355e6 1.17116
\(25\) 390625. 0.200000
\(26\) 1.74280e6 0.747943
\(27\) 949956. 0.344006
\(28\) 0 0
\(29\) 2.19162e6 0.575405 0.287702 0.957720i \(-0.407109\pi\)
0.287702 + 0.957720i \(0.407109\pi\)
\(30\) −3.39989e6 −0.766335
\(31\) 1.20634e6 0.234607 0.117303 0.993096i \(-0.462575\pi\)
0.117303 + 0.993096i \(0.462575\pi\)
\(32\) 3.62683e6 0.611438
\(33\) 9.11216e6 1.33755
\(34\) −6.78107e6 −0.870248
\(35\) 0 0
\(36\) 3.92484e6 0.389458
\(37\) −7.82577e6 −0.686467 −0.343233 0.939250i \(-0.611522\pi\)
−0.343233 + 0.939250i \(0.611522\pi\)
\(38\) 1.93332e7 1.50411
\(39\) −1.40646e7 −0.973503
\(40\) 5.67824e6 0.350706
\(41\) −2.84010e7 −1.56966 −0.784830 0.619711i \(-0.787250\pi\)
−0.784830 + 0.619711i \(0.787250\pi\)
\(42\) 0 0
\(43\) −836250. −0.0373017 −0.0186508 0.999826i \(-0.505937\pi\)
−0.0186508 + 0.999826i \(0.505937\pi\)
\(44\) 7.04843e6 0.283501
\(45\) 1.51356e7 0.550227
\(46\) 5.51241e7 1.81523
\(47\) −4.69259e7 −1.40273 −0.701363 0.712804i \(-0.747425\pi\)
−0.701363 + 0.712804i \(0.747425\pi\)
\(48\) −6.68079e7 −1.81653
\(49\) 0 0
\(50\) −1.01417e7 −0.229481
\(51\) 5.47240e7 1.13269
\(52\) −1.08793e7 −0.206340
\(53\) −1.18469e7 −0.206235 −0.103118 0.994669i \(-0.532882\pi\)
−0.103118 + 0.994669i \(0.532882\pi\)
\(54\) −2.46636e7 −0.394715
\(55\) 2.71813e7 0.400532
\(56\) 0 0
\(57\) −1.56021e8 −1.95770
\(58\) −5.69006e7 −0.660224
\(59\) −1.31445e8 −1.41224 −0.706120 0.708092i \(-0.749556\pi\)
−0.706120 + 0.708092i \(0.749556\pi\)
\(60\) 2.12234e7 0.211414
\(61\) 1.79312e8 1.65815 0.829077 0.559135i \(-0.188867\pi\)
0.829077 + 0.559135i \(0.188867\pi\)
\(62\) −3.13200e7 −0.269190
\(63\) 0 0
\(64\) 6.90919e7 0.514775
\(65\) −4.19543e7 −0.291518
\(66\) −2.36578e8 −1.53471
\(67\) −2.11309e8 −1.28109 −0.640547 0.767919i \(-0.721292\pi\)
−0.640547 + 0.767919i \(0.721292\pi\)
\(68\) 4.23300e7 0.240081
\(69\) −4.44857e8 −2.36265
\(70\) 0 0
\(71\) −3.50475e8 −1.63680 −0.818398 0.574651i \(-0.805138\pi\)
−0.818398 + 0.574651i \(0.805138\pi\)
\(72\) 2.20015e8 0.964841
\(73\) 2.82794e8 1.16551 0.582757 0.812646i \(-0.301974\pi\)
0.582757 + 0.812646i \(0.301974\pi\)
\(74\) 2.03179e8 0.787657
\(75\) 8.18449e7 0.298687
\(76\) −1.20685e8 −0.414948
\(77\) 0 0
\(78\) 3.65158e8 1.11700
\(79\) −3.47506e6 −0.0100378 −0.00501892 0.999987i \(-0.501598\pi\)
−0.00501892 + 0.999987i \(0.501598\pi\)
\(80\) −1.99286e8 −0.543965
\(81\) −2.77624e8 −0.716595
\(82\) 7.37370e8 1.80104
\(83\) −1.95999e8 −0.453318 −0.226659 0.973974i \(-0.572780\pi\)
−0.226659 + 0.973974i \(0.572780\pi\)
\(84\) 0 0
\(85\) 1.63240e8 0.339188
\(86\) 2.17115e7 0.0428002
\(87\) 4.59194e8 0.859330
\(88\) 3.95115e8 0.702346
\(89\) 3.37238e8 0.569747 0.284873 0.958565i \(-0.408048\pi\)
0.284873 + 0.958565i \(0.408048\pi\)
\(90\) −3.92962e8 −0.631335
\(91\) 0 0
\(92\) −3.44106e8 −0.500780
\(93\) 2.52755e8 0.350370
\(94\) 1.21833e9 1.60950
\(95\) −4.65406e8 −0.586240
\(96\) 7.59905e8 0.913143
\(97\) 1.63718e8 0.187769 0.0938847 0.995583i \(-0.470072\pi\)
0.0938847 + 0.995583i \(0.470072\pi\)
\(98\) 0 0
\(99\) 1.05319e9 1.10192
\(100\) 6.33086e7 0.0633086
\(101\) 1.76637e9 1.68902 0.844510 0.535540i \(-0.179892\pi\)
0.844510 + 0.535540i \(0.179892\pi\)
\(102\) −1.42079e9 −1.29966
\(103\) 1.92191e8 0.168254 0.0841269 0.996455i \(-0.473190\pi\)
0.0841269 + 0.996455i \(0.473190\pi\)
\(104\) −6.09859e8 −0.511187
\(105\) 0 0
\(106\) 3.07579e8 0.236636
\(107\) 1.72802e9 1.27445 0.637225 0.770678i \(-0.280082\pi\)
0.637225 + 0.770678i \(0.280082\pi\)
\(108\) 1.53959e8 0.108893
\(109\) 5.28362e8 0.358519 0.179260 0.983802i \(-0.442630\pi\)
0.179260 + 0.983802i \(0.442630\pi\)
\(110\) −7.05703e8 −0.459573
\(111\) −1.63968e9 −1.02519
\(112\) 0 0
\(113\) 2.74144e9 1.58171 0.790853 0.612006i \(-0.209637\pi\)
0.790853 + 0.612006i \(0.209637\pi\)
\(114\) 4.05076e9 2.24628
\(115\) −1.32699e9 −0.707504
\(116\) 3.55196e8 0.182141
\(117\) −1.62560e9 −0.802007
\(118\) 3.41268e9 1.62041
\(119\) 0 0
\(120\) 1.18972e9 0.523757
\(121\) −4.66567e8 −0.197870
\(122\) −4.65545e9 −1.90258
\(123\) −5.95065e9 −2.34418
\(124\) 1.95511e8 0.0742632
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 2.75922e8 0.0941175 0.0470587 0.998892i \(-0.485015\pi\)
0.0470587 + 0.998892i \(0.485015\pi\)
\(128\) −3.65076e9 −1.20209
\(129\) −1.75214e8 −0.0557076
\(130\) 1.08925e9 0.334490
\(131\) −4.12137e9 −1.22270 −0.611352 0.791359i \(-0.709374\pi\)
−0.611352 + 0.791359i \(0.709374\pi\)
\(132\) 1.47681e9 0.423391
\(133\) 0 0
\(134\) 5.48618e9 1.46994
\(135\) 5.93723e8 0.153844
\(136\) 2.37290e9 0.594777
\(137\) −5.56659e9 −1.35004 −0.675020 0.737799i \(-0.735865\pi\)
−0.675020 + 0.737799i \(0.735865\pi\)
\(138\) 1.15498e10 2.71093
\(139\) −1.51553e8 −0.0344349 −0.0172175 0.999852i \(-0.505481\pi\)
−0.0172175 + 0.999852i \(0.505481\pi\)
