Properties

Label 245.10.a.g.1.4
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.54749\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.54749 q^{2} +98.1335 q^{3} -491.320 q^{4} -625.000 q^{5} +446.261 q^{6} -4562.59 q^{8} -10052.8 q^{9} -2842.18 q^{10} -44050.6 q^{11} -48215.0 q^{12} -142358. q^{13} -61333.4 q^{15} +230808. q^{16} -286886. q^{17} -45715.1 q^{18} -673158. q^{19} +307075. q^{20} -200320. q^{22} -555018. q^{23} -447743. q^{24} +390625. q^{25} -647373. q^{26} -2.91808e6 q^{27} +3.26629e6 q^{29} -278913. q^{30} +4.39550e6 q^{31} +3.38564e6 q^{32} -4.32284e6 q^{33} -1.30461e6 q^{34} +4.93916e6 q^{36} +9.35091e6 q^{37} -3.06118e6 q^{38} -1.39701e7 q^{39} +2.85162e6 q^{40} -2.67199e6 q^{41} -3.17095e7 q^{43} +2.16430e7 q^{44} +6.28302e6 q^{45} -2.52394e6 q^{46} -5.04786e7 q^{47} +2.26500e7 q^{48} +1.77636e6 q^{50} -2.81531e7 q^{51} +6.99436e7 q^{52} -7.41121e7 q^{53} -1.32699e7 q^{54} +2.75316e7 q^{55} -6.60593e7 q^{57} +1.48534e7 q^{58} +7.38382e7 q^{59} +3.01344e7 q^{60} -1.44849e7 q^{61} +1.99885e7 q^{62} -1.02777e8 q^{64} +8.89740e7 q^{65} -1.96581e7 q^{66} +2.27218e7 q^{67} +1.40953e8 q^{68} -5.44658e7 q^{69} +4.15967e8 q^{71} +4.58669e7 q^{72} -2.17283e8 q^{73} +4.25232e7 q^{74} +3.83334e7 q^{75} +3.30736e8 q^{76} -6.35290e7 q^{78} +3.66004e8 q^{79} -1.44255e8 q^{80} -8.84914e7 q^{81} -1.21509e7 q^{82} +2.12240e8 q^{83} +1.79304e8 q^{85} -1.44199e8 q^{86} +3.20532e8 q^{87} +2.00985e8 q^{88} -6.42964e8 q^{89} +2.85720e7 q^{90} +2.72692e8 q^{92} +4.31345e8 q^{93} -2.29551e8 q^{94} +4.20724e8 q^{95} +3.32245e8 q^{96} -9.38511e8 q^{97} +4.42833e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 15 q^{2} + 124 q^{3} + 3009 q^{4} - 3750 q^{5} - 4888 q^{6} + 22041 q^{8} + 111090 q^{9} - 9375 q^{10} - 47796 q^{11} + 541656 q^{12} - 102168 q^{13} - 77500 q^{15} + 2371065 q^{16} + 38472 q^{17}+ \cdots + 3571968784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.54749 0.200973 0.100486 0.994938i \(-0.467960\pi\)
0.100486 + 0.994938i \(0.467960\pi\)
\(3\) 98.1335 0.699474 0.349737 0.936848i \(-0.386271\pi\)
0.349737 + 0.936848i \(0.386271\pi\)
\(4\) −491.320 −0.959610
\(5\) −625.000 −0.447214
\(6\) 446.261 0.140575
\(7\) 0 0
\(8\) −4562.59 −0.393828
\(9\) −10052.8 −0.510736
\(10\) −2842.18 −0.0898777
\(11\) −44050.6 −0.907163 −0.453581 0.891215i \(-0.649854\pi\)
−0.453581 + 0.891215i \(0.649854\pi\)
\(12\) −48215.0 −0.671222
\(13\) −142358. −1.38241 −0.691207 0.722657i \(-0.742921\pi\)
−0.691207 + 0.722657i \(0.742921\pi\)
\(14\) 0 0
\(15\) −61333.4 −0.312814
\(16\) 230808. 0.880461
\(17\) −286886. −0.833084 −0.416542 0.909116i \(-0.636758\pi\)
−0.416542 + 0.909116i \(0.636758\pi\)
\(18\) −45715.1 −0.102644
\(19\) −673158. −1.18502 −0.592510 0.805563i \(-0.701863\pi\)
−0.592510 + 0.805563i \(0.701863\pi\)
\(20\) 307075. 0.429151
\(21\) 0 0
\(22\) −200320. −0.182315
\(23\) −555018. −0.413554 −0.206777 0.978388i \(-0.566297\pi\)
−0.206777 + 0.978388i \(0.566297\pi\)
\(24\) −447743. −0.275472
\(25\) 390625. 0.200000
\(26\) −647373. −0.277827
\(27\) −2.91808e6 −1.05672
\(28\) 0 0
\(29\) 3.26629e6 0.857558 0.428779 0.903409i \(-0.358944\pi\)
0.428779 + 0.903409i \(0.358944\pi\)
\(30\) −278913. −0.0628671
\(31\) 4.39550e6 0.854831 0.427416 0.904055i \(-0.359424\pi\)
0.427416 + 0.904055i \(0.359424\pi\)
\(32\) 3.38564e6 0.570777
\(33\) −4.32284e6 −0.634536
\(34\) −1.30461e6 −0.167427
\(35\) 0 0
\(36\) 4.93916e6 0.490108
\(37\) 9.35091e6 0.820249 0.410125 0.912029i \(-0.365485\pi\)
0.410125 + 0.912029i \(0.365485\pi\)
\(38\) −3.06118e6 −0.238156
\(39\) −1.39701e7 −0.966962
\(40\) 2.85162e6 0.176125
\(41\) −2.67199e6 −0.147675 −0.0738377 0.997270i \(-0.523525\pi\)
−0.0738377 + 0.997270i \(0.523525\pi\)
\(42\) 0 0
\(43\) −3.17095e7 −1.41443 −0.707214 0.706999i \(-0.750048\pi\)
−0.707214 + 0.706999i \(0.750048\pi\)
\(44\) 2.16430e7 0.870522
\(45\) 6.28302e6 0.228408
\(46\) −2.52394e6 −0.0831129
\(47\) −5.04786e7 −1.50892 −0.754462 0.656344i \(-0.772102\pi\)
−0.754462 + 0.656344i \(0.772102\pi\)
\(48\) 2.26500e7 0.615860
\(49\) 0 0
\(50\) 1.77636e6 0.0401945
\(51\) −2.81531e7 −0.582720
\(52\) 6.99436e7 1.32658
\(53\) −7.41121e7 −1.29017 −0.645086 0.764110i \(-0.723178\pi\)
−0.645086 + 0.764110i \(0.723178\pi\)
\(54\) −1.32699e7 −0.212372
\(55\) 2.75316e7 0.405695
\(56\) 0 0
\(57\) −6.60593e7 −0.828890
\(58\) 1.48534e7 0.172346
\(59\) 7.38382e7 0.793317 0.396659 0.917966i \(-0.370170\pi\)
0.396659 + 0.917966i \(0.370170\pi\)
\(60\) 3.01344e7 0.300180
\(61\) −1.44849e7 −0.133946 −0.0669731 0.997755i \(-0.521334\pi\)
−0.0669731 + 0.997755i \(0.521334\pi\)
\(62\) 1.99885e7 0.171798
\(63\) 0 0
\(64\) −1.02777e8 −0.765751
\(65\) 8.89740e7 0.618234
\(66\) −1.96581e7 −0.127524
\(67\) 2.27218e7 0.137755 0.0688773 0.997625i \(-0.478058\pi\)
0.0688773 + 0.997625i \(0.478058\pi\)
\(68\) 1.40953e8 0.799436
\(69\) −5.44658e7 −0.289270
\(70\) 0 0
\(71\) 4.15967e8 1.94266 0.971328 0.237742i \(-0.0764074\pi\)
0.971328 + 0.237742i \(0.0764074\pi\)
\(72\) 4.58669e7 0.201142
\(73\) −2.17283e8 −0.895516 −0.447758 0.894155i \(-0.647777\pi\)
−0.447758 + 0.894155i \(0.647777\pi\)
\(74\) 4.25232e7 0.164848
\(75\) 3.83334e7 0.139895
