Properties

Label 245.10.a.l.1.4
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7^{7} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(21.3241\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.3241 q^{2} -190.064 q^{3} -57.2810 q^{4} -625.000 q^{5} +4052.95 q^{6} +12139.4 q^{8} +16441.3 q^{9} +13327.6 q^{10} -79888.7 q^{11} +10887.1 q^{12} +148270. q^{13} +118790. q^{15} -229535. q^{16} +196807. q^{17} -350597. q^{18} +743096. q^{19} +35800.6 q^{20} +1.70356e6 q^{22} +1.25821e6 q^{23} -2.30727e6 q^{24} +390625. q^{25} -3.16173e6 q^{26} +616127. q^{27} +4.19204e6 q^{29} -2.53309e6 q^{30} +6.78769e6 q^{31} -1.32075e6 q^{32} +1.51840e7 q^{33} -4.19674e6 q^{34} -941775. q^{36} +9.11742e6 q^{37} -1.58459e7 q^{38} -2.81808e7 q^{39} -7.58714e6 q^{40} -1.68499e7 q^{41} +1.19411e7 q^{43} +4.57610e6 q^{44} -1.02758e7 q^{45} -2.68303e7 q^{46} -5.48209e7 q^{47} +4.36263e7 q^{48} -8.32974e6 q^{50} -3.74059e7 q^{51} -8.49305e6 q^{52} +3.28424e7 q^{53} -1.31384e7 q^{54} +4.99304e7 q^{55} -1.41236e8 q^{57} -8.93918e7 q^{58} -7.27412e7 q^{59} -6.80441e6 q^{60} -1.26993e8 q^{61} -1.44742e8 q^{62} +1.45686e8 q^{64} -9.26687e7 q^{65} -3.23785e8 q^{66} +8.96858e7 q^{67} -1.12733e7 q^{68} -2.39141e8 q^{69} +1.94271e8 q^{71} +1.99588e8 q^{72} +2.22243e8 q^{73} -1.94421e8 q^{74} -7.42437e7 q^{75} -4.25653e7 q^{76} +6.00931e8 q^{78} +2.27969e8 q^{79} +1.43459e8 q^{80} -4.40718e8 q^{81} +3.59309e8 q^{82} +1.48052e7 q^{83} -1.23004e8 q^{85} -2.54634e8 q^{86} -7.96757e8 q^{87} -9.69803e8 q^{88} +4.47570e8 q^{89} +2.19123e8 q^{90} -7.20717e7 q^{92} -1.29010e9 q^{93} +1.16901e9 q^{94} -4.64435e8 q^{95} +2.51027e8 q^{96} -6.78338e8 q^{97} -1.31347e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - q^{2} - 268 q^{3} + 3563 q^{4} - 8125 q^{5} - 3040 q^{6} - 4695 q^{8} + 82107 q^{9} + 625 q^{10} + 129087 q^{11} - 356068 q^{12} - 35889 q^{13} + 167500 q^{15} + 1379187 q^{16} - 251650 q^{17} + 391089 q^{18}+ \cdots + 5266142099 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −21.3241 −0.942403 −0.471201 0.882026i \(-0.656180\pi\)
−0.471201 + 0.882026i \(0.656180\pi\)
\(3\) −190.064 −1.35473 −0.677367 0.735645i \(-0.736879\pi\)
−0.677367 + 0.735645i \(0.736879\pi\)
\(4\) −57.2810 −0.111877
\(5\) −625.000 −0.447214
\(6\) 4052.95 1.27671
\(7\) 0 0
\(8\) 12139.4 1.04784
\(9\) 16441.3 0.835306
\(10\) 13327.6 0.421455
\(11\) −79888.7 −1.64520 −0.822599 0.568622i \(-0.807477\pi\)
−0.822599 + 0.568622i \(0.807477\pi\)
\(12\) 10887.1 0.151564
\(13\) 148270. 1.43982 0.719910 0.694067i \(-0.244183\pi\)
0.719910 + 0.694067i \(0.244183\pi\)
\(14\) 0 0
\(15\) 118790. 0.605856
\(16\) −229535. −0.875607
\(17\) 196807. 0.571506 0.285753 0.958303i \(-0.407756\pi\)
0.285753 + 0.958303i \(0.407756\pi\)
\(18\) −350597. −0.787194
\(19\) 743096. 1.30814 0.654069 0.756435i \(-0.273061\pi\)
0.654069 + 0.756435i \(0.273061\pi\)
\(20\) 35800.6 0.0500329
\(21\) 0 0
\(22\) 1.70356e6 1.55044
\(23\) 1.25821e6 0.937517 0.468758 0.883326i \(-0.344702\pi\)
0.468758 + 0.883326i \(0.344702\pi\)
\(24\) −2.30727e6 −1.41954
\(25\) 390625. 0.200000
\(26\) −3.16173e6 −1.35689
\(27\) 616127. 0.223117
