Properties

Label 245.10.a.i.1.3
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 3242 x^{7} - 1690 x^{6} + 3235604 x^{5} + 4945456 x^{4} - 1138644128 x^{3} + \cdots + 183792896000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4}\cdot 5^{2}\cdot 7^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-24.3613\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.3613 q^{2} +124.658 q^{3} +81.4729 q^{4} -625.000 q^{5} -3036.83 q^{6} +10488.2 q^{8} -4143.41 q^{9} +15225.8 q^{10} -79166.7 q^{11} +10156.2 q^{12} -158587. q^{13} -77911.2 q^{15} -297220. q^{16} -486441. q^{17} +100939. q^{18} +209259. q^{19} -50920.6 q^{20} +1.92860e6 q^{22} -1.31142e6 q^{23} +1.30744e6 q^{24} +390625. q^{25} +3.86338e6 q^{26} -2.97015e6 q^{27} -5.04449e6 q^{29} +1.89802e6 q^{30} +6.50959e6 q^{31} +1.87071e6 q^{32} -9.86875e6 q^{33} +1.18503e7 q^{34} -337576. q^{36} -1.80931e7 q^{37} -5.09783e6 q^{38} -1.97691e7 q^{39} -6.55512e6 q^{40} -3.96418e6 q^{41} +2.68166e7 q^{43} -6.44994e6 q^{44} +2.58963e6 q^{45} +3.19479e7 q^{46} -1.26974e7 q^{47} -3.70509e7 q^{48} -9.51613e6 q^{50} -6.06387e7 q^{51} -1.29205e7 q^{52} +1.02048e8 q^{53} +7.23567e7 q^{54} +4.94792e7 q^{55} +2.60858e7 q^{57} +1.22890e8 q^{58} -8.22604e7 q^{59} -6.34765e6 q^{60} -2.00447e8 q^{61} -1.58582e8 q^{62} +1.06604e8 q^{64} +9.91166e7 q^{65} +2.40416e8 q^{66} +1.30451e8 q^{67} -3.96318e7 q^{68} -1.63479e8 q^{69} -1.63519e8 q^{71} -4.34569e7 q^{72} +4.12000e8 q^{73} +4.40772e8 q^{74} +4.86945e7 q^{75} +1.70490e7 q^{76} +4.81600e8 q^{78} -1.90331e8 q^{79} +1.85763e8 q^{80} -2.88698e8 q^{81} +9.65725e7 q^{82} -4.76606e8 q^{83} +3.04026e8 q^{85} -6.53288e8 q^{86} -6.28835e8 q^{87} -8.30316e8 q^{88} -6.55910e8 q^{89} -6.30868e7 q^{90} -1.06845e8 q^{92} +8.11472e8 q^{93} +3.09325e8 q^{94} -1.30787e8 q^{95} +2.33199e8 q^{96} -1.18467e9 q^{97} +3.28020e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 268 q^{3} + 1877 q^{4} - 5625 q^{5} + 7624 q^{6} + 13773 q^{8} + 17015 q^{9} - 625 q^{10} - 69434 q^{11} + 64966 q^{12} + 153108 q^{13} - 167500 q^{15} + 496777 q^{16} - 380338 q^{17} + 1151915 q^{18}+ \cdots - 2283620136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −24.3613 −1.07663 −0.538314 0.842745i \(-0.680938\pi\)
−0.538314 + 0.842745i \(0.680938\pi\)
\(3\) 124.658 0.888534 0.444267 0.895894i \(-0.353464\pi\)
0.444267 + 0.895894i \(0.353464\pi\)
\(4\) 81.4729 0.159127
\(5\) −625.000 −0.447214
\(6\) −3036.83 −0.956620
\(7\) 0 0
\(8\) 10488.2 0.905307
\(9\) −4143.41 −0.210507
\(10\) 15225.8 0.481482
\(11\) −79166.7 −1.63033 −0.815165 0.579229i \(-0.803354\pi\)
−0.815165 + 0.579229i \(0.803354\pi\)
\(12\) 10156.2 0.141390
\(13\) −158587. −1.54000 −0.770001 0.638042i \(-0.779745\pi\)
−0.770001 + 0.638042i \(0.779745\pi\)
\(14\) 0 0
\(15\) −77911.2 −0.397365
\(16\) −297220. −1.13381
\(17\) −486441. −1.41257 −0.706285 0.707927i \(-0.749630\pi\)
−0.706285 + 0.707927i \(0.749630\pi\)
\(18\) 100939. 0.226638
\(19\) 209259. 0.368378 0.184189 0.982891i \(-0.441034\pi\)
0.184189 + 0.982891i \(0.441034\pi\)
\(20\) −50920.6 −0.0711636
\(21\) 0 0
\(22\) 1.92860e6 1.75526
\(23\) −1.31142e6 −0.977163 −0.488582 0.872518i \(-0.662486\pi\)
−0.488582 + 0.872518i \(0.662486\pi\)
\(24\) 1.30744e6 0.804396
\(25\) 390625. 0.200000
\(26\) 3.86338e6 1.65801
\(27\) −2.97015e6 −1.07558
\(28\) 0 0
\(29\) −5.04449e6 −1.32442 −0.662211 0.749318i \(-0.730382\pi\)
−0.662211 + 0.749318i \(0.730382\pi\)
\(30\) 1.89802e6 0.427814
\(31\) 6.50959e6 1.26598 0.632989 0.774161i \(-0.281828\pi\)
0.632989 + 0.774161i \(0.281828\pi\)
\(32\) 1.87071e6 0.315379
\(33\) −9.86875e6 −1.44860
\(34\) 1.18503e7 1.52081
\(35\) 0 0
\(36\) −337576. −0.0334973
\(37\) −1.80931e7 −1.58710 −0.793552 0.608502i \(-0.791771\pi\)
−0.793552 + 0.608502i \(0.791771\pi\)
\(38\) −5.09783e6 −0.396606
\(39\) −1.97691e7 −1.36834
\(40\) −6.55512e6 −0.404866
\(41\) −3.96418e6 −0.219092 −0.109546 0.993982i \(-0.534940\pi\)
−0.109546 + 0.993982i \(0.534940\pi\)
\(42\) 0 0
\(43\) 2.68166e7 1.19618 0.598090 0.801429i \(-0.295927\pi\)
0.598090 + 0.801429i \(0.295927\pi\)
\(44\) −6.44994e6 −0.259429
\(45\) 2.58963e6 0.0941417
\(46\) 3.19479e7 1.05204
\(47\) −1.26974e7 −0.379555 −0.189777 0.981827i \(-0.560777\pi\)
−0.189777 + 0.981827i \(0.560777\pi\)
\(48\) −3.70509e7 −1.00742
\(49\) 0 0
\(50\) −9.51613e6 −0.215325
\(51\) −6.06387e7 −1.25512
\(52\) −1.29205e7 −0.245056
\(53\) 1.02048e8 1.77649 0.888246 0.459368i \(-0.151924\pi\)
0.888246 + 0.459368i \(0.151924\pi\)
\(54\) 7.23567e7 1.15800
\(55\) 4.94792e7 0.729106
\(56\) 0 0
\(57\) 2.60858e7 0.327317
\(58\) 1.22890e8 1.42591
\(59\) −8.22604e7 −0.883806 −0.441903 0.897063i \(-0.645696\pi\)
−0.441903 + 0.897063i \(0.645696\pi\)
\(60\) −6.34765e6 −0.0632313
\(61\) −2.00447e8 −1.85359 −0.926797 0.375563i \(-0.877449\pi\)
−0.926797 + 0.375563i \(0.877449\pi\)
\(62\) −1.58582e8 −1.36299
\(63\) 0 0
\(64\) 1.06604e8 0.794260
\(65\) 9.91166e7 0.688710
\(66\) 2.40416e8 1.55961
\(67\) 1.30451e8 0.790881 0.395440 0.918492i \(-0.370592\pi\)
0.395440 + 0.918492i \(0.370592\pi\)
\(68\) −3.96318e7 −0.224778
\(69\) −1.63479e8 −0.868243
\(70\) 0 0
\(71\) −1.63519e8 −0.763671 −0.381835 0.924230i \(-0.624708\pi\)