\(76\) 3.30736e8 1.13716
\(77\) 0 0
\(78\) −6.35290e7 −0.194333
\(79\) 3.66004e8 1.05722 0.528608 0.848866i \(-0.322714\pi\)
0.528608 + 0.848866i \(0.322714\pi\)
\(80\) −1.44255e8 −0.393754
\(81\) −8.84914e7 −0.228412
\(82\) −1.21509e7 −0.0296787
\(83\) 2.12240e8 0.490880 0.245440 0.969412i \(-0.421068\pi\)
0.245440 + 0.969412i \(0.421068\pi\)
\(84\) 0 0
\(85\) 1.79304e8 0.372566
\(86\) −1.44199e8 −0.284261
\(87\) 3.20532e8 0.599839
\(88\) 2.00985e8 0.357266
\(89\) −6.42964e8 −1.08625 −0.543127 0.839650i \(-0.682760\pi\)
−0.543127 + 0.839650i \(0.682760\pi\)
\(90\) 2.85720e7 0.0459038
\(91\) 0 0
\(92\) 2.72692e8 0.396850
\(93\) 4.31345e8 0.597932
\(94\) −2.29551e8 −0.303252
\(95\) 4.20724e8 0.529957
\(96\) 3.32245e8 0.399243
\(97\) −9.38511e8 −1.07638 −0.538191 0.842823i \(-0.680892\pi\)
−0.538191 + 0.842823i \(0.680892\pi\)
\(98\) 0 0
\(99\) 4.42833e8 0.463321
\(100\) −1.91922e8 −0.191922
\(101\) 4.67360e8 0.446895 0.223447 0.974716i \(-0.428269\pi\)
0.223447 + 0.974716i \(0.428269\pi\)
\(102\) −1.28026e8 −0.117111
\(103\) 9.04818e8 0.792125 0.396062 0.918224i \(-0.370376\pi\)
0.396062 + 0.918224i \(0.370376\pi\)
\(104\) 6.49523e8 0.544433
\(105\) 0 0
\(106\) −3.37024e8 −0.259289
\(107\) −6.17787e8 −0.455629 −0.227815 0.973705i \(-0.573158\pi\)
−0.227815 + 0.973705i \(0.573158\pi\)
\(108\) 1.43371e9 1.01404
\(109\) 2.54838e9 1.72920 0.864599 0.502463i \(-0.167573\pi\)
0.864599 + 0.502463i \(0.167573\pi\)
\(110\) 1.25200e8 0.0815337
\(111\) 9.17637e8 0.573743
\(112\) 0 0
\(113\) −1.26981e9 −0.732631 −0.366315 0.930491i \(-0.619381\pi\)
−0.366315 + 0.930491i \(0.619381\pi\)
\(114\) −3.00404e8 −0.166584
\(115\) 3.46886e8 0.184947
\(116\) −1.60479e9 −0.822921
\(117\) 1.43110e9 0.706049
\(118\) 3.35778e8 0.159435
\(119\) 0 0
\(120\) 2.79839e8 0.123195
\(121\) −4.17489e8 −0.177056
\(122\) −6.58698e7 −0.0269195
\(123\) −2.62212e8 −0.103295
\(124\) −2.15960e9 −0.820305
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) −1.76485e9 −0.601991 −0.300996 0.953626i \(-0.597319\pi\)
−0.300996 + 0.953626i \(0.597319\pi\)
\(128\) −2.20083e9 −0.724671
\(129\) −3.11176e9 −0.989356
\(130\) 4.04608e8 0.124248
\(131\) −3.86727e9 −1.14732 −0.573659 0.819094i \(-0.694477\pi\)
−0.573659 + 0.819094i \(0.694477\pi\)
\(132\) 2.12390e9 0.608907
\(133\) 0 0
\(134\) 1.03327e8 0.0276849
\(135\) 1.82380e9 0.472580
\(136\) 1.30894e9 0.328092
\(137\) 5.95463e9 1.44415 0.722075 0.691815i \(-0.243189\pi\)
0.722075 + 0.691815i \(0.243189\pi\)
\(138\) −2.47683e8 −0.0581353
\(139\) −6.51557e9 −1.48042 −0.740211 0.672374i \(-0.765275\pi\)
−0.740211 + 0.672374i \(0.765275\pi\)
\(140\) 0 0
\(141\) −4.95364e9 −1.05545
\(142\) 1.89160e9 0.390421
\(143\) 6.27098e9 1.25407
\(144\) −2.32027e9 −0.449684
\(145\) −2.04143e9 −0.383512
\(146\) −9.88093e8 −0.179974
\(147\) 0 0
\(148\) −4.59429e9 −0.787120
\(149\) 5.08275e9 0.844814 0.422407 0.906406i \(-0.361185\pi\)
0.422407 + 0.906406i \(0.361185\pi\)
\(150\) 1.74321e8 0.0281150
\(151\) 1.05147e10 1.64589 0.822945 0.568120i \(-0.192329\pi\)
0.822945 + 0.568120i \(0.192329\pi\)
\(152\) 3.07134e9 0.466694
\(153\) 2.88401e9 0.425486
\(154\) 0 0
\(155\) −2.74719e9 −0.382292
\(156\) 6.86380e9 0.927906
\(157\) 5.28495e9 0.694212 0.347106 0.937826i \(-0.387164\pi\)
0.347106 + 0.937826i \(0.387164\pi\)
\(158\) 1.66440e9 0.212471
\(159\) −7.27287e9 −0.902441
\(160\) −2.11603e9 −0.255259
\(161\) 0 0
\(162\) −4.02414e8 −0.0459045
\(163\) −4.40792e9 −0.489091 −0.244545 0.969638i \(-0.578639\pi\)
−0.244545 + 0.969638i \(0.578639\pi\)
\(164\) 1.31280e9 0.141711
\(165\) 2.70178e9 0.283773
\(166\) 9.65159e8 0.0986535
\(167\) 1.04618e10 1.04083 0.520416 0.853913i \(-0.325777\pi\)
0.520416 + 0.853913i \(0.325777\pi\)
\(168\) 0 0
\(169\) 9.66141e9 0.911067
\(170\) 8.15381e8 0.0748756
\(171\) 6.76714e9 0.605233
\(172\) 1.55795e10 1.35730
\(173\) −1.44477e10 −1.22628 −0.613141 0.789973i \(-0.710094\pi\)
−0.613141 + 0.789973i \(0.710094\pi\)
\(174\) 1.45762e9 0.120551
\(175\) 0 0
\(176\) −1.01672e10 −0.798722
\(177\) 7.24599e9 0.554905
\(178\) −2.92387e9 −0.218307
\(179\) 1.38421e10 1.00777 0.503887 0.863769i \(-0.331903\pi\)
0.503887 + 0.863769i \(0.331903\pi\)
\(180\) −3.08697e9 −0.219183
\(181\) 2.58030e10 1.78697 0.893484 0.449095i \(-0.148254\pi\)
0.893484 + 0.449095i \(0.148254\pi\)
\(182\) 0 0
\(183\) −1.42145e9 −0.0936919
\(184\) 2.53232e9 0.162869
\(185\) −5.84432e9 −0.366827
\(186\) 1.96154e9 0.120168
\(187\) 1.26375e10 0.755743
\(188\) 2.48012e10 1.44798
\(189\) 0 0
\(190\) 1.91324e9 0.106507
\(191\) −2.65408e10 −1.44299 −0.721495 0.692419i \(-0.756545\pi\)
−0.721495 + 0.692419i \(0.756545\pi\)
\(192\) −1.00859e10 −0.535623
\(193\) 1.62976e9 0.0845505 0.0422753 0.999106i \(-0.486539\pi\)
0.0422753 + 0.999106i \(0.486539\pi\)
\(194\) −4.26787e9 −0.216323
\(195\) 8.73132e9 0.432439
\(196\) 0 0
\(197\) −1.73941e10 −0.822819 −0.411410 0.911451i \(-0.634963\pi\)
−0.411410 + 0.911451i \(0.634963\pi\)
\(198\) 2.01378e9 0.0931148
\(199\) 3.31064e10 1.49649 0.748243 0.663424i \(-0.230897\pi\)
0.748243 + 0.663424i \(0.230897\pi\)
\(200\) −1.78226e9 −0.0787656
\(201\) 2.22977e9 0.0963557
\(202\) 2.12532e9 0.0898136