\(140\) 0 0
\(141\) −9.83207e9 −2.09488
\(142\) 9.09934e9 1.87807
\(143\) −2.91935e9 −0.583813
\(144\) −7.72173e9 −1.49652
\(145\) 1.36976e9 0.257329
\(146\) −7.34215e9 −1.33732
\(147\) 0 0
\(148\) −1.26832e9 −0.217296
\(149\) −1.49119e9 −0.247853 −0.123927 0.992291i \(-0.539549\pi\)
−0.123927 + 0.992291i \(0.539549\pi\)
\(150\) −2.12493e9 −0.342715
\(151\) −1.06694e10 −1.67010 −0.835051 0.550173i \(-0.814562\pi\)
−0.835051 + 0.550173i \(0.814562\pi\)
\(152\) −6.76527e9 −1.02799
\(153\) 6.32505e9 0.933153
\(154\) 0 0
\(155\) 7.53960e8 0.104919
\(156\) −2.27945e9 −0.308156
\(157\) 9.03073e9 1.18625 0.593123 0.805112i \(-0.297895\pi\)
0.593123 + 0.805112i \(0.297895\pi\)
\(158\) 9.02225e7 0.0115175
\(159\) −2.48220e9 −0.307999
\(160\) 2.26677e9 0.273443
\(161\) 0 0
\(162\) 7.20790e9 0.822226
\(163\) −5.34934e9 −0.593549 −0.296774 0.954948i \(-0.595911\pi\)
−0.296774 + 0.954948i \(0.595911\pi\)
\(164\) −4.60295e9 −0.496865
\(165\) 5.69510e9 0.598168
\(166\) 5.08870e9 0.520141
\(167\) −9.41973e9 −0.937162 −0.468581 0.883421i \(-0.655235\pi\)
−0.468581 + 0.883421i \(0.655235\pi\)
\(168\) 0 0
\(169\) −6.09849e9 −0.575085
\(170\) −4.23817e9 −0.389187
\(171\) −1.80331e10 −1.61283
\(172\) −1.35531e8 −0.0118076
\(173\) 1.38243e10 1.17337 0.586687 0.809814i \(-0.300432\pi\)
0.586687 + 0.809814i \(0.300432\pi\)
\(174\) −1.19220e10 −0.986001
\(175\) 0 0
\(176\) −1.38671e10 −1.08938
\(177\) −2.75407e10 −2.10909
\(178\) −8.75567e9 −0.653731
\(179\) 2.20063e10 1.60217 0.801084 0.598552i \(-0.204257\pi\)
0.801084 + 0.598552i \(0.204257\pi\)
\(180\) 2.45302e9 0.174171
\(181\) 1.83559e8 0.0127122 0.00635611 0.999980i \(-0.497977\pi\)
0.00635611 + 0.999980i \(0.497977\pi\)
\(182\) 0 0
\(183\) 3.75700e10 2.47634
\(184\) −1.92896e10 −1.24063
\(185\) −4.89111e9 −0.306997
\(186\) −6.56225e9 −0.402017
\(187\) 1.13589e10 0.679279
\(188\) −7.60529e9 −0.444023
\(189\) 0 0
\(190\) 1.20833e10 0.672656
\(191\) −2.04034e10 −1.10931 −0.554654 0.832081i \(-0.687150\pi\)
−0.554654 + 0.832081i \(0.687150\pi\)
\(192\) 1.44764e10 0.768783
\(193\) 9.14597e9 0.474484 0.237242 0.971451i \(-0.423756\pi\)
0.237242 + 0.971451i \(0.423756\pi\)
\(194\) −4.25060e9 −0.215448
\(195\) −8.79039e9 −0.435364
\(196\) 0 0
\(197\) −2.08681e10 −0.987152 −0.493576 0.869703i \(-0.664311\pi\)
−0.493576 + 0.869703i \(0.664311\pi\)
\(198\) −2.73439e10 −1.26435
\(199\) −4.12889e10 −1.86635 −0.933177 0.359416i \(-0.882976\pi\)
−0.933177 + 0.359416i \(0.882976\pi\)
\(200\) 3.54890e9 0.156841
\(201\) −4.42741e10 −1.91323
\(202\) −4.58599e10 −1.93799
\(203\) 0 0
\(204\) 8.86912e9 0.358546
\(205\) −1.77506e10 −0.701973
\(206\) −4.98982e9 −0.193056
\(207\) −5.14171e10 −1.94644
\(208\) 2.14039e10 0.792880
\(209\) −3.23848e10 −1.17404
\(210\) 0 0
\(211\) −3.01901e10 −1.04856 −0.524280 0.851546i \(-0.675666\pi\)
−0.524280 + 0.851546i \(0.675666\pi\)
\(212\) −1.92003e9 −0.0652823
\(213\) −7.34326e10 −2.44445
\(214\) −4.48644e10 −1.46231
\(215\) −5.22657e8 −0.0166818
\(216\) 8.63052e9 0.269771
\(217\) 0 0
\(218\) −1.37178e10 −0.411367
\(219\) 5.92519e10 1.74062
\(220\) 4.40527e9 0.126786
\(221\) −1.75324e10 −0.494398
\(222\) 4.25708e10 1.17631
\(223\) −8.91955e9 −0.241530 −0.120765 0.992681i \(-0.538535\pi\)
−0.120765 + 0.992681i \(0.538535\pi\)
\(224\) 0 0
\(225\) 9.45973e9 0.246069
\(226\) −7.11756e10 −1.81486
\(227\) −1.85212e10 −0.462971 −0.231486 0.972838i \(-0.574359\pi\)
−0.231486 + 0.972838i \(0.574359\pi\)
\(228\) −2.52864e10 −0.619697
\(229\) 6.14911e10 1.47758 0.738792 0.673933i \(-0.235396\pi\)
0.738792 + 0.673933i \(0.235396\pi\)
\(230\) 3.44526e10 0.811795
\(231\) 0 0
\(232\) 1.99112e10 0.451234
\(233\) 7.22531e10 1.60603 0.803017 0.595956i \(-0.203227\pi\)
0.803017 + 0.595956i \(0.203227\pi\)
\(234\) 4.22053e10 0.920229
\(235\) −2.93287e10 −0.627318
\(236\) −2.13032e10 −0.447035
\(237\) −7.28105e8 −0.0149909
\(238\) 0 0
\(239\) −5.51824e10 −1.09398 −0.546991 0.837139i \(-0.684227\pi\)
−0.546991 + 0.837139i \(0.684227\pi\)
\(240\) −4.17550e10 −0.812377
\(241\) −6.33057e10 −1.20883 −0.604416 0.796669i \(-0.706594\pi\)
−0.604416 + 0.796669i \(0.706594\pi\)
\(242\) 1.21134e10 0.227038
\(243\) −7.68665e10 −1.41419
\(244\) 2.90611e10 0.524877
\(245\) 0 0
\(246\) 1.54496e11 2.68973
\(247\) 4.99860e10 0.854499
\(248\) 1.09598e10 0.183980
\(249\) −4.10664e10 −0.677001
\(250\) −6.33859e9 −0.102627
\(251\) 6.18704e10 0.983900 0.491950 0.870623i \(-0.336284\pi\)
0.491950 + 0.870623i \(0.336284\pi\)
\(252\) 0 0
\(253\) −9.23376e10 −1.41689
\(254\) −7.16373e9 −0.107991
\(255\) 3.42025e10 0.506555
\(256\) 5.94092e10 0.864517
\(257\) −1.05744e10 −0.151202 −0.0756010 0.997138i \(-0.524088\pi\)
−0.0756010 + 0.997138i \(0.524088\pi\)
\(258\) 4.54905e9 0.0639193
\(259\) 0 0
\(260\) −6.79953e9 −0.0922782