−0.381835 + 0.924230i \(0.624708\pi\)
\(72\) −4.34569e7 −0.190574
\(73\) 4.12000e8 1.69803 0.849014 0.528371i \(-0.177197\pi\)
0.849014 + 0.528371i \(0.177197\pi\)
\(74\) 4.40772e8 1.70872
\(75\) 4.86945e7 0.177707
\(76\) 1.70490e7 0.0586188
\(77\) 0 0
\(78\) 4.81600e8 1.47320
\(79\) −1.90331e8 −0.549779 −0.274889 0.961476i \(-0.588641\pi\)
−0.274889 + 0.961476i \(0.588641\pi\)
\(80\) 1.85763e8 0.507053
\(81\) −2.88698e8 −0.745180
\(82\) 9.65725e7 0.235880
\(83\) −4.76606e8 −1.10232 −0.551161 0.834399i \(-0.685815\pi\)
−0.551161 + 0.834399i \(0.685815\pi\)
\(84\) 0 0
\(85\) 3.04026e8 0.631721
\(86\) −6.53288e8 −1.28784
\(87\) −6.28835e8 −1.17679
\(88\) −8.30316e8 −1.47595
\(89\) −6.55910e8 −1.10813 −0.554063 0.832475i \(-0.686923\pi\)
−0.554063 + 0.832475i \(0.686923\pi\)
\(90\) −6.30868e7 −0.101356
\(91\) 0 0
\(92\) −1.06845e8 −0.155493
\(93\) 8.11472e8 1.12486
\(94\) 3.09325e8 0.408639
\(95\) −1.30787e8 −0.164744
\(96\) 2.33199e8 0.280225
\(97\) −1.18467e9 −1.35871 −0.679354 0.733811i \(-0.737740\pi\)
−0.679354 + 0.733811i \(0.737740\pi\)
\(98\) 0 0
\(99\) 3.28020e8 0.343196
\(100\) 3.18253e7 0.0318253
\(101\) 5.36258e8 0.512776 0.256388 0.966574i \(-0.417468\pi\)
0.256388 + 0.966574i \(0.417468\pi\)
\(102\) 1.47724e9 1.35129
\(103\) −7.35607e8 −0.643989 −0.321994 0.946742i \(-0.604353\pi\)
−0.321994 + 0.946742i \(0.604353\pi\)
\(104\) −1.66329e9 −1.39418
\(105\) 0 0
\(106\) −2.48602e9 −1.91262
\(107\) −1.09116e9 −0.804752 −0.402376 0.915475i \(-0.631815\pi\)
−0.402376 + 0.915475i \(0.631815\pi\)
\(108\) −2.41987e8 −0.171153
\(109\) −1.16974e9 −0.793727 −0.396864 0.917878i \(-0.629901\pi\)
−0.396864 + 0.917878i \(0.629901\pi\)
\(110\) −1.20538e9 −0.784975
\(111\) −2.25545e9 −1.41020
\(112\) 0 0
\(113\) 1.06978e9 0.617224 0.308612 0.951188i \(-0.400136\pi\)
0.308612 + 0.951188i \(0.400136\pi\)
\(114\) −6.35485e8 −0.352398
\(115\) 8.19639e8 0.437001
\(116\) −4.10989e8 −0.210751
\(117\) 6.57090e8 0.324182
\(118\) 2.00397e9 0.951530
\(119\) 0 0
\(120\) −8.17148e8 −0.359737
\(121\) 3.90942e9 1.65797
\(122\) 4.88314e9 1.99563
\(123\) −4.94166e8 −0.194670
\(124\) 5.30355e8 0.201451
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) −4.45222e8 −0.151866 −0.0759329 0.997113i \(-0.524193\pi\)
−0.0759329 + 0.997113i \(0.524193\pi\)
\(128\) −3.55481e9 −1.17050
\(129\) 3.34291e9 1.06285
\(130\) −2.41461e9 −0.741484
\(131\) 2.45838e9 0.729338 0.364669 0.931137i \(-0.381182\pi\)
0.364669 + 0.931137i \(0.381182\pi\)
\(132\) −8.04036e8 −0.230512
\(133\) 0 0
\(134\) −3.17796e9 −0.851484
\(135\) 1.85634e9 0.481013
\(136\) −5.10189e9 −1.27881
\(137\) −8.20147e8 −0.198907 −0.0994533 0.995042i \(-0.531709\pi\)
−0.0994533 + 0.995042i \(0.531709\pi\)
\(138\) 3.98256e9 0.934774
\(139\) −8.94291e8 −0.203195 −0.101597 0.994826i \(-0.532395\pi\)
−0.101597 + 0.994826i \(0.532395\pi\)
\(140\) 0 0
\(141\) −1.58283e9 −0.337248
\(142\) 3.98354e9 0.822189
\(143\) 1.25548e10 2.51071
\(144\) 1.23151e9 0.238674
\(145\) 3.15281e9 0.592299
\(146\) −1.00369e10 −1.82814
\(147\) 0 0
\(148\) −1.47410e9 −0.252551
\(149\) 5.85451e9 0.973089 0.486544 0.873656i \(-0.338257\pi\)
0.486544 + 0.873656i \(0.338257\pi\)
\(150\) −1.18626e9 −0.191324
\(151\) −4.53652e9 −0.710112 −0.355056 0.934845i \(-0.615538\pi\)
−0.355056 + 0.934845i \(0.615538\pi\)
\(152\) 2.19475e9 0.333495
\(153\) 2.01553e9 0.297356
\(154\) 0 0
\(155\) −4.06849e9 −0.566162
\(156\) −1.61064e9 −0.217740
\(157\) −7.00744e9 −0.920472 −0.460236 0.887797i \(-0.652235\pi\)
−0.460236 + 0.887797i \(0.652235\pi\)
\(158\) 4.63672e9 0.591907
\(159\) 1.27211e10 1.57847
\(160\) −1.16920e9 −0.141042
\(161\) 0 0
\(162\) 7.03305e9 0.802281
\(163\) 8.57679e8 0.0951657 0.0475828 0.998867i \(-0.484848\pi\)
0.0475828 + 0.998867i \(0.484848\pi\)
\(164\) −3.22973e8 −0.0348633
\(165\) 6.16797e9 0.647835
\(166\) 1.16107e10 1.18679
\(167\) 1.13646e10 1.13065 0.565326 0.824867i \(-0.308750\pi\)
0.565326 + 0.824867i \(0.308750\pi\)
\(168\) 0 0
\(169\) 1.45452e10 1.37161
\(170\) −7.40646e9 −0.680128
\(171\) −8.67048e8 −0.0775462
\(172\) 2.18483e9 0.190344
\(173\) −4.64952e9 −0.394640 −0.197320 0.980339i \(-0.563224\pi\)
−0.197320 + 0.980339i \(0.563224\pi\)
\(174\) 1.53192e10 1.26697
\(175\) 0 0
\(176\) 2.35299e10 1.84848
\(177\) −1.02544e10 −0.785292
\(178\) 1.59788e10 1.19304
\(179\) 3.07079e9 0.223569 0.111784 0.993732i \(-0.464343\pi\)
0.111784 + 0.993732i \(0.464343\pi\)
\(180\) 2.10985e8 0.0149805
\(181\) −4.51450e9 −0.312648 −0.156324 0.987706i \(-0.549964\pi\)
−0.156324 + 0.987706i \(0.549964\pi\)
\(182\) 0 0
\(183\) −2.49873e10 −1.64698
\(184\) −1.37545e10 −0.884633
\(185\) 1.13082e10 0.709775
\(186\) −1.97685e10 −1.21106
\(187\) 3.85099e10 2.30296
\(188\) −1.03449e9 −0.0603973
\(189\) 0 0
\(190\) 3.18614e9 0.177368
\(191\) 8.68597e8 0.0472246 0.0236123 0.999721i \(-0.492483\pi\)
0.0236123 + 0.999721i \(0.492483\pi\)
\(192\) 1.32890e10 0.705727
\(193\) 3.04967e9 0.158214 0.0791070 0.996866i \(-0.474793\pi\)
0.0791070 + 0.996866i \(0.474793\pi\)
\(194\) 2.88602e10 1.46282
\(195\) 1.23557e10 0.611942
\(196\) 0 0
\(197\) 5.98881e9 0.283297 0.141649 0.989917i \(-0.454760\pi\)