\(203\) 0 0
\(204\) 1.38322e10 0.559184
\(205\) 1.67000e9 0.0660424
\(206\) 4.11465e9 0.159195
\(207\) 5.57950e9 0.211217
\(208\) −3.28574e10 −1.21716
\(209\) 2.96530e10 1.07501
\(210\) 0 0
\(211\) 3.21024e10 1.11498 0.557490 0.830184i \(-0.311765\pi\)
0.557490 + 0.830184i \(0.311765\pi\)
\(212\) 3.64128e10 1.23806
\(213\) 4.08202e10 1.35884
\(214\) −2.80938e9 −0.0915690
\(215\) 1.98184e10 0.632552
\(216\) 1.33140e10 0.416166
\(217\) 0 0
\(218\) 1.15887e10 0.347521
\(219\) −2.13227e10 −0.626390
\(220\) −1.35269e10 −0.389309
\(221\) 4.08406e10 1.15167
\(222\) 4.17294e9 0.115307
\(223\) −3.79801e10 −1.02845 −0.514226 0.857655i \(-0.671921\pi\)
−0.514226 + 0.857655i \(0.671921\pi\)
\(224\) 0 0
\(225\) −3.92688e9 −0.102147
\(226\) −5.77444e9 −0.147239
\(227\) 1.71268e10 0.428113 0.214057 0.976821i \(-0.431332\pi\)
0.214057 + 0.976821i \(0.431332\pi\)
\(228\) 3.24563e10 0.795411
\(229\) −7.66667e10 −1.84224 −0.921122 0.389274i \(-0.872726\pi\)
−0.921122 + 0.389274i \(0.872726\pi\)
\(230\) 1.57746e9 0.0371692
\(231\) 0 0
\(232\) −1.49027e10 −0.337730
\(233\) 2.18072e10 0.484729 0.242364 0.970185i \(-0.422077\pi\)
0.242364 + 0.970185i \(0.422077\pi\)
\(234\) 6.50793e9 0.141896
\(235\) 3.15491e10 0.674811
\(236\) −3.62782e10 −0.761275
\(237\) 3.59172e10 0.739495
\(238\) 0 0
\(239\) −7.61451e10 −1.50956 −0.754782 0.655976i \(-0.772257\pi\)
−0.754782 + 0.655976i \(0.772257\pi\)
\(240\) −1.41562e10 −0.275421
\(241\) −6.28307e10 −1.19976 −0.599881 0.800089i \(-0.704786\pi\)
−0.599881 + 0.800089i \(0.704786\pi\)
\(242\) −1.89853e9 −0.0355834
\(243\) 4.87526e10 0.896952
\(244\) 7.11671e9 0.128536
\(245\) 0 0
\(246\) −1.19241e9 −0.0207595
\(247\) 9.58296e10 1.63819
\(248\) −2.00548e10 −0.336656
\(249\) 2.08278e10 0.343358
\(250\) −1.11023e9 −0.0179755
\(251\) −4.82160e10 −0.766760 −0.383380 0.923591i \(-0.625240\pi\)
−0.383380 + 0.923591i \(0.625240\pi\)
\(252\) 0 0
\(253\) 2.44489e10 0.375160
\(254\) −8.02562e9 −0.120984
\(255\) 1.75957e10 0.260600
\(256\) 4.26138e10 0.620112
\(257\) 4.02899e10 0.576099 0.288049 0.957616i \(-0.406993\pi\)
0.288049 + 0.957616i \(0.406993\pi\)
\(258\) −1.41507e10 −0.198833
\(259\) 0 0
\(260\) −4.37147e10 −0.593264
\(261\) −3.28354e10 −0.437986
\(262\) −1.75864e10 −0.230580
\(263\) 1.91897e10 0.247325 0.123662 0.992324i \(-0.460536\pi\)
0.123662 + 0.992324i \(0.460536\pi\)
\(264\) 1.97234e10 0.249898
\(265\) 4.63200e10 0.576982
\(266\) 0 0
\(267\) −6.30963e10 −0.759806
\(268\) −1.11637e10 −0.132191
\(269\) 1.55364e11 1.80911 0.904554 0.426359i \(-0.140204\pi\)
0.904554 + 0.426359i \(0.140204\pi\)
\(270\) 8.29371e9 0.0949756
\(271\) −1.07856e11 −1.21474 −0.607370 0.794419i \(-0.707776\pi\)
−0.607370 + 0.794419i \(0.707776\pi\)
\(272\) −6.62154e10 −0.733498
\(273\) 0 0
\(274\) 2.70786e10 0.290234
\(275\) −1.72073e10 −0.181433
\(276\) 2.67602e10 0.277586
\(277\) 1.00953e11 1.03030 0.515148 0.857101i \(-0.327737\pi\)
0.515148 + 0.857101i \(0.327737\pi\)
\(278\) −2.96295e10 −0.297524
\(279\) −4.41872e10 −0.436593
\(280\) 0 0
\(281\) −5.97756e10 −0.571934 −0.285967 0.958239i \(-0.592315\pi\)
−0.285967 + 0.958239i \(0.592315\pi\)
\(282\) −2.25266e10 −0.212117
\(283\) −2.37771e10 −0.220353 −0.110177 0.993912i \(-0.535142\pi\)
−0.110177 + 0.993912i \(0.535142\pi\)
\(284\) −2.04373e11 −1.86419
\(285\) 4.12871e10 0.370691
\(286\) 2.85172e10 0.252034
\(287\) 0 0
\(288\) −3.40353e10 −0.291516
\(289\) −3.62845e10 −0.305971
\(290\) −9.28338e9 −0.0770753
\(291\) −9.20993e10 −0.752901
\(292\) 1.06756e11 0.859346
\(293\) −8.15841e10 −0.646698 −0.323349 0.946280i \(-0.604809\pi\)
−0.323349 + 0.946280i \(0.604809\pi\)
\(294\) 0 0
\(295\) −4.61489e10 −0.354782
\(296\) −4.26643e10 −0.323037
\(297\) 1.28543e11 0.958617
\(298\) 2.31138e10 0.169784
\(299\) 7.90114e10 0.571702
\(300\) −1.88340e10 −0.134244
\(301\) 0 0
\(302\) 4.78155e10 0.330779
\(303\) 4.58636e10 0.312591
\(304\) −1.55370e11 −1.04336
\(305\) 9.05305e9 0.0599026
\(306\) 1.31150e10 0.0855111
\(307\) 3.31601e9 0.0213056 0.0106528 0.999943i \(-0.496609\pi\)
0.0106528 + 0.999943i \(0.496609\pi\)
\(308\) 0 0
\(309\) 8.87929e10 0.554071
\(310\) −1.24928e10 −0.0768302
\(311\) −2.69649e10 −0.163447 −0.0817234 0.996655i \(-0.526042\pi\)
−0.0817234 + 0.996655i \(0.526042\pi\)
\(312\) 6.37399e10 0.380817
\(313\) −6.20886e10 −0.365648 −0.182824 0.983146i \(-0.558524\pi\)
−0.182824 + 0.983146i \(0.558524\pi\)
\(314\) 2.40333e10 0.139518
\(315\) 0 0
\(316\) −1.79825e11 −1.01452
\(317\) 1.67449e11 0.931359 0.465679 0.884954i \(-0.345810\pi\)
0.465679 + 0.884954i \(0.345810\pi\)
\(318\) −3.30733e10 −0.181366
\(319\) −1.43882e11 −0.777944
\(320\) 6.42358e10 0.342454
\(321\) −6.06256e10 −0.318701
\(322\) 0 0
\(323\) 1.93119e11 0.987221
\(324\) 4.34776e10 0.219186
\(325\) −5.56087e10 −0.276483
\(326\) −2.00450e10 −0.0982938
\(327\) 2.50081e11 1.20953
\(328\) 1.21912e10 0.0581587
\(329\) 0 0
\(330\) 1.22863e10 0.0570307
\(331\) −2.01516e11 −0.922750 −0.461375 0.887205i \(-0.652644\pi\)
−0.461375 + 0.887205i \(0.652644\pi\)
\(332\) −1.04278e11 −0.471054
\(333\) −9.40030e10 −0.418931
\(334\) 4.75748e10 0.209179
\(335\) −1.42011e10 −0.0616057
\(336\) 0 0