\(261\) 5.30742e10 0.707947
\(262\) 1.07003e11 1.40294
\(263\) −9.17838e10 −1.18295 −0.591473 0.806325i \(-0.701453\pi\)
−0.591473 + 0.806325i \(0.701453\pi\)
\(264\) 8.27856e10 1.04891
\(265\) −7.40430e9 −0.0922312
\(266\) 0 0
\(267\) 7.06592e10 0.850879
\(268\) −3.42469e10 −0.405522
\(269\) 1.18137e11 1.37562 0.687811 0.725890i \(-0.258572\pi\)
0.687811 + 0.725890i \(0.258572\pi\)
\(270\) −1.54147e10 −0.176522
\(271\) 7.96797e10 0.897399 0.448700 0.893683i \(-0.351887\pi\)
0.448700 + 0.893683i \(0.351887\pi\)
\(272\) −8.32802e10 −0.922533
\(273\) 0 0
\(274\) 1.44525e11 1.54905
\(275\) 1.69883e10 0.179123
\(276\) −7.20981e10 −0.747882
\(277\) 3.15470e9 0.0321958 0.0160979 0.999870i \(-0.494876\pi\)
0.0160979 + 0.999870i \(0.494876\pi\)
\(278\) 3.93476e9 0.0395109
\(279\) 2.92137e10 0.288648
\(280\) 0 0
\(281\) −1.15513e11 −1.10523 −0.552614 0.833438i \(-0.686369\pi\)
−0.552614 + 0.833438i \(0.686369\pi\)
\(282\) 2.55269e11 2.40368
\(283\) 6.39337e10 0.592504 0.296252 0.955110i \(-0.404263\pi\)
0.296252 + 0.955110i \(0.404263\pi\)
\(284\) −5.68016e10 −0.518117
\(285\) −9.75132e10 −0.875511
\(286\) 7.57946e10 0.669871
\(287\) 0 0
\(288\) 8.78306e10 0.752280
\(289\) −5.03711e10 −0.424757
\(290\) −3.55629e10 −0.295261
\(291\) 3.43028e10 0.280421
\(292\) 4.58325e10 0.368936
\(293\) −8.43668e10 −0.668756 −0.334378 0.942439i \(-0.608526\pi\)
−0.334378 + 0.942439i \(0.608526\pi\)
\(294\) 0 0
\(295\) −8.21528e10 −0.631573
\(296\) −7.10986e10 −0.538329
\(297\) 4.13136e10 0.308098
\(298\) 3.87156e10 0.284389
\(299\) 1.42523e11 1.03125
\(300\) 1.32646e10 0.0945473
\(301\) 0 0
\(302\) 2.77008e11 1.91629
\(303\) 3.70094e11 2.52244
\(304\) 2.37437e11 1.59447
\(305\) 1.12070e11 0.741549
\(306\) −1.64216e11 −1.07071
\(307\) −9.93740e10 −0.638484 −0.319242 0.947673i \(-0.603428\pi\)
−0.319242 + 0.947673i \(0.603428\pi\)
\(308\) 0 0
\(309\) 4.02684e10 0.251276
\(310\) −1.95750e10 −0.120385
\(311\) −2.24958e11 −1.36358 −0.681788 0.731550i \(-0.738797\pi\)
−0.681788 + 0.731550i \(0.738797\pi\)
\(312\) −1.27780e11 −0.763424
\(313\) −1.79613e11 −1.05776 −0.528881 0.848696i \(-0.677388\pi\)
−0.528881 + 0.848696i \(0.677388\pi\)
\(314\) −2.34464e11 −1.36111
\(315\) 0 0
\(316\) −5.63204e8 −0.00317741
\(317\) 1.89181e11 1.05223 0.526114 0.850414i \(-0.323649\pi\)
0.526114 + 0.850414i \(0.323649\pi\)
\(318\) 6.44449e10 0.353400
\(319\) 9.53134e10 0.515343
\(320\) 4.31825e10 0.230214
\(321\) 3.62061e11 1.90331
\(322\) 0 0
\(323\) −1.94490e11 −0.994228
\(324\) −4.49945e10 −0.226833
\(325\) −2.62214e10 −0.130371
\(326\) 1.38884e11 0.681042
\(327\) 1.10704e11 0.535425
\(328\) −2.58028e11 −1.23093
\(329\) 0 0
\(330\) −1.47861e11 −0.686343
\(331\) −2.82309e11 −1.29270 −0.646351 0.763040i \(-0.723706\pi\)
−0.646351 + 0.763040i \(0.723706\pi\)
\(332\) −3.17656e10 −0.143495
\(333\) −1.89516e11 −0.844591
\(334\) 2.44563e11 1.07531
\(335\) −1.32068e11 −0.572923
\(336\) 0 0
\(337\) −2.97708e11 −1.25735 −0.628675 0.777668i \(-0.716403\pi\)
−0.628675 + 0.777668i \(0.716403\pi\)
\(338\) 1.58334e11 0.659857
\(339\) 5.74395e11 2.36217
\(340\) 2.64563e10 0.107368
\(341\) 5.24636e10 0.210118
\(342\) 4.68191e11 1.85057
\(343\) 0 0
\(344\) −7.59749e9 −0.0292521
\(345\) −2.78036e11 −1.05661
\(346\) −3.58919e11 −1.34634
\(347\) −3.44149e11 −1.27428 −0.637139 0.770749i \(-0.719882\pi\)
−0.637139 + 0.770749i \(0.719882\pi\)
\(348\) 7.44217e10 0.272015
\(349\) 3.88686e11 1.40244 0.701220 0.712945i \(-0.252639\pi\)
0.701220 + 0.712945i \(0.252639\pi\)
\(350\) 0 0
\(351\) −6.37675e10 −0.224242
\(352\) 1.57731e11 0.547614
\(353\) −1.33667e11 −0.458181 −0.229091 0.973405i \(-0.573575\pi\)
−0.229091 + 0.973405i \(0.573575\pi\)
\(354\) 7.15034e11 2.41998
\(355\) −2.19047e11 −0.731998
\(356\) 5.46562e10 0.180349
\(357\) 0 0
\(358\) −5.71346e11 −1.83834
\(359\) 1.55733e11 0.494831 0.247415 0.968909i \(-0.420419\pi\)
0.247415 + 0.968909i \(0.420419\pi\)
\(360\) 1.37509e11 0.431490
\(361\) 2.31815e11 0.718388
\(362\) −4.76571e9 −0.0145861
\(363\) −9.77566e10 −0.295506
\(364\) 0 0
\(365\) 1.76746e11 0.521234
\(366\) −9.75424e11 −2.84137
\(367\) −4.25431e11 −1.22414 −0.612071 0.790803i \(-0.709663\pi\)
−0.612071 + 0.790803i \(0.709663\pi\)
\(368\) 6.76995e11 1.92429
\(369\) −6.87783e11 −1.93122
\(370\) 1.26987e11 0.352251
\(371\) 0 0
\(372\) 4.09641e10 0.110907
\(373\) −4.92563e11 −1.31757 −0.658783 0.752333i \(-0.728929\pi\)
−0.658783 + 0.752333i \(0.728929\pi\)
\(374\) −2.94909e11 −0.779409
\(375\) 5.11531e10 0.133577
\(376\) −4.26331e11 −1.10002
\(377\) −1.47116e11 −0.375081
\(378\) 0 0
\(379\) 3.59952e11 0.896124 0.448062 0.894003i \(-0.352114\pi\)
0.448062 + 0.894003i \(0.352114\pi\)
\(380\) −7.54284e10 −0.185570
\(381\) 5.78121e10 0.140558
\(382\) 5.29731e11 1.27283