0.141649 + 0.989917i \(0.454760\pi\)
\(198\) −7.99100e9 −0.369494
\(199\) 7.93408e9 0.358639 0.179320 0.983791i \(-0.442610\pi\)
0.179320 + 0.983791i \(0.442610\pi\)
\(200\) 4.09695e9 0.181061
\(201\) 1.62618e10 0.702724
\(202\) −1.30639e10 −0.552068
\(203\) 0 0
\(204\) −4.94041e9 −0.199723
\(205\) 2.47761e9 0.0979808
\(206\) 1.79203e10 0.693336
\(207\) 5.43376e9 0.205700
\(208\) 4.71352e10 1.74606
\(209\) −1.65664e10 −0.600578
\(210\) 0 0
\(211\) −3.81245e9 −0.132414 −0.0662068 0.997806i \(-0.521090\pi\)
−0.0662068 + 0.997806i \(0.521090\pi\)
\(212\) 8.31415e9 0.282687
\(213\) −2.03839e10 −0.678547
\(214\) 2.65821e10 0.866418
\(215\) −1.67604e10 −0.534948
\(216\) −3.11515e10 −0.973728
\(217\) 0 0
\(218\) 2.84965e10 0.854549
\(219\) 5.13591e10 1.50876
\(220\) 4.03121e9 0.116020
\(221\) 7.71431e10 2.17536
\(222\) 5.49457e10 1.51826
\(223\) 5.45190e10 1.47631 0.738153 0.674634i \(-0.235698\pi\)
0.738153 + 0.674634i \(0.235698\pi\)
\(224\) 0 0
\(225\) −1.61852e9 −0.0421014
\(226\) −2.60613e10 −0.664520
\(227\) −2.21379e10 −0.553375 −0.276687 0.960960i \(-0.589237\pi\)
−0.276687 + 0.960960i \(0.589237\pi\)
\(228\) 2.12529e9 0.0520848
\(229\) 3.40542e10 0.818298 0.409149 0.912468i \(-0.365826\pi\)
0.409149 + 0.912468i \(0.365826\pi\)
\(230\) −1.99675e10 −0.470487
\(231\) 0 0
\(232\) −5.29076e10 −1.19901
\(233\) −1.02878e10 −0.228677 −0.114338 0.993442i \(-0.536475\pi\)
−0.114338 + 0.993442i \(0.536475\pi\)
\(234\) −1.60076e10 −0.349023
\(235\) 7.93588e9 0.169742
\(236\) −6.70199e9 −0.140637
\(237\) −2.37263e10 −0.488497
\(238\) 0 0
\(239\) −5.67300e10 −1.12466 −0.562331 0.826912i \(-0.690095\pi\)
−0.562331 + 0.826912i \(0.690095\pi\)
\(240\) 2.31568e10 0.450534
\(241\) 1.03319e11 1.97289 0.986445 0.164091i \(-0.0524692\pi\)
0.986445 + 0.164091i \(0.0524692\pi\)
\(242\) −9.52385e10 −1.78502
\(243\) 2.24730e10 0.413459
\(244\) −1.63310e10 −0.294956
\(245\) 0 0
\(246\) 1.20385e10 0.209587
\(247\) −3.31857e10 −0.567303
\(248\) 6.82739e10 1.14610
\(249\) −5.94127e10 −0.979450
\(250\) 5.94758e9 0.0962965
\(251\) 5.15148e10 0.819219 0.409610 0.912261i \(-0.365665\pi\)
0.409610 + 0.912261i \(0.365665\pi\)
\(252\) 0 0
\(253\) 1.03821e11 1.59310
\(254\) 1.08462e10 0.163503
\(255\) 3.78992e10 0.561305
\(256\) 3.20187e10 0.465933
\(257\) −1.68591e10 −0.241065 −0.120533 0.992709i \(-0.538460\pi\)
−0.120533 + 0.992709i \(0.538460\pi\)
\(258\) −8.14375e10 −1.14429
\(259\) 0 0
\(260\) 8.07532e9 0.109592
\(261\) 2.09014e10 0.278800
\(262\) −5.98894e10 −0.785225
\(263\) −1.37831e11 −1.77643 −0.888213 0.459432i \(-0.848053\pi\)
−0.888213 + 0.459432i \(0.848053\pi\)
\(264\) −1.03505e11 −1.31143
\(265\) −6.37800e10 −0.794471
\(266\) 0 0
\(267\) −8.17643e10 −0.984607
\(268\) 1.06282e10 0.125850
\(269\) 6.99545e10 0.814573 0.407287 0.913300i \(-0.366475\pi\)
0.407287 + 0.913300i \(0.366475\pi\)
\(270\) −4.52229e10 −0.517871
\(271\) −1.53385e11 −1.72752 −0.863758 0.503907i \(-0.831895\pi\)
−0.863758 + 0.503907i \(0.831895\pi\)
\(272\) 1.44580e11 1.60158
\(273\) 0 0
\(274\) 1.99798e10 0.214148
\(275\) −3.09245e10 −0.326066
\(276\) −1.33191e10 −0.138161
\(277\) 1.64129e11 1.67505 0.837523 0.546402i \(-0.184003\pi\)
0.837523 + 0.546402i \(0.184003\pi\)
\(278\) 2.17861e10 0.218765
\(279\) −2.69719e10 −0.266497
\(280\) 0 0
\(281\) −8.61945e10 −0.824710 −0.412355 0.911023i \(-0.635294\pi\)
−0.412355 + 0.911023i \(0.635294\pi\)
\(282\) 3.85598e10 0.363090
\(283\) −2.45226e10 −0.227263 −0.113631 0.993523i \(-0.536248\pi\)
−0.113631 + 0.993523i \(0.536248\pi\)
\(284\) −1.33224e10 −0.121520
\(285\) −1.63036e10 −0.146380
\(286\) −3.05851e11 −2.70310
\(287\) 0 0
\(288\) −7.75114e9 −0.0663895
\(289\) 1.18037e11 0.995356
\(290\) −7.68064e10 −0.637686
\(291\) −1.47679e11 −1.20726
\(292\) 3.35669e10 0.270202
\(293\) −1.77933e11 −1.41043 −0.705216 0.708993i \(-0.749150\pi\)
−0.705216 + 0.708993i \(0.749150\pi\)
\(294\) 0 0
\(295\) 5.14128e10 0.395250
\(296\) −1.89764e11 −1.43682
\(297\) 2.35137e11 1.75354
\(298\) −1.42624e11 −1.04765
\(299\) 2.07974e11 1.50483
\(300\) 3.96728e9 0.0282779
\(301\) 0 0
\(302\) 1.10516e11 0.764526
\(303\) 6.68487e10 0.455619
\(304\) −6.21961e10 −0.417669
\(305\) 1.25279e11 0.828952
\(306\) −4.91008e10 −0.320142
\(307\) 1.29389e11 0.831331 0.415665 0.909518i \(-0.363549\pi\)
0.415665 + 0.909518i \(0.363549\pi\)
\(308\) 0 0
\(309\) −9.16992e10 −0.572206
\(310\) 9.91138e10 0.609546
\(311\) 5.63041e10 0.341286 0.170643 0.985333i \(-0.445416\pi\)
0.170643 + 0.985333i \(0.445416\pi\)
\(312\) −2.07342e11 −1.23877
\(313\) −1.95176e11 −1.14942 −0.574709 0.818358i \(-0.694885\pi\)
−0.574709 + 0.818358i \(0.694885\pi\)
\(314\) 1.70710e11 0.991006
\(315\) 0 0
\(316\) −1.55068e10 −0.0874845
\(317\) −2.93551e10 −0.163274 −0.0816369 0.996662i \(-0.526015\pi\)
−0.0816369 + 0.996662i \(0.526015\pi\)
\(318\) −3.09902e11 −1.69943
\(319\) 3.99355e11 2.15924
\(320\) −6.66274e10 −0.355204
\(321\) −1.36022e11 −0.715049
\(322\) 0 0
\(323\) −1.01792e11 −0.520360
\(324\) −2.35210e10 −0.118578
\(325\) −6.19479e10 −0.308001
\(326\) −2.08942e10 −0.102458
\(327\) −1.45818e11 −0.705254
\(328\) −4.15771e10 −0.198345
\(329\) 0 0
\(330\) −1.50260e11 −0.697477