\(337\) 4.50890e11 1.90430 0.952151 0.305629i \(-0.0988669\pi\)
0.952151 + 0.305629i \(0.0988669\pi\)
\(338\) 4.39352e10 0.183099
\(339\) −1.24611e11 −0.512456
\(340\) −8.80955e10 −0.357519
\(341\) −1.93624e11 −0.775471
\(342\) 3.07735e10 0.121635
\(343\) 0 0
\(344\) 1.44677e11 0.557041
\(345\) 3.40411e10 0.129365
\(346\) −6.57007e10 −0.246449
\(347\) −4.50544e11 −1.66823 −0.834113 0.551594i \(-0.814020\pi\)
−0.834113 + 0.551594i \(0.814020\pi\)
\(348\) −1.57484e11 −0.575612
\(349\) −7.01952e10 −0.253275 −0.126638 0.991949i \(-0.540419\pi\)
−0.126638 + 0.991949i \(0.540419\pi\)
\(350\) 0 0
\(351\) 4.15413e11 1.46082
\(352\) −1.49140e11 −0.517787
\(353\) −2.25165e11 −0.771819 −0.385910 0.922537i \(-0.626112\pi\)
−0.385910 + 0.922537i \(0.626112\pi\)
\(354\) 3.29511e10 0.111521
\(355\) −2.59979e11 −0.868782
\(356\) 3.15901e11 1.04238
\(357\) 0 0
\(358\) 6.29468e10 0.202535
\(359\) 1.97594e11 0.627841 0.313920 0.949449i \(-0.398357\pi\)
0.313920 + 0.949449i \(0.398357\pi\)
\(360\) −2.86668e10 −0.0899536
\(361\) 1.30454e11 0.404272
\(362\) 1.17339e11 0.359132
\(363\) −4.09697e10 −0.123846
\(364\) 0 0
\(365\) 1.35802e11 0.400487
\(366\) −6.46404e9 −0.0188295
\(367\) 3.92725e10 0.113003 0.0565016 0.998403i \(-0.482005\pi\)
0.0565016 + 0.998403i \(0.482005\pi\)
\(368\) −1.28102e11 −0.364118
\(369\) 2.68611e10 0.0754232
\(370\) −2.65770e10 −0.0737221
\(371\) 0 0
\(372\) −2.11929e11 −0.573782
\(373\) −5.28306e11 −1.41317 −0.706587 0.707627i \(-0.749766\pi\)
−0.706587 + 0.707627i \(0.749766\pi\)
\(374\) 5.74689e10 0.151884
\(375\) −2.39584e10 −0.0625628
\(376\) 2.30313e11 0.594256
\(377\) −4.64983e11 −1.18550
\(378\) 0 0
\(379\) −2.47671e11 −0.616594 −0.308297 0.951290i \(-0.599759\pi\)
−0.308297 + 0.951290i \(0.599759\pi\)
\(380\) −2.06710e11 −0.508552
\(381\) −1.73191e11 −0.421077
\(382\) −1.20694e11 −0.290002
\(383\) 6.30255e11 1.49666 0.748328 0.663329i \(-0.230857\pi\)
0.748328 + 0.663329i \(0.230857\pi\)
\(384\) −2.15975e11 −0.506889
\(385\) 0 0
\(386\) 7.41133e9 0.0169923
\(387\) 3.18770e11 0.722400
\(388\) 4.61109e11 1.03291
\(389\) −3.11450e11 −0.689628 −0.344814 0.938671i \(-0.612058\pi\)
−0.344814 + 0.938671i \(0.612058\pi\)
\(390\) 3.97056e10 0.0869083
\(391\) 1.59227e11 0.344525
\(392\) 0 0
\(393\) −3.79509e11 −0.802519
\(394\) −7.90996e10 −0.165364
\(395\) −2.28752e11 −0.472801
\(396\) −2.17573e11 −0.444607
\(397\) −9.31030e10 −0.188108 −0.0940538 0.995567i \(-0.529983\pi\)
−0.0940538 + 0.995567i \(0.529983\pi\)
\(398\) 1.50551e11 0.300753
\(399\) 0 0
\(400\) 9.01592e10 0.176092
\(401\) 1.67787e11 0.324048 0.162024 0.986787i \(-0.448198\pi\)
0.162024 + 0.986787i \(0.448198\pi\)
\(402\) 1.01398e10 0.0193649
\(403\) −6.25736e11 −1.18173
\(404\) −2.29623e11 −0.428845
\(405\) 5.53071e10 0.102149
\(406\) 0 0
\(407\) −4.11913e11 −0.744100
\(408\) 1.28451e11 0.229492
\(409\) −6.66489e11 −1.17771 −0.588855 0.808239i \(-0.700421\pi\)
−0.588855 + 0.808239i \(0.700421\pi\)
\(410\) 7.59429e9 0.0132727
\(411\) 5.84348e11 1.01014
\(412\) −4.44555e11 −0.760131
\(413\) 0 0
\(414\) 2.53727e10 0.0424488
\(415\) −1.32650e11 −0.219528
\(416\) −4.81974e11 −0.789049
\(417\) −6.39395e11 −1.03552
\(418\) 1.34847e11 0.216047
\(419\) −3.35339e11 −0.531522 −0.265761 0.964039i \(-0.585623\pi\)
−0.265761 + 0.964039i \(0.585623\pi\)
\(420\) 0 0
\(421\) −1.58071e11 −0.245235 −0.122617 0.992454i \(-0.539129\pi\)
−0.122617 + 0.992454i \(0.539129\pi\)
\(422\) 1.45986e11 0.224080
\(423\) 5.07453e11 0.770662
\(424\) 3.38143e11 0.508106
\(425\) −1.12065e11 −0.166617
\(426\) 1.85630e11 0.273089
\(427\) 0 0
\(428\) 3.03531e11 0.437227
\(429\) 6.15393e11 0.877192
\(430\) 9.01241e10 0.127126
\(431\) −7.97845e11 −1.11371 −0.556853 0.830611i \(-0.687991\pi\)
−0.556853 + 0.830611i \(0.687991\pi\)
\(432\) −6.73515e11 −0.930402
\(433\) −1.13662e12 −1.55389 −0.776944 0.629570i \(-0.783231\pi\)
−0.776944 + 0.629570i \(0.783231\pi\)
\(434\) 0 0
\(435\) −2.00333e11 −0.268256
\(436\) −1.25207e12 −1.65935
\(437\) 3.73615e11 0.490069
\(438\) −9.69650e10 −0.125887
\(439\) 5.03443e11 0.646934 0.323467 0.946239i \(-0.395151\pi\)
0.323467 + 0.946239i \(0.395151\pi\)
\(440\) −1.25616e11 −0.159774
\(441\) 0 0
\(442\) 1.85722e11 0.231453
\(443\) −5.69695e11 −0.702790 −0.351395 0.936227i \(-0.614293\pi\)
−0.351395 + 0.936227i \(0.614293\pi\)
\(444\) −4.50854e11 −0.550569
\(445\) 4.01852e11 0.485788
\(446\) −1.72714e11 −0.206691
\(447\) 4.98788e11 0.590925
\(448\) 0 0
\(449\) 1.67088e11 0.194015 0.0970076 0.995284i \(-0.469073\pi\)
0.0970076 + 0.995284i \(0.469073\pi\)
\(450\) −1.78575e10 −0.0205288
\(451\) 1.17703e11 0.133966
\(452\) 6.23882e11 0.703040
\(453\) 1.03184e12 1.15126
\(454\) 7.78838e10 0.0860391
\(455\) 0 0
\(456\) 3.01401e11 0.326440
\(457\) −8.65375e11 −0.928071 −0.464036 0.885817i \(-0.653599\pi\)
−0.464036 + 0.885817i \(0.653599\pi\)
\(458\) −3.48641e11 −0.370241
\(459\) 8.37155e11 0.880337
\(460\) −1.70432e11 −0.177477
\(461\) −5.61050e11 −0.578559 −0.289279 0.957245i \(-0.593416\pi\)
−0.289279 + 0.957245i \(0.593416\pi\)
\(462\) 0 0
\(463\) −1.04005e12 −1.05182 −0.525908 0.850542i \(-0.676274\pi\)
−0.525908 + 0.850542i \(0.676274\pi\)
\(464\) 7.53884e11 0.755047