\(383\) −1.79352e11 −0.425905 −0.212953 0.977063i \(-0.568308\pi\)
−0.212953 + 0.977063i \(0.568308\pi\)
\(384\) −7.64919e11 −1.79525
\(385\) 0 0
\(386\) −2.37456e11 −0.544427
\(387\) −2.02514e10 −0.0458940
\(388\) 2.65339e10 0.0594371
\(389\) 4.87473e11 1.07939 0.539694 0.841861i \(-0.318540\pi\)
0.539694 + 0.841861i \(0.318540\pi\)
\(390\) 2.28224e11 0.499539
\(391\) −5.54542e11 −1.19988
\(392\) 0 0
\(393\) −8.63522e11 −1.82603
\(394\) 5.41795e11 1.13267
\(395\) −2.17191e9 −0.00448906
\(396\) 1.70691e11 0.348805
\(397\) 3.74858e11 0.757372 0.378686 0.925525i \(-0.376376\pi\)
0.378686 + 0.925525i \(0.376376\pi\)
\(398\) 1.07198e12 2.14147
\(399\) 0 0
\(400\) −1.24554e11 −0.243269
\(401\) −1.53956e11 −0.297336 −0.148668 0.988887i \(-0.547499\pi\)
−0.148668 + 0.988887i \(0.547499\pi\)
\(402\) 1.14948e12 2.19525
\(403\) −8.09776e10 −0.152930
\(404\) 2.86275e11 0.534648
\(405\) −1.73515e11 −0.320471
\(406\) 0 0
\(407\) −3.40343e11 −0.614811
\(408\) 4.97177e11 0.888260
\(409\) 9.95183e11 1.75852 0.879261 0.476340i \(-0.158037\pi\)
0.879261 + 0.476340i \(0.158037\pi\)
\(410\) 4.60856e11 0.805449
\(411\) −1.16633e12 −2.01620
\(412\) 3.11484e10 0.0532596
\(413\) 0 0
\(414\) 1.33494e12 2.23336
\(415\) −1.22500e11 −0.202730
\(416\) −2.43458e11 −0.398569
\(417\) −3.17539e10 −0.0514263
\(418\) 8.40802e11 1.34710
\(419\) −1.86666e11 −0.295870 −0.147935 0.988997i \(-0.547263\pi\)
−0.147935 + 0.988997i \(0.547263\pi\)
\(420\) 0 0
\(421\) 1.54125e11 0.239114 0.119557 0.992827i \(-0.461853\pi\)
0.119557 + 0.992827i \(0.461853\pi\)
\(422\) 7.83822e11 1.20313
\(423\) −1.13640e12 −1.72584
\(424\) −1.07631e11 −0.161730
\(425\) 1.02025e11 0.151690
\(426\) 1.90652e12 2.80478
\(427\) 0 0
\(428\) 2.80061e11 0.403418
\(429\) −6.11670e11 −0.871886
\(430\) 1.35697e10 0.0191408
\(431\) 8.64666e11 1.20698 0.603491 0.797370i \(-0.293776\pi\)
0.603491 + 0.797370i \(0.293776\pi\)
\(432\) −3.02900e11 −0.418430
\(433\) 9.90737e11 1.35445 0.677225 0.735776i \(-0.263182\pi\)
0.677225 + 0.735776i \(0.263182\pi\)
\(434\) 0 0
\(435\) 2.86996e11 0.384304
\(436\) 8.56317e10 0.113487
\(437\) 1.58103e12 2.07384
\(438\) −1.53835e12 −1.99720
\(439\) −5.91950e11 −0.760668 −0.380334 0.924849i \(-0.624191\pi\)
−0.380334 + 0.924849i \(0.624191\pi\)
\(440\) 2.46947e11 0.314099
\(441\) 0 0
\(442\) 4.55192e11 0.567276
\(443\) −9.35260e11 −1.15376 −0.576880 0.816829i \(-0.695730\pi\)
−0.576880 + 0.816829i \(0.695730\pi\)
\(444\) −2.65743e11 −0.324518
\(445\) 2.10774e11 0.254798
\(446\) 2.31577e11 0.277133
\(447\) −3.12439e11 −0.370153
\(448\) 0 0
\(449\) −9.09288e11 −1.05583 −0.527913 0.849298i \(-0.677025\pi\)
−0.527913 + 0.849298i \(0.677025\pi\)
\(450\) −2.45602e11 −0.282342
\(451\) −1.23516e12 −1.40581
\(452\) 4.44305e11 0.500678
\(453\) −2.23548e12 −2.49419
\(454\) 4.80865e11 0.531216
\(455\) 0 0
\(456\) −1.41748e12 −1.53524
\(457\) 2.30997e11 0.247733 0.123866 0.992299i \(-0.460471\pi\)
0.123866 + 0.992299i \(0.460471\pi\)
\(458\) −1.59648e12 −1.69539
\(459\) 2.48113e11 0.260911
\(460\) −2.15066e11 −0.223956
\(461\) 1.22394e12 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(462\) 0 0
\(463\) 7.72436e10 0.0781175 0.0390587 0.999237i \(-0.487564\pi\)
0.0390587 + 0.999237i \(0.487564\pi\)
\(464\) −6.98813e11 −0.699890
\(465\) 1.57972e11 0.156690
\(466\) −1.87590e12 −1.84278
\(467\) −3.92470e11 −0.381839 −0.190920 0.981606i \(-0.561147\pi\)
−0.190920 + 0.981606i \(0.561147\pi\)
\(468\) −2.63462e11 −0.253870
\(469\) 0 0
\(470\) 7.61457e11 0.719789
\(471\) 1.89215e12 1.77158
\(472\) −1.19420e12 −1.10748
\(473\) −3.63685e10 −0.0334080
\(474\) 1.89037e10 0.0172006
\(475\) −2.90879e11 −0.262175
\(476\) 0 0
\(477\) −2.86895e11 −0.253741
\(478\) 1.43269e12 1.25524
\(479\) 1.62209e12 1.40788 0.703941 0.710259i \(-0.251422\pi\)
0.703941 + 0.710259i \(0.251422\pi\)
\(480\) 4.74940e11 0.408370
\(481\) 5.25319e11 0.447477
\(482\) 1.64360e12 1.38702
\(483\) 0 0
\(484\) −7.56166e10 −0.0626344
\(485\) 1.02324e11 0.0839730
\(486\) 1.99567e12 1.62266
\(487\) 6.21478e11 0.500663 0.250332 0.968160i \(-0.419460\pi\)
0.250332 + 0.968160i \(0.419460\pi\)
\(488\) 1.62908e12 1.30033
\(489\) −1.12081e12 −0.886426
\(490\) 0 0
\(491\) −2.43192e12 −1.88835 −0.944176 0.329442i \(-0.893139\pi\)
−0.944176 + 0.329442i \(0.893139\pi\)
\(492\) −9.64423e11 −0.742035
\(493\) 5.72414e11 0.436415
\(494\) −1.29778e12 −0.980459
\(495\) 6.58246e11 0.492793
\(496\) −3.84649e11 −0.285363
\(497\) 0 0
\(498\) 1.06620e12 0.776796
\(499\) −1.10777e11 −0.0799827 −0.0399913 0.999200i \(-0.512733\pi\)
−0.0399913 + 0.999200i \(0.512733\pi\)
\(500\) 3.95679e10 0.0283125
\(501\) −1.97365e12 −1.39959
\(502\) −1.60633e12 −1.12893
\(503\) 7.14662e11 0.497788 0.248894 0.968531i \(-0.419933\pi\)
0.248894 + 0.968531i \(0.419933\pi\)