\(331\) −8.93928e10 −0.409333 −0.204666 0.978832i \(-0.565611\pi\)
−0.204666 + 0.978832i \(0.565611\pi\)
\(332\) −3.88305e10 −0.175409
\(333\) 7.49672e10 0.334097
\(334\) −2.76856e11 −1.21729
\(335\) −8.15319e10 −0.353693
\(336\) 0 0
\(337\) 4.98453e10 0.210518 0.105259 0.994445i \(-0.466433\pi\)
0.105259 + 0.994445i \(0.466433\pi\)
\(338\) −3.54341e11 −1.47671
\(339\) 1.33357e11 0.548424
\(340\) 2.47699e10 0.100524
\(341\) −5.15343e11 −2.06396
\(342\) 2.11224e10 0.0834884
\(343\) 0 0
\(344\) 2.81258e11 1.08291
\(345\) 1.02174e11 0.388290
\(346\) 1.13268e11 0.424880
\(347\) 3.68855e11 1.36576 0.682878 0.730532i \(-0.260728\pi\)
0.682878 + 0.730532i \(0.260728\pi\)
\(348\) −5.12330e10 −0.187259
\(349\) 4.87434e11 1.75874 0.879369 0.476141i \(-0.157965\pi\)
0.879369 + 0.476141i \(0.157965\pi\)
\(350\) 0 0
\(351\) 4.71026e11 1.65639
\(352\) −1.48098e11 −0.514171
\(353\) −1.93933e11 −0.664760 −0.332380 0.943146i \(-0.607852\pi\)
−0.332380 + 0.943146i \(0.607852\pi\)
\(354\) 2.49811e11 0.845466
\(355\) 1.02199e11 0.341524
\(356\) −5.34389e10 −0.176332
\(357\) 0 0
\(358\) −7.48084e10 −0.240701
\(359\) 4.93636e11 1.56849 0.784246 0.620450i \(-0.213050\pi\)
0.784246 + 0.620450i \(0.213050\pi\)
\(360\) 2.71606e10 0.0852271
\(361\) −2.78898e11 −0.864298
\(362\) 1.09979e11 0.336606
\(363\) 4.87340e11 1.47317
\(364\) 0 0
\(365\) −2.57500e11 −0.759381
\(366\) 6.08722e11 1.77319
\(367\) −6.61094e11 −1.90224 −0.951122 0.308816i \(-0.900067\pi\)
−0.951122 + 0.308816i \(0.900067\pi\)
\(368\) 3.89781e11 1.10791
\(369\) 1.64252e10 0.0461204
\(370\) −2.75482e11 −0.764163
\(371\) 0 0
\(372\) 6.61129e10 0.178996
\(373\) −4.84240e11 −1.29530 −0.647651 0.761937i \(-0.724248\pi\)
−0.647651 + 0.761937i \(0.724248\pi\)
\(374\) −9.38152e11 −2.47943
\(375\) −3.04341e10 −0.0794729
\(376\) −1.33173e11 −0.343614
\(377\) 7.99988e11 2.03961
\(378\) 0 0
\(379\) −4.77257e11 −1.18816 −0.594081 0.804405i \(-0.702484\pi\)
−0.594081 + 0.804405i \(0.702484\pi\)
\(380\) −1.06556e10 −0.0262151
\(381\) −5.55005e10 −0.134938
\(382\) −2.11601e10 −0.0508433
\(383\) 1.14195e11 0.271177 0.135588 0.990765i \(-0.456708\pi\)
0.135588 + 0.990765i \(0.456708\pi\)
\(384\) −4.43135e11 −1.04003
\(385\) 0 0
\(386\) −7.42939e10 −0.170338
\(387\) −1.11112e11 −0.251804
\(388\) −9.65189e10 −0.216207
\(389\) −3.00810e11 −0.666069 −0.333035 0.942915i \(-0.608073\pi\)
−0.333035 + 0.942915i \(0.608073\pi\)
\(390\) −3.01000e11 −0.658834
\(391\) 6.37930e11 1.38031
\(392\) 0 0
\(393\) 3.06457e11 0.648041
\(394\) −1.45895e11 −0.305006
\(395\) 1.18957e11 0.245869
\(396\) 2.67248e10 0.0546117
\(397\) 3.29112e10 0.0664946 0.0332473 0.999447i \(-0.489415\pi\)
0.0332473 + 0.999447i \(0.489415\pi\)
\(398\) −1.93285e11 −0.386121
\(399\) 0 0
\(400\) −1.16102e11 −0.226761
\(401\) −6.83225e11 −1.31951 −0.659757 0.751479i \(-0.729341\pi\)
−0.659757 + 0.751479i \(0.729341\pi\)
\(402\) −3.96157e11 −0.756572
\(403\) −1.03233e12 −1.94961
\(404\) 4.36905e10 0.0815963
\(405\) 1.80436e11 0.333254
\(406\) 0 0
\(407\) 1.43237e12 2.58750
\(408\) −6.35991e11 −1.13627
\(409\) 2.63701e11 0.465969 0.232985 0.972480i \(-0.425151\pi\)
0.232985 + 0.972480i \(0.425151\pi\)
\(410\) −6.03578e10 −0.105489
\(411\) −1.02238e11 −0.176735
\(412\) −5.99320e10 −0.102476
\(413\) 0 0
\(414\) −1.32374e11 −0.221462
\(415\) 2.97879e11 0.492973
\(416\) −2.96670e11 −0.485684
\(417\) −1.11480e11 −0.180545
\(418\) 4.03578e11 0.646599
\(419\) 2.26328e11 0.358737 0.179368 0.983782i \(-0.442595\pi\)
0.179368 + 0.983782i \(0.442595\pi\)
\(420\) 0 0
\(421\) 1.57840e11 0.244877 0.122439 0.992476i \(-0.460929\pi\)
0.122439 + 0.992476i \(0.460929\pi\)
\(422\) 9.28762e10 0.142560
\(423\) 5.26106e10 0.0798990
\(424\) 1.07030e12 1.60827
\(425\) −1.90016e11 −0.282514
\(426\) 4.96579e11 0.730543
\(427\) 0 0
\(428\) −8.89000e10 −0.128057
\(429\) 1.56505e12 2.23085
\(430\) 4.08305e11 0.575939
\(431\) −3.53941e11 −0.494064 −0.247032 0.969007i \(-0.579455\pi\)
−0.247032 + 0.969007i \(0.579455\pi\)
\(432\) 8.82789e11 1.21949
\(433\) 1.22396e12 1.67329 0.836646 0.547743i \(-0.184513\pi\)
0.836646 + 0.547743i \(0.184513\pi\)
\(434\) 0 0
\(435\) 3.93022e11 0.526278
\(436\) −9.53024e10 −0.126303
\(437\) −2.74427e11 −0.359966
\(438\) −1.25117e12 −1.62437
\(439\) −4.33788e11 −0.557426 −0.278713 0.960374i \(-0.589908\pi\)
−0.278713 + 0.960374i \(0.589908\pi\)
\(440\) 5.18948e11 0.660065
\(441\) 0 0
\(442\) −1.87931e12 −2.34206
\(443\) −7.04265e11 −0.868799 −0.434399 0.900720i \(-0.643039\pi\)
−0.434399 + 0.900720i \(0.643039\pi\)
\(444\) −1.83758e11 −0.224400
\(445\) 4.09944e11 0.495569
\(446\) −1.32815e12 −1.58943
\(447\) 7.29811e11 0.864623
\(448\) 0 0
\(449\) −1.18089e12 −1.37120 −0.685600 0.727978i \(-0.740460\pi\)
−0.685600 + 0.727978i \(0.740460\pi\)
\(450\) 3.94293e10 0.0453276
\(451\) 3.13831e11 0.357192
\(452\) 8.71583e10 0.0982168
\(453\) −5.65513e11 −0.630958
\(454\) 5.39307e11 0.595778
\(455\) 0 0
\(456\) 2.73593e11 0.296322
\(457\) 3.84366e11 0.412213 0.206107 0.978530i \(-0.433921\pi\)
0.206107 + 0.978530i \(0.433921\pi\)
\(458\) −8.29605e11 −0.881002
\(459\) 1.44480e12 1.51933
\(460\) 6.67783e10 0.0695385