\(465\) −2.69591e11 −0.267403
\(466\) 9.91682e10 0.0974172
\(467\) −1.18851e12 −1.15632 −0.578158 0.815925i \(-0.696228\pi\)
−0.578158 + 0.815925i \(0.696228\pi\)
\(468\) −7.03130e11 −0.677532
\(469\) 0 0
\(470\) 1.43469e11 0.135619
\(471\) 5.18630e11 0.485583
\(472\) −3.36893e11 −0.312430
\(473\) 1.39682e12 1.28312
\(474\) 1.63333e11 0.148618
\(475\) −2.62952e11 −0.237004
\(476\) 0 0
\(477\) 7.45036e11 0.658938
\(478\) −3.46269e11 −0.303381
\(479\) 2.60913e11 0.226457 0.113228 0.993569i \(-0.463881\pi\)
0.113228 + 0.993569i \(0.463881\pi\)
\(480\) −2.07653e11 −0.178547
\(481\) −1.33118e12 −1.13392
\(482\) −2.85722e11 −0.241119
\(483\) 0 0
\(484\) 2.05121e11 0.169905
\(485\) 5.86569e11 0.481373
\(486\) 2.21702e11 0.180263
\(487\) −2.15539e12 −1.73638 −0.868190 0.496231i \(-0.834717\pi\)
−0.868190 + 0.496231i \(0.834717\pi\)
\(488\) 6.60886e10 0.0527518
\(489\) −4.32564e11 −0.342106
\(490\) 0 0
\(491\) 5.31182e10 0.0412455 0.0206227 0.999787i \(-0.493435\pi\)
0.0206227 + 0.999787i \(0.493435\pi\)
\(492\) 1.28830e11 0.0991230
\(493\) −9.37051e11 −0.714418
\(494\) 4.35784e11 0.329231
\(495\) −2.76771e11 −0.207203
\(496\) 1.01451e12 0.752646
\(497\) 0 0
\(498\) 9.47144e10 0.0690055
\(499\) −5.97480e11 −0.431391 −0.215695 0.976461i \(-0.569202\pi\)
−0.215695 + 0.976461i \(0.569202\pi\)
\(500\) 1.19951e11 0.0858301
\(501\) 1.02665e12 0.728035
\(502\) −2.19262e11 −0.154098
\(503\) 1.30692e12 0.910321 0.455160 0.890410i \(-0.349582\pi\)
0.455160 + 0.890410i \(0.349582\pi\)
\(504\) 0 0
\(505\) −2.92100e11 −0.199857
\(506\) 1.11181e11 0.0753969
\(507\) 9.48107e11 0.637267
\(508\) 8.67105e11 0.577677
\(509\) 1.42204e12 0.939035 0.469518 0.882923i \(-0.344428\pi\)
0.469518 + 0.882923i \(0.344428\pi\)
\(510\) 8.00162e10 0.0523736
\(511\) 0 0
\(512\) 1.32061e12 0.849297
\(513\) 1.96433e12 1.25223
\(514\) 1.83218e11 0.115780
\(515\) −5.65511e11 −0.354249
\(516\) 1.52887e12 0.949396
\(517\) 2.22362e12 1.36884
\(518\) 0 0
\(519\) −1.41780e12 −0.857753
\(520\) −4.05952e11 −0.243478
\(521\) 1.61928e12 0.962834 0.481417 0.876492i \(-0.340122\pi\)
0.481417 + 0.876492i \(0.340122\pi\)
\(522\) −1.49319e11 −0.0880232
\(523\) 2.92425e11 0.170906 0.0854529 0.996342i \(-0.472766\pi\)
0.0854529 + 0.996342i \(0.472766\pi\)
\(524\) 1.90007e12 1.10098
\(525\) 0 0
\(526\) 8.72650e10 0.0497055
\(527\) −1.26101e12 −0.712146
\(528\) −9.97745e11 −0.558685
\(529\) −1.49311e12 −0.828973
\(530\) 2.10640e11 0.115958
\(531\) −7.42282e11 −0.405176
\(532\) 0 0
\(533\) 3.80381e11 0.204148
\(534\) −2.86930e11 −0.152700
\(535\) 3.86117e11 0.203764
\(536\) −1.03670e11 −0.0542516
\(537\) 1.35837e12 0.704912
\(538\) 7.06515e11 0.363581
\(539\) 0 0
\(540\) −8.96070e11 −0.453492
\(541\) 2.64098e12 1.32549 0.662747 0.748844i \(-0.269391\pi\)
0.662747 + 0.748844i \(0.269391\pi\)
\(542\) −4.90475e11 −0.244130
\(543\) 2.53214e12 1.24994
\(544\) −9.71292e11 −0.475505
\(545\) −1.59274e12 −0.773320
\(546\) 0 0
\(547\) 1.57238e12 0.750954 0.375477 0.926832i \(-0.377479\pi\)
0.375477 + 0.926832i \(0.377479\pi\)
\(548\) −2.92563e12 −1.38582
\(549\) 1.45614e11 0.0684112
\(550\) −7.82499e10 −0.0364630
\(551\) −2.19873e12 −1.01622
\(552\) 2.48505e11 0.113923
\(553\) 0 0
\(554\) 4.59085e11 0.207061
\(555\) −5.73523e11 −0.256586
\(556\) 3.20123e12 1.42063
\(557\) 2.92127e12 1.28595 0.642974 0.765888i \(-0.277700\pi\)
0.642974 + 0.765888i \(0.277700\pi\)
\(558\) −2.00941e11 −0.0877433
\(559\) 4.51411e12 1.95533
\(560\) 0 0
\(561\) 1.24016e12 0.528622
\(562\) −2.71829e11 −0.114943
\(563\) 2.29076e12 0.960932 0.480466 0.877013i \(-0.340468\pi\)
0.480466 + 0.877013i \(0.340468\pi\)
\(564\) 2.43382e12 1.01282
\(565\) 7.93630e11 0.327642
\(566\) −1.08126e11 −0.0442850
\(567\) 0 0
\(568\) −1.89789e12 −0.765072
\(569\) 3.78939e12 1.51553 0.757764 0.652528i \(-0.226292\pi\)
0.757764 + 0.652528i \(0.226292\pi\)
\(570\) 1.87752e11 0.0744987
\(571\) 8.33507e11 0.328131 0.164065 0.986449i \(-0.447539\pi\)
0.164065 + 0.986449i \(0.447539\pi\)
\(572\) −3.08106e12 −1.20342
\(573\) −2.60454e12 −1.00933
\(574\) 0 0
\(575\) −2.16804e11 −0.0827107
\(576\) 1.03320e12 0.391097
\(577\) 1.53253e12 0.575595 0.287797 0.957691i \(-0.407077\pi\)
0.287797 + 0.957691i \(0.407077\pi\)
\(578\) −1.65003e11 −0.0614918
\(579\) 1.59934e11 0.0591409
\(580\) 1.00300e12 0.368022
\(581\) 0 0
\(582\) −4.18821e11 −0.151312
\(583\) 3.26468e12 1.17040
\(584\) 9.91374e11 0.352679
\(585\) −8.94440e11 −0.315755
\(586\) −3.71003e11 −0.129969
\(587\) 1.16935e12 0.406510 0.203255 0.979126i \(-0.434848\pi\)
0.203255 + 0.979126i \(0.434848\pi\)
\(588\) 0 0
\(589\) −2.95886e12 −1.01299
\(590\) −2.09861e11 −0.0713015
\(591\) −1.70695e12 −0.575541
\(592\) 2.15826e12 0.722198
\(593\) −2.99104e12 −0.993290 −0.496645 0.867954i \(-0.665435\pi\)
−0.496645 + 0.867954i \(0.665435\pi\)
\(594\) 5.84549e11 0.192656
\(595\) 0 0
\(596\) −2.49726e12 −0.810692
\(597\) 3.24884e12 1.04675
\(598\) 3.59304e11 0.114896
\(599\) −2.53486e12 −0.804513 −0.402256 0.915527i \(-0.631774\pi\)
−0.402256 + 0.915527i \(0.631774\pi\)
\(600\) −1.74899e11 −0.0550945
\(601\) 4.31006e12 1.34756 0.673781 0.738931i \(-0.264669\pi\)
0.673781 + 0.738931i \(0.264669\pi\)