\(504\) 0 0
\(505\) 1.10398e12 0.755353
\(506\) 2.39735e12 1.62575
\(507\) −1.27777e12 −0.858851
\(508\) 4.47188e10 0.0297922
\(509\) 1.21131e12 0.799884 0.399942 0.916541i \(-0.369030\pi\)
0.399942 + 0.916541i \(0.369030\pi\)
\(510\) −8.87994e11 −0.581225
\(511\) 0 0
\(512\) 3.26759e11 0.210142
\(513\) −7.07384e11 −0.450949
\(514\) 2.74542e11 0.173490
\(515\) 1.20119e11 0.0752454
\(516\) −2.83969e10 −0.0176339
\(517\) −2.04081e12 −1.25630
\(518\) 0 0
\(519\) 2.89651e12 1.75236
\(520\) −3.81162e11 −0.228610
\(521\) 7.89014e11 0.469154 0.234577 0.972098i \(-0.424630\pi\)
0.234577 + 0.972098i \(0.424630\pi\)
\(522\) −1.37796e12 −0.812304
\(523\) 2.34542e12 1.37077 0.685383 0.728183i \(-0.259635\pi\)
0.685383 + 0.728183i \(0.259635\pi\)
\(524\) −6.67951e11 −0.387038
\(525\) 0 0
\(526\) 2.38297e12 1.35732
\(527\) 3.15075e11 0.177937
\(528\) −2.90548e12 −1.62691
\(529\) 2.70679e12 1.50281
\(530\) 1.92237e11 0.105827
\(531\) −3.18318e12 −1.73754
\(532\) 0 0
\(533\) 1.90647e12 1.02319
\(534\) −1.83451e12 −0.976305
\(535\) 1.08001e12 0.569951
\(536\) −1.91978e12 −1.00464
\(537\) 4.61082e12 2.39273
\(538\) −3.06716e12 −1.57840
\(539\) 0 0
\(540\) 9.62247e10 0.0486984
\(541\) 1.88358e12 0.945357 0.472678 0.881235i \(-0.343287\pi\)
0.472678 + 0.881235i \(0.343287\pi\)
\(542\) −2.06871e12 −1.02968
\(543\) 3.84598e10 0.0189849
\(544\) 9.47269e11 0.463744
\(545\) 3.30226e11 0.160335
\(546\) 0 0
\(547\) −2.08933e12 −0.997846 −0.498923 0.866646i \(-0.666271\pi\)
−0.498923 + 0.866646i \(0.666271\pi\)
\(548\) −9.02178e11 −0.427346
\(549\) 4.34238e12 2.04010
\(550\) −4.41064e11 −0.205527
\(551\) −1.63199e12 −0.754283
\(552\) −4.04161e12 −1.85280
\(553\) 0 0
\(554\) −8.19051e10 −0.0369417
\(555\) −1.02480e12 −0.458480
\(556\) −2.45623e10 −0.0109001
\(557\) −2.51383e12 −1.10659 −0.553297 0.832984i \(-0.686630\pi\)
−0.553297 + 0.832984i \(0.686630\pi\)
\(558\) −7.58472e11 −0.331196
\(559\) 5.61348e10 0.0243153
\(560\) 0 0
\(561\) 2.37994e12 1.01446
\(562\) 2.99904e12 1.26815
\(563\) −8.76468e11 −0.367662 −0.183831 0.982958i \(-0.558850\pi\)
−0.183831 + 0.982958i \(0.558850\pi\)
\(564\) −1.59348e12 −0.663120
\(565\) 1.71340e12 0.707360
\(566\) −1.65990e12 −0.679843
\(567\) 0 0
\(568\) −3.18413e12 −1.28358
\(569\) −1.75549e12 −0.702091 −0.351046 0.936358i \(-0.614174\pi\)
−0.351046 + 0.936358i \(0.614174\pi\)
\(570\) 2.53172e12 1.00457
\(571\) 2.32441e12 0.915060 0.457530 0.889194i \(-0.348734\pi\)
0.457530 + 0.889194i \(0.348734\pi\)
\(572\) −4.73139e11 −0.184802
\(573\) −4.27498e12 −1.65668
\(574\) 0 0
\(575\) −8.29372e11 −0.316405
\(576\) 1.67319e12 0.633351
\(577\) −3.74722e12 −1.40740 −0.703700 0.710497i \(-0.748470\pi\)
−0.703700 + 0.710497i \(0.748470\pi\)
\(578\) 1.30778e12 0.487370
\(579\) 1.91629e12 0.708611
\(580\) 2.21997e11 0.0814557
\(581\) 0 0
\(582\) −8.90598e11 −0.321757
\(583\) −5.15221e11 −0.184708
\(584\) 2.56924e12 0.914000
\(585\) −1.01600e12 −0.358669
\(586\) 2.19040e12 0.767335
\(587\) 5.13023e12 1.78347 0.891734 0.452561i \(-0.149489\pi\)
0.891734 + 0.452561i \(0.149489\pi\)
\(588\) 0 0
\(589\) −8.98298e11 −0.307540
\(590\) 2.13292e12 0.724671
\(591\) −4.37234e12 −1.47425
\(592\) 2.49530e12 0.834979
\(593\) −5.25654e11 −0.174564 −0.0872819 0.996184i \(-0.527818\pi\)
−0.0872819 + 0.996184i \(0.527818\pi\)
\(594\) −1.07262e12 −0.353514
\(595\) 0 0
\(596\) −2.41677e11 −0.0784563
\(597\) −8.65097e12 −2.78728
\(598\) −3.70031e12 −1.18327
\(599\) 4.45408e12 1.41364 0.706818 0.707396i \(-0.250130\pi\)
0.706818 + 0.707396i \(0.250130\pi\)
\(600\) 7.43576e11 0.234231
\(601\) 1.48564e12 0.464491 0.232245 0.972657i \(-0.425393\pi\)
0.232245 + 0.972657i \(0.425393\pi\)
\(602\) 0 0
\(603\) −5.11725e12 −1.57619
\(604\) −1.72919e12 −0.528659
\(605\) −2.91605e11 −0.0884902
\(606\) −9.60871e12 −2.89427
\(607\) −1.33914e12 −0.400385 −0.200192 0.979757i \(-0.564157\pi\)
−0.200192 + 0.979757i \(0.564157\pi\)
\(608\) −2.70072e12 −0.801518
\(609\) 0 0
\(610\) −2.90966e12 −0.850859
\(611\) 3.14999e12 0.914374
\(612\) 1.02510e12 0.295383
\(613\) −3.77297e12 −1.07922 −0.539612 0.841914i \(-0.681429\pi\)
−0.539612 + 0.841914i \(0.681429\pi\)
\(614\) 2.58003e12 0.732602
\(615\) −3.71916e12 −1.04835
\(616\) 0 0
\(617\) 8.47795e11 0.235509 0.117755 0.993043i \(-0.462430\pi\)
0.117755 + 0.993043i \(0.462430\pi\)
\(618\) −1.04548e12 −0.288316
\(619\) −1.05795e12 −0.289640 −0.144820 0.989458i \(-0.546260\pi\)
−0.144820 + 0.989458i \(0.546260\pi\)
\(620\) 1.22194e11 0.0332115
\(621\) −2.01694e12 −0.544227
\(622\) 5.84055e12 1.56458
\(623\) 0 0
\(624\) 4.48460e12 1.18411
\(625\) 1.52588e11 0.0400000
\(626\) 4.66327e12 1.21368
\(627\) −6.78536e12 −1.75335
\(628\) 1.46361e12 0.375498
\(629\) −2.04396e12 −0.520649
\(630\) 0 0
\(631\) 6.07455e12 1.52539 0.762696 0.646757i \(-0.223875\pi\)