\(461\) −1.52014e12 −1.56758 −0.783789 0.621027i \(-0.786716\pi\)
−0.783789 + 0.621027i \(0.786716\pi\)
\(462\) 0 0
\(463\) −2.20397e11 −0.222891 −0.111445 0.993771i \(-0.535548\pi\)
−0.111445 + 0.993771i \(0.535548\pi\)
\(464\) 1.49932e12 1.50164
\(465\) −5.07170e11 −0.503055
\(466\) 2.50625e11 0.246200
\(467\) −5.89397e11 −0.573432 −0.286716 0.958016i \(-0.592564\pi\)
−0.286716 + 0.958016i \(0.592564\pi\)
\(468\) 5.35350e10 0.0515860
\(469\) 0 0
\(470\) −1.93328e11 −0.182749
\(471\) −8.73532e11 −0.817871
\(472\) −8.62764e11 −0.800116
\(473\) −2.12299e12 −1.95017
\(474\) 5.78003e11 0.525930
\(475\) 8.17420e10 0.0736756
\(476\) 0 0
\(477\) −4.22827e11 −0.373964
\(478\) 1.38202e12 1.21084
\(479\) −9.01785e10 −0.0782696 −0.0391348 0.999234i \(-0.512460\pi\)
−0.0391348 + 0.999234i \(0.512460\pi\)
\(480\) −1.45750e11 −0.125320
\(481\) 2.86933e12 2.44415
\(482\) −2.51698e12 −2.12407
\(483\) 0 0
\(484\) 3.18512e11 0.263828
\(485\) 7.40422e11 0.607633
\(486\) −5.47472e11 −0.445142
\(487\) −1.21268e12 −0.976933 −0.488467 0.872583i \(-0.662444\pi\)
−0.488467 + 0.872583i \(0.662444\pi\)
\(488\) −2.10232e12 −1.67807
\(489\) 1.06916e11 0.0845580
\(490\) 0 0
\(491\) −1.91290e12 −1.48534 −0.742671 0.669657i \(-0.766441\pi\)
−0.742671 + 0.669657i \(0.766441\pi\)
\(492\) −4.02611e10 −0.0309773
\(493\) 2.45385e12 1.87084
\(494\) 8.08448e11 0.610774
\(495\) −2.05013e11 −0.153482
\(496\) −1.93478e12 −1.43537
\(497\) 0 0
\(498\) 1.44737e12 1.05450
\(499\) −1.06963e12 −0.772291 −0.386146 0.922438i \(-0.626194\pi\)
−0.386146 + 0.922438i \(0.626194\pi\)
\(500\) −1.98908e10 −0.0142327
\(501\) 1.41668e12 1.00462
\(502\) −1.25497e12 −0.881994
\(503\) −8.23356e11 −0.573498 −0.286749 0.958006i \(-0.592575\pi\)
−0.286749 + 0.958006i \(0.592575\pi\)
\(504\) 0 0
\(505\) −3.35161e11 −0.229320
\(506\) −2.52921e12 −1.71517
\(507\) 1.81318e12 1.21872
\(508\) −3.62735e10 −0.0241659
\(509\) 7.68795e11 0.507669 0.253834 0.967248i \(-0.418308\pi\)
0.253834 + 0.967248i \(0.418308\pi\)
\(510\) −9.23274e11 −0.604317
\(511\) 0 0
\(512\) 1.04005e12 0.668864
\(513\) −6.21532e11 −0.396219
\(514\) 4.10709e11 0.259537
\(515\) 4.59754e11 0.288001
\(516\) 2.72356e11 0.169127
\(517\) 1.00521e12 0.618800
\(518\) 0 0
\(519\) −5.79599e11 −0.350651
\(520\) 1.03956e12 0.623494
\(521\) −1.92808e12 −1.14645 −0.573224 0.819398i \(-0.694308\pi\)
−0.573224 + 0.819398i \(0.694308\pi\)
\(522\) −5.09185e11 −0.300164
\(523\) 1.48683e12 0.868970 0.434485 0.900679i \(-0.356930\pi\)
0.434485 + 0.900679i \(0.356930\pi\)
\(524\) 2.00291e11 0.116057
\(525\) 0 0
\(526\) 3.35775e12 1.91255
\(527\) −3.16653e12 −1.78828
\(528\) 2.93319e12 1.64243
\(529\) −8.13248e10 −0.0451515
\(530\) 1.55376e12 0.855350
\(531\) 3.40839e11 0.186047
\(532\) 0 0
\(533\) 6.28666e11 0.337402
\(534\) 1.99188e12 1.06006
\(535\) 6.81976e11 0.359896
\(536\) 1.36820e12 0.715990
\(537\) 3.82798e11 0.198649
\(538\) −1.70418e12 −0.876992
\(539\) 0 0
\(540\) 1.51242e11 0.0765420
\(541\) −1.51765e12 −0.761700 −0.380850 0.924637i \(-0.624368\pi\)
−0.380850 + 0.924637i \(0.624368\pi\)
\(542\) 3.73666e12 1.85989
\(543\) −5.62768e11 −0.277799
\(544\) −9.09992e11 −0.445495
\(545\) 7.31090e11 0.354966
\(546\) 0 0
\(547\) 5.39040e11 0.257441 0.128721 0.991681i \(-0.458913\pi\)
0.128721 + 0.991681i \(0.458913\pi\)
\(548\) −6.68197e10 −0.0316513
\(549\) 8.30533e11 0.390195
\(550\) 7.53361e11 0.351052
\(551\) −1.05561e12 −0.487888
\(552\) −1.71460e12 −0.786027
\(553\) 0 0
\(554\) −3.99840e12 −1.80340
\(555\) 1.40966e12 0.630659
\(556\) −7.28605e10 −0.0323337
\(557\) 2.33957e11 0.102988 0.0514941 0.998673i \(-0.483602\pi\)
0.0514941 + 0.998673i \(0.483602\pi\)
\(558\) 6.57071e11 0.286918
\(559\) −4.25276e12 −1.84212
\(560\) 0 0
\(561\) 4.80057e12 2.04625
\(562\) 2.09981e12 0.887905
\(563\) 1.04620e12 0.438861 0.219431 0.975628i \(-0.429580\pi\)
0.219431 + 0.975628i \(0.429580\pi\)
\(564\) −1.28958e11 −0.0536651
\(565\) −6.68614e11 −0.276031
\(566\) 5.97403e11 0.244677
\(567\) 0 0
\(568\) −1.71502e12 −0.691356
\(569\) 4.42842e12 1.77110 0.885550 0.464544i \(-0.153782\pi\)
0.885550 + 0.464544i \(0.153782\pi\)
\(570\) 3.97178e11 0.157597
\(571\) 7.70937e10 0.0303498 0.0151749 0.999885i \(-0.495169\pi\)
0.0151749 + 0.999885i \(0.495169\pi\)
\(572\) 1.02287e12 0.399521
\(573\) 1.08277e11 0.0419606
\(574\) 0 0
\(575\) −5.12274e11 −0.195433
\(576\) −4.41703e11 −0.167197
\(577\) 2.85527e11 0.107240 0.0536200 0.998561i \(-0.482924\pi\)
0.0536200 + 0.998561i \(0.482924\pi\)
\(578\) −2.87554e12 −1.07163
\(579\) 3.80166e11 0.140579
\(580\) 2.56868e11 0.0942506
\(581\) 0 0
\(582\) 3.59765e12 1.29977
\(583\) −8.07881e12 −2.89627
\(584\) 4.32114e12 1.53724
\(585\) −4.10681e11 −0.144978
\(586\) 4.33468e12 1.51851
\(587\) −3.11740e12 −1.08373 −0.541866 0.840465i \(-0.682282\pi\)
−0.541866 + 0.840465i \(0.682282\pi\)
\(588\) 0 0
\(589\) 1.36219e12 0.466358
\(590\) −1.25248e12 −0.425537
\(591\) 7.46552e11 0.251719
\(592\) 5.37764e12 1.79947
\(593\) 2.45088e12 0.813910 0.406955 0.913448i \(-0.366591\pi\)
0.406955 + 0.913448i \(0.366591\pi\)
\(594\) −5.72824e12 −1.88791
\(595\) 0 0
\(596\) 4.76984e11 0.154844
\(597\) 9.89046e11 0.318663
\(598\) −5.06652e12 −1.62015