\(602\) 0 0
\(603\) −2.28418e11 −0.0703563
\(604\) −5.16609e12 −1.57941
\(605\) 2.60931e11 0.0791819
\(606\) 2.08565e11 0.0628223
\(607\) −3.99341e12 −1.19397 −0.596986 0.802252i \(-0.703635\pi\)
−0.596986 + 0.802252i \(0.703635\pi\)
\(608\) −2.27907e12 −0.676381
\(609\) 0 0
\(610\) 4.11687e10 0.0120388
\(611\) 7.18605e12 2.08596
\(612\) −1.41697e12 −0.408301
\(613\) 4.02942e12 1.15258 0.576289 0.817246i \(-0.304500\pi\)
0.576289 + 0.817246i \(0.304500\pi\)
\(614\) 1.50795e10 0.00428184
\(615\) 1.63883e11 0.0461950
\(616\) 0 0
\(617\) −5.94209e12 −1.65065 −0.825326 0.564656i \(-0.809009\pi\)
−0.825326 + 0.564656i \(0.809009\pi\)
\(618\) 4.03785e11 0.111353
\(619\) −3.62900e12 −0.993526 −0.496763 0.867886i \(-0.665478\pi\)
−0.496763 + 0.867886i \(0.665478\pi\)
\(620\) 1.34975e12 0.366851
\(621\) 1.61959e12 0.437010
\(622\) −1.22622e11 −0.0328483
\(623\) 0 0
\(624\) −3.22441e12 −0.851373
\(625\) 1.52588e11 0.0400000
\(626\) −2.82348e11 −0.0734851
\(627\) 2.90995e12 0.751938
\(628\) −2.59660e12 −0.666173
\(629\) −2.68264e12 −0.683337
\(630\) 0 0
\(631\) 5.56207e12 1.39670 0.698352 0.715755i \(-0.253917\pi\)
0.698352 + 0.715755i \(0.253917\pi\)
\(632\) −1.66993e12 −0.416361
\(633\) 3.15032e12 0.779899
\(634\) 7.61475e11 0.187178
\(635\) 1.10303e12 0.269219
\(636\) 3.57331e12 0.865992
\(637\) 0 0
\(638\) −6.54302e11 −0.156345
\(639\) −4.18164e12 −0.992185
\(640\) 1.37552e12 0.324083
\(641\) 4.70928e11 0.110178 0.0550888 0.998481i \(-0.482456\pi\)
0.0550888 + 0.998481i \(0.482456\pi\)
\(642\) −2.75694e11 −0.0640501
\(643\) −6.13138e12 −1.41452 −0.707260 0.706954i \(-0.750069\pi\)
−0.707260 + 0.706954i \(0.750069\pi\)
\(644\) 0 0
\(645\) 1.94485e12 0.442453
\(646\) 8.78208e11 0.198404
\(647\) 2.95457e12 0.662864 0.331432 0.943479i \(-0.392468\pi\)
0.331432 + 0.943479i \(0.392468\pi\)
\(648\) 4.03750e11 0.0899550
\(649\) −3.25262e12 −0.719668
\(650\) −2.52880e11 −0.0555654
\(651\) 0 0
\(652\) 2.16570e12 0.469336
\(653\) −7.91440e12 −1.70337 −0.851685 0.524055i \(-0.824419\pi\)
−0.851685 + 0.524055i \(0.824419\pi\)
\(654\) 1.13724e12 0.243082
\(655\) 2.41705e12 0.513096
\(656\) −6.16717e11 −0.130022
\(657\) 2.18431e12 0.457372
\(658\) 0 0
\(659\) 3.06617e12 0.633304 0.316652 0.948542i \(-0.397441\pi\)
0.316652 + 0.948542i \(0.397441\pi\)
\(660\) −1.32744e12 −0.272312
\(661\) 2.69526e12 0.549153 0.274577 0.961565i \(-0.411462\pi\)
0.274577 + 0.961565i \(0.411462\pi\)
\(662\) −9.16393e11 −0.185447
\(663\) 4.00783e12 0.805560
\(664\) −9.68364e11 −0.193322
\(665\) 0 0
\(666\) −4.27478e11 −0.0841937
\(667\) −1.81285e12 −0.354646
\(668\) −5.14008e12 −0.998793
\(669\) −3.72712e12 −0.719375
\(670\) −6.45794e10 −0.0123811
\(671\) 6.38068e11 0.121511
\(672\) 0 0
\(673\) 2.97220e12 0.558483 0.279241 0.960221i \(-0.409917\pi\)
0.279241 + 0.960221i \(0.409917\pi\)
\(674\) 2.05042e12 0.382712
\(675\) −1.13987e12 −0.211344
\(676\) −4.74685e12 −0.874269
\(677\) 8.14226e12 1.48969 0.744845 0.667237i \(-0.232523\pi\)
0.744845 + 0.667237i \(0.232523\pi\)
\(678\) −5.66666e11 −0.102990
\(679\) 0 0
\(680\) −8.18089e11 −0.146727
\(681\) 1.68071e12 0.299454
\(682\) −8.80505e11 −0.155848
\(683\) 3.46018e11 0.0608423 0.0304211 0.999537i \(-0.490315\pi\)
0.0304211 + 0.999537i \(0.490315\pi\)
\(684\) −3.32483e12 −0.580787
\(685\) −3.72164e12 −0.645843
\(686\) 0 0
\(687\) −7.52357e12 −1.28860
\(688\) −7.31879e12 −1.24535
\(689\) 1.05505e13 1.78355
\(690\) 1.54802e11 0.0259989
\(691\) 3.34581e12 0.558277 0.279139 0.960251i \(-0.409951\pi\)
0.279139 + 0.960251i \(0.409951\pi\)
\(692\) 7.09844e12 1.17675
\(693\) 0 0
\(694\) −2.04885e12 −0.335268
\(695\) 4.07223e12 0.662065
\(696\) −1.46246e12 −0.236233
\(697\) 7.66557e11 0.123026
\(698\) −3.19212e11 −0.0509014
\(699\) 2.14002e12 0.339055
\(700\) 0 0
\(701\) 8.95269e12 1.40030 0.700152 0.713994i \(-0.253116\pi\)
0.700152 + 0.713994i \(0.253116\pi\)
\(702\) 1.88909e12 0.293586
\(703\) −6.29463e12 −0.972012
\(704\) 4.52741e12 0.694661
\(705\) 3.09603e12 0.472013
\(706\) −1.02394e12 −0.155115
\(707\) 0 0
\(708\) −3.56010e12 −0.532492
\(709\) 3.19448e12 0.474779 0.237390 0.971415i \(-0.423708\pi\)
0.237390 + 0.971415i \(0.423708\pi\)
\(710\) −1.18225e12 −0.174601
\(711\) −3.67937e12 −0.539959
\(712\) 2.93358e12 0.427797
\(713\) −2.43958e12 −0.353518
\(714\) 0 0
\(715\) −3.91936e12 −0.560839
\(716\) −6.80091e12 −0.967070
\(717\) −7.47238e12 −1.05590
\(718\) 8.98559e11 0.126179
\(719\) −6.25538e12 −0.872918 −0.436459 0.899724i \(-0.643768\pi\)
−0.436459 + 0.899724i \(0.643768\pi\)
\(720\) 1.45017e12 0.201105
\(721\) 0 0
\(722\) 5.93236e11 0.0812475
\(723\) −6.16579e12 −0.839202
\(724\) −1.26775e13 −1.71479
\(725\) 1.27589e12 0.171512
\(726\) −1.86309e11 −0.0248897
\(727\) −3.88891e12 −0.516325 −0.258162 0.966102i \(-0.583117\pi\)
−0.258162 + 0.966102i \(0.583117\pi\)
\(728\) 0 0
\(729\) 6.52604e12 0.855807
\(730\) 6.17558e11 0.0804869
\(731\) 9.09700e12 1.17834
\(732\) 6.98388e11 0.0899077
\(733\) 9.29539e12 1.18932 0.594662 0.803976i \(-0.297286\pi\)
0.594662 + 0.803976i \(0.297286\pi\)
\(734\) 1.78591e11 0.0227106
\(735\) 0 0
\(736\) −1.87909e12 −0.236047
\(737\) −1.00091e12 −0.124966
\(738\) 1.22151e11 0.0151580