0.762696 + 0.646757i \(0.223875\pi\)
\(632\) −3.15716e10 −0.00787171
\(633\) −6.32552e12 −1.56596
\(634\) −4.91167e12 −1.20733
\(635\) 1.72451e11 0.0420906
\(636\) −4.02290e11 −0.0974949
\(637\) 0 0
\(638\) −2.47461e12 −0.591308
\(639\) −8.48742e12 −2.01383
\(640\) −2.28173e12 −0.537593
\(641\) 1.55196e12 0.363094 0.181547 0.983382i \(-0.441890\pi\)
0.181547 + 0.983382i \(0.441890\pi\)
\(642\) −9.40013e12 −2.18387
\(643\) 7.39291e12 1.70556 0.852778 0.522273i \(-0.174916\pi\)
0.852778 + 0.522273i \(0.174916\pi\)
\(644\) 0 0
\(645\) −1.09509e11 −0.0249132
\(646\) 5.04952e12 1.14078
\(647\) −3.70849e11 −0.0832009 −0.0416004 0.999134i \(-0.513246\pi\)
−0.0416004 + 0.999134i \(0.513246\pi\)
\(648\) −2.52226e12 −0.561956
\(649\) −5.71652e12 −1.26483
\(650\) 6.80783e11 0.149589
\(651\) 0 0
\(652\) −8.66969e11 −0.187884
\(653\) 5.70367e12 1.22757 0.613783 0.789475i \(-0.289647\pi\)
0.613783 + 0.789475i \(0.289647\pi\)
\(654\) −2.87419e12 −0.614350
\(655\) −2.57586e12 −0.546810
\(656\) 9.05585e12 1.90925
\(657\) 6.84840e12 1.43399
\(658\) 0 0
\(659\) −1.72578e12 −0.356451 −0.178226 0.983990i \(-0.557036\pi\)
−0.178226 + 0.983990i \(0.557036\pi\)
\(660\) 9.23005e11 0.189346
\(661\) −6.91726e11 −0.140938 −0.0704690 0.997514i \(-0.522450\pi\)
−0.0704690 + 0.997514i \(0.522450\pi\)
\(662\) 7.32955e12 1.48326
\(663\) −3.67345e12 −0.738351
\(664\) −1.78069e12 −0.355494
\(665\) 0 0
\(666\) 4.92038e12 0.969090
\(667\) −4.65322e12 −0.910306
\(668\) −1.52666e12 −0.296652
\(669\) −1.86885e12 −0.360709
\(670\) 3.42886e12 0.657376
\(671\) 7.79827e12 1.48507
\(672\) 0 0
\(673\) −3.11235e12 −0.584818 −0.292409 0.956293i \(-0.594457\pi\)
−0.292409 + 0.956293i \(0.594457\pi\)
\(674\) 7.72936e12 1.44269
\(675\) 3.71077e11 0.0688013
\(676\) −9.88383e11 −0.182039
\(677\) −6.18272e12 −1.13118 −0.565589 0.824687i \(-0.691351\pi\)
−0.565589 + 0.824687i \(0.691351\pi\)
\(678\) −1.49129e13 −2.71037
\(679\) 0 0
\(680\) 1.48306e12 0.265992
\(681\) −3.88063e12 −0.691417
\(682\) −1.36210e12 −0.241091
\(683\) 9.17110e12 1.61261 0.806303 0.591503i \(-0.201465\pi\)
0.806303 + 0.591503i \(0.201465\pi\)
\(684\) −2.92263e12 −0.510530
\(685\) −3.47912e12 −0.603756
\(686\) 0 0
\(687\) 1.28838e13 2.20668
\(688\) 2.66644e11 0.0453716
\(689\) 7.95244e11 0.134435
\(690\) 7.21861e12 1.21236
\(691\) 6.21607e12 1.03721 0.518603 0.855015i \(-0.326452\pi\)
0.518603 + 0.855015i \(0.326452\pi\)
\(692\) 2.24051e12 0.371423
\(693\) 0 0
\(694\) 8.93509e12 1.46211
\(695\) −9.47209e10 −0.0153998
\(696\) 4.17186e12 0.673889
\(697\) −7.41786e12 −1.19050
\(698\) −1.00914e13 −1.60917
\(699\) 1.51387e13 2.39851
\(700\) 0 0
\(701\) 9.62999e12 1.50624 0.753121 0.657882i \(-0.228547\pi\)
0.753121 + 0.657882i \(0.228547\pi\)
\(702\) 1.65559e12 0.257297
\(703\) 5.82746e12 0.899871
\(704\) 3.00481e12 0.461041
\(705\) −6.14504e12 −0.936858
\(706\) 3.47037e12 0.525721
\(707\) 0 0
\(708\) −4.46352e12 −0.667617
\(709\) −8.38186e12 −1.24575 −0.622877 0.782320i \(-0.714036\pi\)
−0.622877 + 0.782320i \(0.714036\pi\)
\(710\) 5.68709e12 0.839899
\(711\) −8.41552e10 −0.0123500
\(712\) 3.06387e12 0.446797
\(713\) −2.56128e12 −0.371155
\(714\) 0 0
\(715\) −1.82459e12 −0.261089
\(716\) 3.56656e12 0.507156
\(717\) −1.15620e13 −1.63379
\(718\) −4.04328e12 −0.567773
\(719\) 2.10248e12 0.293395 0.146697 0.989181i \(-0.453136\pi\)
0.146697 + 0.989181i \(0.453136\pi\)
\(720\) −4.82608e12 −0.669266
\(721\) 0 0
\(722\) −6.01858e12 −0.824284
\(723\) −1.32640e13 −1.80531
\(724\) 2.97494e10 0.00402397
\(725\) 8.56100e11 0.115081
\(726\) 2.53804e12 0.339066
\(727\) 1.36288e12 0.180947 0.0904736 0.995899i \(-0.471162\pi\)
0.0904736 + 0.995899i \(0.471162\pi\)
\(728\) 0 0
\(729\) −1.06408e13 −1.39541
\(730\) −4.58884e12 −0.598068
\(731\) −2.18415e11 −0.0282914
\(732\) 6.08897e12 0.783870
\(733\) 6.10310e12 0.780878 0.390439 0.920629i \(-0.372323\pi\)
0.390439 + 0.920629i \(0.372323\pi\)
\(734\) 1.10454e13 1.40459
\(735\) 0 0
\(736\) −7.70046e12 −0.967312
\(737\) −9.18982e12 −1.14737
\(738\) 1.78568e13 2.21590
\(739\) 5.95459e12 0.734432 0.367216 0.930136i \(-0.380311\pi\)
0.367216 + 0.930136i \(0.380311\pi\)
\(740\) −7.92702e11 −0.0971779
\(741\) 1.04732e13 1.27614
\(742\) 0 0
\(743\) −1.59757e13 −1.92314 −0.961569 0.274563i \(-0.911467\pi\)
−0.961569 + 0.274563i \(0.911467\pi\)
\(744\) 2.29633e12 0.274761
\(745\) −9.31994e11 −0.110843
\(746\) 1.27884e13 1.51178
\(747\) −4.74650e12 −0.557738
\(748\) 1.84093e12 0.215021
\(749\) 0 0
\(750\) −1.32808e12 −0.153267
\(751\) 6.94141e12 0.796284 0.398142 0.917324i \(-0.369655\pi\)
0.398142 + 0.917324i \(0.369655\pi\)
\(752\) 1.49627e13 1.70620
\(753\) 1.29633e13 1.46939
\(754\) 3.81956e12 0.430370
\(755\) −6.66836e12 −0.746892
\(756\) 0 0