\(599\) 5.75249e12 1.82572 0.912861 0.408270i \(-0.133868\pi\)
0.912861 + 0.408270i \(0.133868\pi\)
\(600\) 5.10717e11 0.160879
\(601\) 3.35853e12 1.05006 0.525029 0.851084i \(-0.324054\pi\)
0.525029 + 0.851084i \(0.324054\pi\)
\(602\) 0 0
\(603\) −5.40513e11 −0.166486
\(604\) −3.69603e11 −0.112998
\(605\) −2.44339e12 −0.741469
\(606\) −1.62852e12 −0.490531
\(607\) −1.55525e12 −0.464998 −0.232499 0.972597i \(-0.574690\pi\)
−0.232499 + 0.972597i \(0.574690\pi\)
\(608\) 3.91465e11 0.116179
\(609\) 0 0
\(610\) −3.05196e12 −0.892473
\(611\) 2.01364e12 0.584516
\(612\) 1.64211e11 0.0473173
\(613\) −4.17629e12 −1.19459 −0.597294 0.802022i \(-0.703758\pi\)
−0.597294 + 0.802022i \(0.703758\pi\)
\(614\) −3.15208e12 −0.895034
\(615\) 3.08854e11 0.0870592
\(616\) 0 0
\(617\) −2.41875e12 −0.671906 −0.335953 0.941879i \(-0.609058\pi\)
−0.335953 + 0.941879i \(0.609058\pi\)
\(618\) 2.23391e12 0.616053
\(619\) 8.00006e11 0.219021 0.109510 0.993986i \(-0.465072\pi\)
0.109510 + 0.993986i \(0.465072\pi\)
\(620\) −3.31472e11 −0.0900916
\(621\) 3.89512e12 1.05101
\(622\) −1.37164e12 −0.367438
\(623\) 0 0
\(624\) 5.87577e12 1.55144
\(625\) 1.52588e11 0.0400000
\(626\) 4.75475e12 1.23749
\(627\) −2.06513e12 −0.533634
\(628\) −5.70916e11 −0.146472
\(629\) 8.80123e12 2.24190
\(630\) 0 0
\(631\) −5.19659e11 −0.130493 −0.0652464 0.997869i \(-0.520783\pi\)
−0.0652464 + 0.997869i \(0.520783\pi\)
\(632\) −1.99623e12 −0.497719
\(633\) −4.75252e11 −0.117654
\(634\) 7.15128e11 0.175785
\(635\) 2.78264e11 0.0679165
\(636\) 1.03642e12 0.251177
\(637\) 0 0
\(638\) −9.72882e12 −2.32470
\(639\) 6.77527e11 0.160758
\(640\) 2.22176e12 0.523464
\(641\) 2.87136e11 0.0671780 0.0335890 0.999436i \(-0.489306\pi\)
0.0335890 + 0.999436i \(0.489306\pi\)
\(642\) 3.31367e12 0.769842
\(643\) 3.19225e11 0.0736457 0.0368228 0.999322i \(-0.488276\pi\)
0.0368228 + 0.999322i \(0.488276\pi\)
\(644\) 0 0
\(645\) −2.08932e12 −0.475319
\(646\) 2.47980e12 0.560234
\(647\) −6.28890e12 −1.41093 −0.705464 0.708745i \(-0.749262\pi\)
−0.705464 + 0.708745i \(0.749262\pi\)
\(648\) −3.02792e12 −0.674616
\(649\) 6.51228e12 1.44089
\(650\) 1.50913e12 0.331602
\(651\) 0 0
\(652\) 6.98776e10 0.0151434
\(653\) 3.67037e12 0.789952 0.394976 0.918691i \(-0.370753\pi\)
0.394976 + 0.918691i \(0.370753\pi\)
\(654\) 3.55231e12 0.759296
\(655\) −1.53649e12 −0.326170
\(656\) 1.17823e12 0.248407
\(657\) −1.70709e12 −0.357447
\(658\) 0 0
\(659\) −9.30220e11 −0.192133 −0.0960664 0.995375i \(-0.530626\pi\)
−0.0960664 + 0.995375i \(0.530626\pi\)
\(660\) 5.02522e11 0.103088
\(661\) 8.29301e12 1.68968 0.844842 0.535016i \(-0.179694\pi\)
0.844842 + 0.535016i \(0.179694\pi\)
\(662\) 2.17772e12 0.440699
\(663\) 9.61649e12 1.93288
\(664\) −4.99874e12 −0.997940
\(665\) 0 0
\(666\) −1.82630e12 −0.359698
\(667\) 6.61545e12 1.29418
\(668\) 9.25905e11 0.179917
\(669\) 6.79623e12 1.31175
\(670\) 1.98622e12 0.380795
\(671\) 1.58687e13 3.02197
\(672\) 0 0
\(673\) −2.69943e11 −0.0507230 −0.0253615 0.999678i \(-0.508074\pi\)
−0.0253615 + 0.999678i \(0.508074\pi\)
\(674\) −1.21430e12 −0.226649
\(675\) −1.16021e12 −0.215115
\(676\) 1.18504e12 0.218260
\(677\) −1.28604e12 −0.235292 −0.117646 0.993056i \(-0.537535\pi\)
−0.117646 + 0.993056i \(0.537535\pi\)
\(678\) −3.24875e12 −0.590449
\(679\) 0 0
\(680\) 3.18868e12 0.571901
\(681\) −2.75966e12 −0.491692
\(682\) 1.25544e13 2.22212
\(683\) −6.71947e12 −1.18152 −0.590761 0.806846i \(-0.701172\pi\)
−0.590761 + 0.806846i \(0.701172\pi\)
\(684\) −7.06409e10 −0.0123397
\(685\) 5.12592e11 0.0889537
\(686\) 0 0
\(687\) 4.24513e12 0.727085
\(688\) −7.97045e12 −1.35623
\(689\) −1.61835e13 −2.73580
\(690\) −2.48910e12 −0.418044
\(691\) 5.58524e12 0.931946 0.465973 0.884799i \(-0.345704\pi\)
0.465973 + 0.884799i \(0.345704\pi\)
\(692\) −3.78810e11 −0.0627977
\(693\) 0 0
\(694\) −8.98579e12 −1.47041
\(695\) 5.58932e11 0.0908714
\(696\) −6.59535e12 −1.06536
\(697\) 1.92834e12 0.309482
\(698\) −1.18745e13 −1.89351
\(699\) −1.28246e12 −0.203187
\(700\) 0 0
\(701\) 6.83154e12 1.06853 0.534266 0.845316i \(-0.320588\pi\)
0.534266 + 0.845316i \(0.320588\pi\)
\(702\) −1.14748e13 −1.78332
\(703\) −3.78615e12 −0.584655
\(704\) −8.43947e12 −1.29491
\(705\) 9.89270e11 0.150822
\(706\) 4.72445e12 0.715699
\(707\) 0 0
\(708\) −8.35456e11 −0.124961
\(709\) −1.75544e12 −0.260903 −0.130451 0.991455i \(-0.541643\pi\)
−0.130451 + 0.991455i \(0.541643\pi\)
\(710\) −2.48971e12 −0.367694
\(711\) 7.88621e11 0.115732
\(712\) −6.87931e12 −1.00319
\(713\) −8.53682e12 −1.23707
\(714\) 0 0
\(715\) −7.84674e12 −1.12282
\(716\) 2.50186e11 0.0355758
\(717\) −7.07184e12 −0.999301
\(718\) −1.20256e13 −1.68868
\(719\) 1.02389e13 1.42881 0.714406 0.699732i \(-0.246697\pi\)
0.714406 + 0.699732i \(0.246697\pi\)
\(720\) −7.69691e11 −0.106738
\(721\) 0 0
\(722\) 6.79432e12 0.930527
\(723\) 1.28795e13 1.75298
\(724\) −3.67809e11 −0.0497507
\(725\) −1.97050e12 −0.264884
\(726\) −1.18722e13 −1.58605
\(727\) 3.88957e12 0.516412 0.258206 0.966090i \(-0.416869\pi\)
0.258206 + 0.966090i \(0.416869\pi\)
\(728\) 0 0
\(729\) 8.48388e12 1.11255
\(730\) 6.27304e12 0.817570
\(731\) −1.30447e13 −1.68969