\(739\) 3.81274e12 0.470259 0.235130 0.971964i \(-0.424449\pi\)
0.235130 + 0.971964i \(0.424449\pi\)
\(740\) 2.87143e12 0.352011
\(741\) 9.40409e12 1.14587
\(742\) 0 0
\(743\) −9.68333e12 −1.16567 −0.582834 0.812591i \(-0.698056\pi\)
−0.582834 + 0.812591i \(0.698056\pi\)
\(744\) −1.96805e12 −0.235482
\(745\) −3.17672e12 −0.377812
\(746\) −2.40246e12 −0.284009
\(747\) −2.13361e12 −0.250710
\(748\) −6.20906e12 −0.725218
\(749\) 0 0
\(750\) −1.08950e11 −0.0125734
\(751\) 1.35639e13 1.55598 0.777991 0.628275i \(-0.216239\pi\)
0.777991 + 0.628275i \(0.216239\pi\)
\(752\) −1.16509e13 −1.32855
\(753\) −4.73160e12 −0.536328
\(754\) −2.11451e12 −0.238253
\(755\) −6.57169e12 −0.736065
\(756\) 0 0
\(757\) 1.46852e13 1.62535 0.812676 0.582716i \(-0.198010\pi\)
0.812676 + 0.582716i \(0.198010\pi\)
\(758\) −1.12628e12 −0.123919
\(759\) 2.39925e12 0.262415
\(760\) −1.91959e12 −0.208712
\(761\) −7.82013e12 −0.845246 −0.422623 0.906306i \(-0.638891\pi\)
−0.422623 + 0.906306i \(0.638891\pi\)
\(762\) −7.87582e11 −0.0846250
\(763\) 0 0
\(764\) 1.30400e13 1.38471
\(765\) −1.80251e12 −0.190283
\(766\) 2.86608e12 0.300787
\(767\) −1.05115e13 −1.09669
\(768\) 4.18184e12 0.433752
\(769\) −9.67364e12 −0.997519 −0.498760 0.866740i \(-0.666211\pi\)
−0.498760 + 0.866740i \(0.666211\pi\)
\(770\) 0 0
\(771\) 3.95379e12 0.402966
\(772\) −8.00735e11 −0.0811355
\(773\) 3.41240e12 0.343758 0.171879 0.985118i \(-0.445016\pi\)
0.171879 + 0.985118i \(0.445016\pi\)
\(774\) 1.44960e12 0.145183
\(775\) 1.71699e12 0.170966
\(776\) 4.28204e12 0.423909
\(777\) 0 0
\(778\) −1.41632e12 −0.138596
\(779\) 1.79867e12 0.174998
\(780\) −4.28988e12 −0.414972
\(781\) −1.83236e13 −1.76231
\(782\) 7.24082e11 0.0692400
\(783\) −9.53129e12 −0.906199
\(784\) 0 0
\(785\) −3.30309e12 −0.310461
\(786\) −1.72581e12 −0.161284
\(787\) 4.15741e12 0.386311 0.193155 0.981168i \(-0.438128\pi\)
0.193155 + 0.981168i \(0.438128\pi\)
\(788\) 8.54609e12 0.789586
\(789\) 1.88315e12 0.172997
\(790\) −1.04025e12 −0.0950201
\(791\) 0 0
\(792\) −2.02047e12 −0.182469
\(793\) 2.06204e12 0.185169
\(794\) −4.23385e11 −0.0378045
\(795\) 4.54555e12 0.403584
\(796\) −1.62658e13 −1.43604
\(797\) 9.55824e12 0.839103 0.419552 0.907732i \(-0.362187\pi\)
0.419552 + 0.907732i \(0.362187\pi\)
\(798\) 0 0
\(799\) 1.44816e13 1.25706
\(800\) 1.32252e12 0.114155
\(801\) 6.46360e12 0.554790
\(802\) 7.63010e11 0.0651247
\(803\) 9.57146e12 0.812378
\(804\) −1.09553e12 −0.0924639
\(805\) 0 0
\(806\) −2.84553e12 −0.237495
\(807\) 1.52464e13 1.26542
\(808\) −2.13237e12 −0.176000
\(809\) −1.61537e13 −1.32588 −0.662941 0.748672i \(-0.730692\pi\)
−0.662941 + 0.748672i \(0.730692\pi\)
\(810\) 2.51509e11 0.0205291
\(811\) −7.59785e12 −0.616733 −0.308366 0.951268i \(-0.599782\pi\)
−0.308366 + 0.951268i \(0.599782\pi\)
\(812\) 0 0
\(813\) −1.05843e13 −0.849679
\(814\) −1.87317e12 −0.149544
\(815\) 2.75495e12 0.218728
\(816\) −6.49795e12 −0.513063
\(817\) 2.13455e13 1.67613
\(818\) −3.03085e12 −0.236687
\(819\) 0 0
\(820\) −8.20503e11 −0.0633750
\(821\) 5.50773e12 0.423086 0.211543 0.977369i \(-0.432151\pi\)
0.211543 + 0.977369i \(0.432151\pi\)
\(822\) 2.65732e12 0.203011
\(823\) −2.31393e13 −1.75813 −0.879064 0.476703i \(-0.841832\pi\)
−0.879064 + 0.476703i \(0.841832\pi\)
\(824\) −4.12831e12 −0.311961
\(825\) −1.68861e12 −0.126907
\(826\) 0 0
\(827\) 7.41789e12 0.551449 0.275725 0.961237i \(-0.411082\pi\)
0.275725 + 0.961237i \(0.411082\pi\)
\(828\) −2.74132e12 −0.202686
\(829\) 5.62762e11 0.0413837 0.0206919 0.999786i \(-0.493413\pi\)
0.0206919 + 0.999786i \(0.493413\pi\)
\(830\) −6.03224e11 −0.0441192
\(831\) 9.90691e12 0.720666
\(832\) 1.46312e13 1.05858
\(833\) 0 0
\(834\) −2.90764e12 −0.208111
\(835\) −6.53860e12 −0.465474
\(836\) −1.45691e13 −1.03159
\(837\) −1.28264e13 −0.903318
\(838\) −1.52495e12 −0.106821
\(839\) −4.54982e12 −0.317004 −0.158502 0.987359i \(-0.550666\pi\)
−0.158502 + 0.987359i \(0.550666\pi\)
\(840\) 0 0
\(841\) −3.83851e12 −0.264595
\(842\) −7.18826e11 −0.0492855
\(843\) −5.86599e12 −0.400053
\(844\) −1.57726e13 −1.06995
\(845\) −6.03838e12 −0.407441
\(846\) 2.30764e12 0.154882
\(847\) 0 0
\(848\) −1.71056e13 −1.13595
\(849\) −2.33333e12 −0.154131
\(850\) −5.09613e11 −0.0334854
\(851\) −5.18992e12 −0.339217
\(852\) −2.00558e13 −1.30395
\(853\) −2.58407e13 −1.67122 −0.835609 0.549324i \(-0.814885\pi\)
−0.835609 + 0.549324i \(0.814885\pi\)
\(854\) 0 0
\(855\) −4.22946e12 −0.270668
\(856\) 2.81871e12 0.179440
\(857\) 7.97451e12 0.504999 0.252499 0.967597i \(-0.418747\pi\)
0.252499 + 0.967597i \(0.418747\pi\)
\(858\) 2.79849e12 0.176291
\(859\) 3.92748e12 0.246119 0.123059 0.992399i \(-0.460729\pi\)
0.123059 + 0.992399i \(0.460729\pi\)
\(860\) −9.73719e12 −0.607003
\(861\) 0 0
\(862\) −3.62819e12 −0.223825
\(863\) −2.87231e13 −1.76272 −0.881359 0.472448i \(-0.843371\pi\)
−0.881359 + 0.472448i \(0.843371\pi\)
\(864\) −9.87957e12 −0.603151
\(865\) 9.02980e12 0.548410
\(866\) −5.16877e12 −0.312289
\(867\) −3.56072e12 −0.214019
\(868\) 0 0
\(869\) −1.61227e13 −0.959067
\(870\) −9.11010e11 −0.0539122
\(871\) −3.23464e12 −0.190434
\(872\) −1.16272e13 −0.681006
\(873\) 9.43469e12 0.549748