\(757\) 8.41151e12 0.930984 0.465492 0.885052i \(-0.345877\pi\)
0.465492 + 0.885052i \(0.345877\pi\)
\(758\) −9.34538e12 −1.02822
\(759\) −1.93469e13 −2.11603
\(760\) −4.22830e12 −0.459731
\(761\) −1.50892e13 −1.63093 −0.815467 0.578803i \(-0.803520\pi\)
−0.815467 + 0.578803i \(0.803520\pi\)
\(762\) −1.50097e12 −0.161278
\(763\) 0 0
\(764\) −3.30678e12 −0.351144
\(765\) 3.95316e12 0.417319
\(766\) 4.65650e12 0.488687
\(767\) 8.82346e12 0.920576
\(768\) 1.24476e13 1.29110
\(769\) −8.73448e12 −0.900676 −0.450338 0.892858i \(-0.648697\pi\)
−0.450338 + 0.892858i \(0.648697\pi\)
\(770\) 0 0
\(771\) −2.21559e12 −0.225810
\(772\) 1.48229e12 0.150195
\(773\) −9.26595e12 −0.933431 −0.466716 0.884407i \(-0.654563\pi\)
−0.466716 + 0.884407i \(0.654563\pi\)
\(774\) 5.25784e11 0.0526591
\(775\) 4.71225e11 0.0469214
\(776\) 1.48741e12 0.147249
\(777\) 0 0
\(778\) −1.26562e13 −1.23850
\(779\) 2.11488e13 2.05762
\(780\) −1.42466e12 −0.137811
\(781\) −1.52422e13 −1.46594
\(782\) 1.43975e13 1.37676
\(783\) 2.08194e12 0.197943
\(784\) 0 0
\(785\) 5.64421e12 0.530505
\(786\) 2.24195e13 2.09520
\(787\) −8.04278e12 −0.747343 −0.373671 0.927561i \(-0.621901\pi\)
−0.373671 + 0.927561i \(0.621901\pi\)
\(788\) −3.38209e12 −0.312476
\(789\) −1.92308e13 −1.76665
\(790\) 5.63891e10 0.00515078
\(791\) 0 0
\(792\) 9.56845e12 0.864128
\(793\) −1.20366e13 −1.08088
\(794\) −9.73239e12 −0.869015
\(795\) −1.55137e12 −0.137741
\(796\) −6.69169e12 −0.590782
\(797\) 3.62841e12 0.318533 0.159266 0.987236i \(-0.449087\pi\)
0.159266 + 0.987236i \(0.449087\pi\)
\(798\) 0 0
\(799\) −1.22563e13 −1.06389
\(800\) 1.41673e12 0.122288
\(801\) 8.16686e12 0.700985
\(802\) 3.99714e12 0.341165
\(803\) 1.22987e13 1.04385
\(804\) −7.17550e12 −0.605620
\(805\) 0 0
\(806\) 2.10241e12 0.175473
\(807\) 2.47523e13 2.05440
\(808\) 1.60478e13 1.32453
\(809\) 1.27049e13 1.04280 0.521402 0.853311i \(-0.325409\pi\)
0.521402 + 0.853311i \(0.325409\pi\)
\(810\) 4.50494e12 0.367711
\(811\) −6.90849e12 −0.560776 −0.280388 0.959887i \(-0.590463\pi\)
−0.280388 + 0.959887i \(0.590463\pi\)
\(812\) 0 0
\(813\) 1.66947e13 1.34021
\(814\) 8.83627e12 0.705439
\(815\) −3.34334e12 −0.265443
\(816\) −1.74491e13 −1.37774
\(817\) 6.22713e11 0.0488978
\(818\) −2.58378e13 −2.01774
\(819\) 0 0
\(820\) −2.87684e12 −0.222205
\(821\) −1.57014e13 −1.20613 −0.603067 0.797691i \(-0.706055\pi\)
−0.603067 + 0.797691i \(0.706055\pi\)
\(822\) 3.02812e13 2.31340
\(823\) 1.02697e13 0.780295 0.390147 0.920752i \(-0.372424\pi\)
0.390147 + 0.920752i \(0.372424\pi\)
\(824\) 1.74609e12 0.131945
\(825\) 3.55944e12 0.267509
\(826\) 0 0
\(827\) −2.06564e13 −1.53561 −0.767804 0.640684i \(-0.778651\pi\)
−0.767804 + 0.640684i \(0.778651\pi\)
\(828\) −8.33318e12 −0.616132
\(829\) 9.01114e12 0.662650 0.331325 0.943517i \(-0.392504\pi\)
0.331325 + 0.943517i \(0.392504\pi\)
\(830\) 3.18044e12 0.232614
\(831\) 6.60983e11 0.0480823
\(832\) −4.63792e12 −0.335559
\(833\) 0 0
\(834\) 8.24423e11 0.0590069
\(835\) −5.88733e12 −0.419111
\(836\) −5.24861e12 −0.371634
\(837\) 1.14597e12 0.0807063
\(838\) 4.84637e12 0.339483
\(839\) 5.25303e12 0.366000 0.183000 0.983113i \(-0.441419\pi\)
0.183000 + 0.983113i \(0.441419\pi\)
\(840\) 0 0
\(841\) −9.70396e12 −0.668909
\(842\) −4.00153e12 −0.274361
\(843\) −2.42026e13 −1.65058
\(844\) −4.89291e12 −0.331915
\(845\) −3.81155e12 −0.257186
\(846\) 2.95042e13 1.98024
\(847\) 0 0
\(848\) 3.77746e12 0.250853
\(849\) 1.33956e13 0.884865
\(850\) −2.64886e12 −0.174050
\(851\) 1.66156e13 1.08601
\(852\) −1.19012e13 −0.773773
\(853\) −2.16481e13 −1.40007 −0.700035 0.714109i \(-0.746832\pi\)
−0.700035 + 0.714109i \(0.746832\pi\)
\(854\) 0 0
\(855\) −1.12707e13 −0.721278
\(856\) 1.56994e13 0.999427
\(857\) 2.18253e13 1.38212 0.691061 0.722796i \(-0.257143\pi\)
0.691061 + 0.722796i \(0.257143\pi\)
\(858\) 1.58807e13 1.00041
\(859\) 8.56506e12 0.536737 0.268368 0.963316i \(-0.413516\pi\)
0.268368 + 0.963316i \(0.413516\pi\)
\(860\) −8.47070e10 −0.00528052
\(861\) 0 0
\(862\) −2.24492e13 −1.38490
\(863\) −3.29505e12 −0.202215 −0.101108 0.994876i \(-0.532239\pi\)
−0.101108 + 0.994876i \(0.532239\pi\)
\(864\) 3.44533e12 0.210339
\(865\) 8.64020e12 0.524749
\(866\) −2.57224e13 −1.55411
\(867\) −1.05539e13 −0.634347
\(868\) 0 0
\(869\) −1.51130e11 −0.00899007
\(870\) −7.45125e12 −0.440953
\(871\) 1.41845e13 0.835088
\(872\) 4.80026e12 0.281152
\(873\) 3.96475e12 0.231021
\(874\) −4.10481e13 −2.37953
\(875\) 0 0
\(876\) 9.60296e12 0.550981
\(877\) −5.03789e12 −0.287574 −0.143787 0.989609i \(-0.545928\pi\)
−0.143787 + 0.989609i \(0.545928\pi\)
\(878\) 1.53687e13 0.872796
\(879\) −1.76768e13 −0.998742
\(880\) −8.66694e12 −0.487185
\(881\) 1.87408e13 1.04808 0.524042 0.851692i \(-0.324423\pi\)
0.524042 + 0.851692i \(0.324423\pi\)
\(882\) 0 0