\(732\) −2.03578e12 −0.262079
\(733\) 7.82721e12 1.00147 0.500736 0.865600i \(-0.333063\pi\)
0.500736 + 0.865600i \(0.333063\pi\)
\(734\) 1.61051e13 2.04801
\(735\) 0 0
\(736\) −2.45330e12 −0.308177
\(737\) −1.03274e13 −1.28940
\(738\) −4.00140e11 −0.0496545
\(739\) −9.38922e12 −1.15806 −0.579028 0.815308i \(-0.696568\pi\)
−0.579028 + 0.815308i \(0.696568\pi\)
\(740\) 9.21311e11 0.112944
\(741\) −4.13687e12 −0.504068
\(742\) 0 0
\(743\) −1.79429e12 −0.215994 −0.107997 0.994151i \(-0.534444\pi\)
−0.107997 + 0.994151i \(0.534444\pi\)
\(744\) 8.51088e12 1.01835
\(745\) −3.65907e12 −0.435179
\(746\) 1.17967e13 1.39456
\(747\) 1.97478e12 0.232047
\(748\) 3.13752e12 0.366462
\(749\) 0 0
\(750\) 7.41413e11 0.0855627
\(751\) −1.48690e13 −1.70570 −0.852851 0.522155i \(-0.825128\pi\)
−0.852851 + 0.522155i \(0.825128\pi\)
\(752\) 3.77393e12 0.430341
\(753\) 6.42172e12 0.727904
\(754\) −1.94888e13 −2.19590
\(755\) 2.83533e12 0.317572
\(756\) 0 0
\(757\) −5.27048e12 −0.583336 −0.291668 0.956520i \(-0.594210\pi\)
−0.291668 + 0.956520i \(0.594210\pi\)
\(758\) 1.16266e13 1.27921
\(759\) 1.29421e13 1.41552
\(760\) −1.37172e12 −0.149144
\(761\) −3.97216e12 −0.429334 −0.214667 0.976687i \(-0.568867\pi\)
−0.214667 + 0.976687i \(0.568867\pi\)
\(762\) 1.35206e12 0.145278
\(763\) 0 0
\(764\) 7.07671e10 0.00751469
\(765\) −1.25970e12 −0.132982
\(766\) −2.78194e12 −0.291957
\(767\) 1.30454e13 1.36106
\(768\) 3.99138e12 0.413998
\(769\) −5.20785e12 −0.537019 −0.268510 0.963277i \(-0.586531\pi\)
−0.268510 + 0.963277i \(0.586531\pi\)
\(770\) 0 0
\(771\) −2.10162e12 −0.214195
\(772\) 2.48465e11 0.0251761
\(773\) −8.29538e12 −0.835658 −0.417829 0.908526i \(-0.637209\pi\)
−0.417829 + 0.908526i \(0.637209\pi\)
\(774\) 2.70684e12 0.271100
\(775\) 2.54281e12 0.253196
\(776\) −1.24251e13 −1.23005
\(777\) 0 0
\(778\) 7.32813e12 0.717108
\(779\) −8.29542e11 −0.0807086
\(780\) 1.00665e12 0.0973764
\(781\) 1.29453e13 1.24503
\(782\) −1.55408e13 −1.48608
\(783\) 1.49829e13 1.42452
\(784\) 0 0
\(785\) 4.37965e12 0.411648
\(786\) −7.46568e12 −0.697699
\(787\) −1.99659e12 −0.185525 −0.0927625 0.995688i \(-0.529570\pi\)
−0.0927625 + 0.995688i \(0.529570\pi\)
\(788\) 4.87926e11 0.0450802
\(789\) −1.71818e13 −1.57842
\(790\) −2.89795e12 −0.264709
\(791\) 0 0
\(792\) 3.44034e12 0.310698
\(793\) 3.17882e13 2.85454
\(794\) −8.01759e11 −0.0715899
\(795\) −7.95068e12 −0.705915
\(796\) 6.46413e11 0.0570691
\(797\) 1.15788e13 1.01648 0.508242 0.861214i \(-0.330295\pi\)
0.508242 + 0.861214i \(0.330295\pi\)
\(798\) 0 0
\(799\) 6.17654e12 0.536148
\(800\) 7.30748e11 0.0630758
\(801\) 2.71770e12 0.233268
\(802\) 1.66443e13 1.42063
\(803\) −3.26167e13 −2.76834
\(804\) 1.32489e12 0.111822
\(805\) 0 0
\(806\) 2.51490e13 2.09900
\(807\) 8.72037e12 0.723776
\(808\) 5.62438e12 0.464219
\(809\) 1.18509e13 0.972707 0.486354 0.873762i \(-0.338327\pi\)
0.486354 + 0.873762i \(0.338327\pi\)
\(810\) −4.39566e12 −0.358791
\(811\) −6.58925e12 −0.534863 −0.267431 0.963577i \(-0.586175\pi\)
−0.267431 + 0.963577i \(0.586175\pi\)
\(812\) 0 0
\(813\) −1.91207e13 −1.53496
\(814\) −3.48944e13 −2.78578
\(815\) −5.36049e11 −0.0425594
\(816\) 1.80231e13 1.42306
\(817\) 5.61164e12 0.440646
\(818\) −6.42410e12 −0.501675
\(819\) 0 0
\(820\) 2.01858e11 0.0155914
\(821\) 4.77380e12 0.366707 0.183354 0.983047i \(-0.441305\pi\)
0.183354 + 0.983047i \(0.441305\pi\)
\(822\) 2.49064e12 0.190278
\(823\) −7.00298e12 −0.532088 −0.266044 0.963961i \(-0.585717\pi\)
−0.266044 + 0.963961i \(0.585717\pi\)
\(824\) −7.71519e12 −0.583008
\(825\) −3.85498e12 −0.289721
\(826\) 0 0
\(827\) −1.60647e13 −1.19426 −0.597128 0.802146i \(-0.703692\pi\)
−0.597128 + 0.802146i \(0.703692\pi\)
\(828\) 4.42704e11 0.0327324
\(829\) 5.58641e11 0.0410806 0.0205403 0.999789i \(-0.493461\pi\)
0.0205403 + 0.999789i \(0.493461\pi\)
\(830\) −7.25672e12 −0.530749
\(831\) 2.04600e13 1.48834
\(832\) −1.69059e13 −1.22316
\(833\) 0 0
\(834\) 2.71581e12 0.194380
\(835\) −7.10286e12 −0.505643
\(836\) −1.34971e12 −0.0955680
\(837\) −1.93345e13 −1.36166
\(838\) −5.51365e12 −0.386226
\(839\) −2.37598e13 −1.65544 −0.827720 0.561142i \(-0.810362\pi\)
−0.827720 + 0.561142i \(0.810362\pi\)
\(840\) 0 0
\(841\) 1.09397e13 0.754091
\(842\) −3.84520e12 −0.263642
\(843\) −1.07448e13 −0.732783
\(844\) −3.10611e11 −0.0210706
\(845\) −9.09076e12 −0.613402
\(846\) −1.28166e12 −0.0860215
\(847\) 0 0
\(848\) −3.03308e13 −2.01420
\(849\) −3.05694e12 −0.201931
\(850\) 4.62904e12 0.304162
\(851\) 2.37277e13 1.55086
\(852\) −1.66074e12 −0.107975
\(853\) 2.09014e13 1.35177 0.675887 0.737006i \(-0.263761\pi\)
0.675887 + 0.737006i \(0.263761\pi\)
\(854\) 0 0
\(855\) 5.41905e11 0.0346797
\(856\) −1.14443e13 −0.728547
\(857\) −2.45387e13 −1.55395 −0.776976 0.629530i \(-0.783248\pi\)
−0.776976 + 0.629530i \(0.783248\pi\)
\(858\) −3.81267e13 −2.40180
\(859\) 2.18164e13 1.36715 0.683573 0.729882i \(-0.260425\pi\)
0.683573 + 0.729882i \(0.260425\pi\)
\(860\) −1.36552e12 −0.0851245
\(861\) 0 0
\(862\) 8.62246e12 0.531923
\(863\) −2.23249e13 −1.37006 −0.685031 0.728514i \(-0.740212\pi\)
−0.685031 + 0.728514i \(0.740212\pi\)
\(864\) −5.55630e12 −0.339214
\(865\) 2.90595e12 0.176488