\(874\) 1.69901e12 0.0984905
\(875\) 0 0
\(876\) 1.04763e13 0.601090
\(877\) 2.44180e13 1.39384 0.696918 0.717151i \(-0.254554\pi\)
0.696918 + 0.717151i \(0.254554\pi\)
\(878\) 2.28940e12 0.130016
\(879\) −8.00613e12 −0.452348
\(880\) 6.35452e12 0.357199
\(881\) 3.03025e13 1.69468 0.847339 0.531052i \(-0.178203\pi\)
0.847339 + 0.531052i \(0.178203\pi\)
\(882\) 0 0
\(883\) 2.36415e13 1.30874 0.654368 0.756176i \(-0.272935\pi\)
0.654368 + 0.756176i \(0.272935\pi\)
\(884\) −2.00658e13 −1.10515
\(885\) −4.52875e12 −0.248161
\(886\) −2.59068e12 −0.141242
\(887\) −2.21901e12 −0.120366 −0.0601828 0.998187i \(-0.519168\pi\)
−0.0601828 + 0.998187i \(0.519168\pi\)
\(888\) −4.18680e12 −0.225956
\(889\) 0 0
\(890\) 1.82742e12 0.0976300
\(891\) 3.89810e12 0.207207
\(892\) 1.86604e13 0.986913
\(893\) 3.39801e13 1.78810
\(894\) 2.26823e12 0.118760
\(895\) −8.65131e12 −0.450690
\(896\) 0 0
\(897\) 7.75367e12 0.399890
\(898\) 7.59829e11 0.0389917
\(899\) 1.43570e13 0.733067
\(900\) 1.92936e12 0.0980216
\(901\) 2.12617e13 1.07482
\(902\) 5.35253e11 0.0269234
\(903\) 0 0
\(904\) 5.79361e12 0.288530
\(905\) −1.61269e13 −0.799156
\(906\) 4.69230e12 0.231371
\(907\) 1.01297e13 0.497007 0.248504 0.968631i \(-0.420061\pi\)
0.248504 + 0.968631i \(0.420061\pi\)
\(908\) −8.41472e12 −0.410822
\(909\) −4.69829e12 −0.228245
\(910\) 0 0
\(911\) 3.67990e13 1.77012 0.885062 0.465474i \(-0.154116\pi\)
0.885062 + 0.465474i \(0.154116\pi\)
\(912\) −1.52470e13 −0.729806
\(913\) −9.34930e12 −0.445308
\(914\) −3.93528e12 −0.186517
\(915\) 8.88407e11 0.0419003
\(916\) 3.76679e13 1.76784
\(917\) 0 0
\(918\) 3.80696e12 0.176924
\(919\) 4.04334e13 1.86991 0.934955 0.354768i \(-0.115440\pi\)
0.934955 + 0.354768i \(0.115440\pi\)
\(920\) −1.58270e12 −0.0728372
\(921\) 3.25412e11 0.0149027
\(922\) −2.55137e12 −0.116274
\(923\) −5.92163e13 −2.68555
\(924\) 0 0
\(925\) 3.65270e12 0.164050
\(926\) −4.72962e12 −0.211386
\(927\) −9.09598e12 −0.404567
\(928\) 1.10585e13 0.489474
\(929\) 2.99476e13 1.31914 0.659571 0.751642i \(-0.270738\pi\)
0.659571 + 0.751642i \(0.270738\pi\)
\(930\) −1.22596e12 −0.0537407
\(931\) 0 0
\(932\) −1.07143e13 −0.465151
\(933\) −2.64615e12 −0.114327
\(934\) −5.40473e12 −0.232388
\(935\) −7.89844e12 −0.337978
\(936\) −6.52954e12 −0.278062
\(937\) −1.77154e13 −0.750796 −0.375398 0.926864i \(-0.622494\pi\)
−0.375398 + 0.926864i \(0.622494\pi\)
\(938\) 0 0
\(939\) −6.09297e12 −0.255761
\(940\) −1.55007e13 −0.647555
\(941\) −4.44968e13 −1.85002 −0.925008 0.379947i \(-0.875942\pi\)
−0.925008 + 0.379947i \(0.875942\pi\)
\(942\) 2.35847e12 0.0975889
\(943\) 1.48300e12 0.0610717
\(944\) 1.70424e13 0.698485
\(945\) 0 0
\(946\) 6.35204e12 0.257871
\(947\) 1.35940e13 0.549251 0.274626 0.961551i \(-0.411446\pi\)
0.274626 + 0.961551i \(0.411446\pi\)
\(948\) −1.76469e13 −0.709627
\(949\) 3.09321e13 1.23797
\(950\) −1.19577e12 −0.0476313
\(951\) 1.64324e13 0.651461
\(952\) 0 0
\(953\) −2.72131e13 −1.06871 −0.534355 0.845260i \(-0.679445\pi\)
−0.534355 + 0.845260i \(0.679445\pi\)
\(954\) 3.38804e12 0.132428
\(955\) 1.65880e13 0.645325
\(956\) 3.74116e13 1.44859
\(957\) −1.41196e13 −0.544152
\(958\) 1.18650e12 0.0455116
\(959\) 0 0
\(960\) 6.30369e12 0.239538
\(961\) −7.11923e12 −0.269264
\(962\) −6.05353e12 −0.227888
\(963\) 6.21050e12 0.232707
\(964\) 3.08700e13 1.15130
\(965\) −1.01860e12 −0.0378121
\(966\) 0 0
\(967\) 4.01406e13 1.47627 0.738133 0.674656i \(-0.235708\pi\)
0.738133 + 0.674656i \(0.235708\pi\)
\(968\) 1.90483e12 0.0697297
\(969\) 1.89515e13 0.690535
\(970\) 2.66742e12 0.0967427
\(971\) −3.63950e13 −1.31388 −0.656939 0.753944i \(-0.728149\pi\)
−0.656939 + 0.753944i \(0.728149\pi\)
\(972\) −2.39531e13 −0.860725
\(973\) 0 0
\(974\) −9.80160e12 −0.348965
\(975\) −5.45708e12 −0.193392
\(976\) −3.34322e12 −0.117935
\(977\) −2.79320e13 −0.980790 −0.490395 0.871500i \(-0.663147\pi\)
−0.490395 + 0.871500i \(0.663147\pi\)
\(978\) −1.96708e12 −0.0687539
\(979\) 2.83230e13 0.985409
\(980\) 0 0
\(981\) −2.56184e13 −0.883164
\(982\) 2.41554e11 0.00828921
\(983\) −4.77777e13 −1.63205 −0.816027 0.578013i \(-0.803828\pi\)
−0.816027 + 0.578013i \(0.803828\pi\)
\(984\) 1.19637e12 0.0406805
\(985\) 1.08713e13 0.367976
\(986\) −4.26123e12 −0.143578
\(987\) 0 0
\(988\) −4.70830e13 −1.57202
\(989\) 1.75993e13 0.584942
\(990\) −1.25861e12 −0.0416422
\(991\) −2.06515e13 −0.680174 −0.340087 0.940394i \(-0.610457\pi\)
−0.340087 + 0.940394i \(0.610457\pi\)
\(992\) 1.48816e13 0.487918
\(993\) −1.97755e13 −0.645439
\(994\) 0 0
\(995\) −2.06915e13 −0.669249
\(996\) −1.02331e13 −0.329490
\(997\) 3.80815e13 1.22063 0.610317 0.792157i \(-0.291042\pi\)
0.610317 + 0.792157i \(0.291042\pi\)
\(998\) −2.71703e12 −0.0866977
\(999\) −2.72867e13 −0.866774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.g.1.4 6
7.6 odd 2 35.10.a.e.1.4 6
21.20 even 2 315.10.a.l.1.3 6
35.13 even 4 175.10.b.g.99.5 12
35.27 even 4 175.10.b.g.99.8 12
35.34 odd 2 175.10.a.g.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.e.1.4 6 7.6 odd 2
175.10.a.g.1.3 6 35.34 odd 2
175.10.b.g.99.5 12 35.13 even 4
175.10.b.g.99.8 12 35.27 even 4
245.10.a.g.1.4 6 1.1 even 1 trivial
315.10.a.l.1.3 6 21.20 even 2