\(883\) 3.35081e13 1.85493 0.927463 0.373914i \(-0.121984\pi\)
0.927463 + 0.373914i \(0.121984\pi\)
\(884\) −2.84148e12 −0.156498
\(885\) −1.72129e13 −0.943213
\(886\) 2.42820e13 1.32383
\(887\) 1.04883e13 0.568917 0.284459 0.958688i \(-0.408186\pi\)
0.284459 + 0.958688i \(0.408186\pi\)
\(888\) −1.48968e13 −0.803959
\(889\) 0 0
\(890\) −5.47229e12 −0.292358
\(891\) −1.20738e13 −0.641795
\(892\) −1.44559e12 −0.0764547
\(893\) 3.49434e13 1.83880
\(894\) 8.11180e12 0.424716
\(895\) 1.37539e13 0.716512
\(896\) 0 0
\(897\) 2.98619e13 1.54011
\(898\) 2.36077e13 1.21146
\(899\) 2.64383e12 0.134994
\(900\) 1.53314e12 0.0778915
\(901\) −3.09421e12 −0.156419
\(902\) 3.20682e13 1.61304
\(903\) 0 0
\(904\) 2.49065e13 1.24038
\(905\) 1.14724e11 0.00568508
\(906\) 5.80395e13 2.86185
\(907\) −3.18949e13 −1.56491 −0.782454 0.622709i \(-0.786032\pi\)
−0.782454 + 0.622709i \(0.786032\pi\)
\(908\) −3.00174e12 −0.146550
\(909\) 4.27759e13 2.07808
\(910\) 0 0
\(911\) 2.29508e13 1.10399 0.551995 0.833848i \(-0.313867\pi\)
0.551995 + 0.833848i \(0.313867\pi\)
\(912\) 4.97485e13 2.38124
\(913\) −8.52401e12 −0.405999
\(914\) −5.99734e12 −0.284250
\(915\) 2.34812e13 1.10745
\(916\) 9.96587e12 0.467719
\(917\) 0 0
\(918\) −6.44172e12 −0.299371
\(919\) 1.75653e13 0.812334 0.406167 0.913799i \(-0.366865\pi\)
0.406167 + 0.913799i \(0.366865\pi\)
\(920\) −1.20560e13 −0.554827
\(921\) −2.08212e13 −0.953534
\(922\) −3.17769e13 −1.44818
\(923\) 2.35263e13 1.06695
\(924\) 0 0
\(925\) −3.05694e12 −0.137293
\(926\) −2.00547e12 −0.0896326
\(927\) 4.65426e12 0.207010
\(928\) 7.94863e12 0.351825
\(929\) −1.93752e13 −0.853446 −0.426723 0.904382i \(-0.640332\pi\)
−0.426723 + 0.904382i \(0.640332\pi\)
\(930\) −4.10141e12 −0.179788
\(931\) 0 0
\(932\) 1.17101e13 0.508379
\(933\) −4.71338e13 −2.03641
\(934\) 1.01896e13 0.438125
\(935\) 7.09929e12 0.303783
\(936\) −1.47689e13 −0.628937
\(937\) −4.08529e12 −0.173139 −0.0865696 0.996246i \(-0.527590\pi\)
−0.0865696 + 0.996246i \(0.527590\pi\)
\(938\) 0 0
\(939\) −3.76331e13 −1.57970
\(940\) −4.75331e12 −0.198573
\(941\) 1.06000e12 0.0440709 0.0220355 0.999757i \(-0.492985\pi\)
0.0220355 + 0.999757i \(0.492985\pi\)
\(942\) −4.91255e13 −2.03272
\(943\) 6.03006e13 2.48324
\(944\) 4.19120e13 1.71777
\(945\) 0 0
\(946\) 9.44231e11 0.0383326
\(947\) −1.29151e13 −0.521824 −0.260912 0.965363i \(-0.584023\pi\)
−0.260912 + 0.965363i \(0.584023\pi\)
\(948\) −1.18004e11 −0.00474526
\(949\) −1.89831e13 −0.759747
\(950\) 7.55204e12 0.300821
\(951\) 3.96377e13 1.57143
\(952\) 0 0
\(953\) 8.70094e12 0.341702 0.170851 0.985297i \(-0.445348\pi\)
0.170851 + 0.985297i \(0.445348\pi\)
\(954\) 7.44861e12 0.291144
\(955\) −1.27521e13 −0.496098
\(956\) −8.94342e12 −0.346292
\(957\) 1.99704e13 0.769630
\(958\) −4.21142e13 −1.61541
\(959\) 0 0
\(960\) 9.04772e12 0.343810
\(961\) −2.49844e13 −0.944960
\(962\) −1.36388e13 −0.513438
\(963\) 4.18474e13 1.56801
\(964\) −1.02600e13 −0.382648
\(965\) 5.71623e12 0.212196
\(966\) 0 0
\(967\) −4.84084e13 −1.78033 −0.890167 0.455635i \(-0.849412\pi\)
−0.890167 + 0.455635i \(0.849412\pi\)
\(968\) −4.23885e12 −0.155170
\(969\) −4.07502e13 −1.48481
\(970\) −2.65662e12 −0.0963512
\(971\) −2.67952e13 −0.967319 −0.483660 0.875256i \(-0.660693\pi\)
−0.483660 + 0.875256i \(0.660693\pi\)
\(972\) −1.24578e13 −0.447653
\(973\) 0 0
\(974\) −1.61354e13 −0.574465
\(975\) −5.49399e12 −0.194701
\(976\) −5.71749e13 −2.01688
\(977\) 4.21970e12 0.148169 0.0740843 0.997252i \(-0.476397\pi\)
0.0740843 + 0.997252i \(0.476397\pi\)
\(978\) 2.90994e13 1.01709
\(979\) 1.46665e13 0.510275
\(980\) 0 0
\(981\) 1.27953e13 0.441103
\(982\) 6.31396e13 2.16671
\(983\) 4.74505e13 1.62088 0.810438 0.585825i \(-0.199229\pi\)
0.810438 + 0.585825i \(0.199229\pi\)
\(984\) −5.40628e13 −1.83832
\(985\) −1.30425e13 −0.441468
\(986\) −1.48615e13 −0.500745
\(987\) 0 0
\(988\) 8.10123e12 0.270486
\(989\) 1.77552e12 0.0590122
\(990\) −1.70899e13 −0.565434
\(991\) −1.04090e13 −0.342830 −0.171415 0.985199i \(-0.554834\pi\)
−0.171415 + 0.985199i \(0.554834\pi\)
\(992\) 4.37518e12 0.143448
\(993\) −5.91502e13 −1.93057
\(994\) 0 0
\(995\) −2.58055e13 −0.834659
\(996\) −6.65563e12 −0.214300
\(997\) −2.11445e13 −0.677749 −0.338874 0.940832i \(-0.610046\pi\)
−0.338874 + 0.940832i \(0.610046\pi\)
\(998\) 2.87608e12 0.0917727
\(999\) −7.43414e12 −0.236149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.e.1.2 4
7.6 odd 2 35.10.a.c.1.2 4
21.20 even 2 315.10.a.g.1.3 4
35.13 even 4 175.10.b.e.99.6 8
35.27 even 4 175.10.b.e.99.3 8
35.34 odd 2 175.10.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.c.1.2 4 7.6 odd 2
175.10.a.e.1.3 4 35.34 odd 2
175.10.b.e.99.3 8 35.27 even 4
175.10.b.e.99.6 8 35.13 even 4
245.10.a.e.1.2 4 1.1 even 1 trivial
315.10.a.g.1.3 4 21.20 even 2