\(866\) −2.98173e13 −1.80151
\(867\) 1.47143e13 0.884408
\(868\) 0 0
\(869\) 1.50679e13 0.896321
\(870\) −9.57453e12 −0.566605
\(871\) −2.06878e13 −1.21796
\(872\) −1.22685e13 −0.718567
\(873\) 4.90860e12 0.286018
\(874\) 6.68541e12 0.387549
\(875\) 0 0
\(876\) 4.18437e12 0.240083
\(877\) 1.78843e13 1.02088 0.510439 0.859914i \(-0.329483\pi\)
0.510439 + 0.859914i \(0.329483\pi\)
\(878\) 1.05676e13 0.600140
\(879\) −2.21807e13 −1.25322
\(880\) −1.47062e13 −0.826664
\(881\) −1.09498e13 −0.612371 −0.306186 0.951972i \(-0.599053\pi\)
−0.306186 + 0.951972i \(0.599053\pi\)
\(882\) 0 0
\(883\) −1.51202e13 −0.837016 −0.418508 0.908213i \(-0.637447\pi\)
−0.418508 + 0.908213i \(0.637447\pi\)
\(884\) 6.28507e12 0.346158
\(885\) 6.40901e12 0.351193
\(886\) 1.71568e13 0.935373
\(887\) −3.10713e13 −1.68540 −0.842700 0.538383i \(-0.819035\pi\)
−0.842700 + 0.538383i \(0.819035\pi\)
\(888\) −2.36556e13 −1.27666
\(889\) 0 0
\(890\) −9.98676e12 −0.533543
\(891\) 2.28553e13 1.21489
\(892\) 4.44182e12 0.234920
\(893\) −2.65705e12 −0.139820
\(894\) −1.77791e13 −0.930876
\(895\) −1.91924e12 −0.0999831
\(896\) 0 0
\(897\) 2.59256e13 1.33710
\(898\) 2.87680e13 1.47627
\(899\) −3.28375e13 −1.67669
\(900\) −1.31866e11 −0.00669946
\(901\) −4.96404e13 −2.50942
\(902\) −7.64533e12 −0.384562
\(903\) 0 0
\(904\) 1.12201e13 0.558777
\(905\) 2.82156e12 0.139821
\(906\) 1.37766e13 0.679307
\(907\) 3.34433e13 1.64088 0.820439 0.571733i \(-0.193729\pi\)
0.820439 + 0.571733i \(0.193729\pi\)
\(908\) −1.80364e12 −0.0880567
\(909\) −2.22194e12 −0.107943
\(910\) 0 0
\(911\) −8.97982e10 −0.00431951 −0.00215976 0.999998i \(-0.500687\pi\)
−0.00215976 + 0.999998i \(0.500687\pi\)
\(912\) −7.75324e12 −0.371113
\(913\) 3.77313e13 1.79715
\(914\) −9.36365e12 −0.443800
\(915\) 1.56170e13 0.736552
\(916\) 2.77450e12 0.130213
\(917\) 0 0
\(918\) −3.51973e13 −1.63575
\(919\) −3.75591e13 −1.73698 −0.868492 0.495704i \(-0.834910\pi\)
−0.868492 + 0.495704i \(0.834910\pi\)
\(920\) 8.59654e12 0.395620
\(921\) 1.61293e13 0.738666
\(922\) 3.70326e13 1.68770
\(923\) 2.59320e13 1.17605
\(924\) 0 0
\(925\) −7.06762e12 −0.317421
\(926\) 5.36916e12 0.239970
\(927\) 3.04792e12 0.135564
\(928\) −9.43679e12 −0.417694
\(929\) 2.20434e13 0.970976 0.485488 0.874243i \(-0.338642\pi\)
0.485488 + 0.874243i \(0.338642\pi\)
\(930\) 1.23553e13 0.541602
\(931\) 0 0
\(932\) −8.38179e11 −0.0363886
\(933\) 7.01875e12 0.303244
\(934\) 1.43585e13 0.617373
\(935\) −2.40687e13 −1.02991
\(936\) 6.89169e12 0.293484
\(937\) −1.69037e11 −0.00716398 −0.00358199 0.999994i \(-0.501140\pi\)
−0.00358199 + 0.999994i \(0.501140\pi\)
\(938\) 0 0
\(939\) −2.43303e13 −1.02130
\(940\) 6.46559e11 0.0270105
\(941\) −3.28576e12 −0.136610 −0.0683050 0.997664i \(-0.521759\pi\)
−0.0683050 + 0.997664i \(0.521759\pi\)
\(942\) 2.12804e13 0.880542
\(943\) 5.19871e12 0.214088
\(944\) 2.44495e13 1.00206
\(945\) 0 0
\(946\) 5.17187e13 2.09960
\(947\) −2.48210e13 −1.00287 −0.501434 0.865196i \(-0.667194\pi\)
−0.501434 + 0.865196i \(0.667194\pi\)
\(948\) −1.93305e12 −0.0777330
\(949\) −6.53378e13 −2.61497
\(950\) −1.99134e12 −0.0793212
\(951\) −3.65934e12 −0.145074
\(952\) 0 0
\(953\) −4.38622e13 −1.72255 −0.861277 0.508136i \(-0.830335\pi\)
−0.861277 + 0.508136i \(0.830335\pi\)
\(954\) 1.03006e13 0.402620
\(955\) −5.42873e11 −0.0211195
\(956\) −4.62196e12 −0.178964
\(957\) 4.97828e13 1.91856
\(958\) 2.19687e12 0.0842672
\(959\) 0 0
\(960\) −8.30562e12 −0.315611
\(961\) 1.59351e13 0.602699
\(962\) −6.99005e13 −2.63143
\(963\) 4.52113e12 0.169406
\(964\) 8.41769e12 0.313940
\(965\) −1.90604e12 −0.0707555
\(966\) 0 0
\(967\) 1.91540e13 0.704433 0.352216 0.935919i \(-0.385428\pi\)
0.352216 + 0.935919i \(0.385428\pi\)
\(968\) 4.10028e13 1.50098
\(969\) −1.26892e13 −0.462358
\(970\) −1.80376e13 −0.654194
\(971\) 1.37443e13 0.496177 0.248088 0.968737i \(-0.420198\pi\)
0.248088 + 0.968737i \(0.420198\pi\)
\(972\) 1.83094e12 0.0657925
\(973\) 0 0
\(974\) 2.95424e13 1.05179
\(975\) −7.72229e12 −0.273669
\(976\) 5.95768e13 2.10161
\(977\) −2.39141e13 −0.839707 −0.419854 0.907592i \(-0.637919\pi\)
−0.419854 + 0.907592i \(0.637919\pi\)
\(978\) −2.60462e12 −0.0910374
\(979\) 5.19262e13 1.80661
\(980\) 0 0
\(981\) 4.84673e12 0.167085
\(982\) 4.66008e13 1.59916
\(983\) −2.37709e13 −0.811998 −0.405999 0.913873i \(-0.633076\pi\)
−0.405999 + 0.913873i \(0.633076\pi\)
\(984\) −5.18291e12 −0.176237
\(985\) −3.74301e12 −0.126694
\(986\) −5.97789e13 −2.01420
\(987\) 0 0
\(988\) −2.70374e12 −0.0902731
\(989\) −3.51679e13 −1.16886
\(990\) 4.99438e12 0.165243
\(991\) 5.49088e13 1.80847 0.904234 0.427038i \(-0.140443\pi\)
0.904234 + 0.427038i \(0.140443\pi\)
\(992\) 1.21776e13 0.399262
\(993\) −1.11435e13 −0.363706
\(994\) 0 0
\(995\) −4.95880e12 −0.160388
\(996\) −4.84053e12 −0.155857
\(997\) 1.34017e13 0.429568 0.214784 0.976662i \(-0.431095\pi\)
0.214784 + 0.976662i \(0.431095\pi\)
\(998\) 2.60576e13 0.831470
\(999\) 5.37393e13 1.70705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.i.1.3 yes 9
7.6 odd 2 245.10.a.h.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.10.a.h.1.3 9 7.6 odd 2
245.10.a.i.1.3 yes 9 1.1 even 1 trivial