\(28\) 0 0
\(29\) 4.19204e6 1.10061 0.550307 0.834963i \(-0.314511\pi\)
0.550307 + 0.834963i \(0.314511\pi\)
\(30\) −2.53309e6 −0.570960
\(31\) 6.78769e6 1.32006 0.660031 0.751238i \(-0.270543\pi\)
0.660031 + 0.751238i \(0.270543\pi\)
\(32\) −1.32075e6 −0.222662
\(33\) 1.51840e7 2.22881
\(34\) −4.19674e6 −0.538588
\(35\) 0 0
\(36\) −941775. −0.0934514
\(37\) 9.11742e6 0.799768 0.399884 0.916566i \(-0.369050\pi\)
0.399884 + 0.916566i \(0.369050\pi\)
\(38\) −1.58459e7 −1.23279
\(39\) −2.81808e7 −1.95057
\(40\) −7.58714e6 −0.468606
\(41\) −1.68499e7 −0.931255 −0.465628 0.884981i \(-0.654171\pi\)
−0.465628 + 0.884981i \(0.654171\pi\)
\(42\) 0 0
\(43\) 1.19411e7 0.532644 0.266322 0.963884i \(-0.414192\pi\)
0.266322 + 0.963884i \(0.414192\pi\)
\(44\) 4.57610e6 0.184060
\(45\) −1.02758e7 −0.373560
\(46\) −2.68303e7 −0.883518
\(47\) −5.48209e7 −1.63872 −0.819362 0.573276i \(-0.805672\pi\)
−0.819362 + 0.573276i \(0.805672\pi\)
\(48\) 4.36263e7 1.18621
\(49\) 0 0
\(50\) −8.32974e6 −0.188481
\(51\) −3.74059e7 −0.774238
\(52\) −8.49305e6 −0.161083
\(53\) 3.28424e7 0.571734 0.285867 0.958269i \(-0.407718\pi\)
0.285867 + 0.958269i \(0.407718\pi\)
\(54\) −1.31384e7 −0.210266
\(55\) 4.99304e7 0.735755
\(56\) 0 0
\(57\) −1.41236e8 −1.77218
\(58\) −8.93918e7 −1.03722
\(59\) −7.27412e7 −0.781531 −0.390766 0.920490i \(-0.627790\pi\)
−0.390766 + 0.920490i \(0.627790\pi\)
\(60\) −6.80441e6 −0.0677813
\(61\) −1.26993e8 −1.17434 −0.587170 0.809463i \(-0.699758\pi\)
−0.587170 + 0.809463i \(0.699758\pi\)
\(62\) −1.44742e8 −1.24403
\(63\) 0 0
\(64\) 1.45686e8 1.08544
\(65\) −9.26687e7 −0.643907
\(66\) −3.23785e8 −2.10043
\(67\) 8.96858e7 0.543735 0.271867 0.962335i \(-0.412359\pi\)
0.271867 + 0.962335i \(0.412359\pi\)
\(68\) −1.12733e7 −0.0639383
\(69\) −2.39141e8 −1.27009
\(70\) 0 0
\(71\) 1.94271e8 0.907289 0.453645 0.891183i \(-0.350124\pi\)
0.453645 + 0.891183i \(0.350124\pi\)
\(72\) 1.99588e8 0.875263
\(73\) 2.22243e8 0.915958 0.457979 0.888963i \(-0.348573\pi\)
0.457979 + 0.888963i \(0.348573\pi\)
\(74\) −1.94421e8 −0.753704
\(75\) −7.42437e7 −0.270947
\(76\) −4.25653e7 −0.146350
\(77\) 0 0
\(78\) 6.00931e8 1.83823
\(79\) 2.27969e8 0.658497 0.329249 0.944243i \(-0.393205\pi\)
0.329249 + 0.944243i \(0.393205\pi\)
\(80\) 1.43459e8 0.391583
\(81\) −4.40718e8 −1.13757
\(82\) 3.59309e8 0.877617
\(83\) 1.48052e7 0.0342423 0.0171212 0.999853i \(-0.494550\pi\)
0.0171212 + 0.999853i \(0.494550\pi\)
\(84\) 0 0
\(85\) −1.23004e8 −0.255585
\(86\) −2.54634e8 −0.501965
\(87\) −7.96757e8 −1.49104
\(88\) −9.69803e8 −1.72390
\(89\) 4.47570e8 0.756147 0.378074 0.925776i \(-0.376587\pi\)
0.378074 + 0.925776i \(0.376587\pi\)
\(90\) 2.19123e8 0.352044
\(91\) 0 0
\(92\) −7.20717e7 −0.104886
\(93\) −1.29010e9 −1.78833
\(94\) 1.16901e9 1.54434
\(95\) −4.64435e8 −0.585017
\(96\) 2.51027e8 0.301648
\(97\) −6.78338e8 −0.777989 −0.388994 0.921240i \(-0.627177\pi\)
−0.388994 + 0.921240i \(0.627177\pi\)
\(98\) 0 0
\(99\) −1.31347e9 −1.37424
\(100\) −2.23754e7 −0.0223754
\(101\) −1.87300e9 −1.79098 −0.895492 0.445079i \(-0.853176\pi\)
−0.895492 + 0.445079i \(0.853176\pi\)
\(102\) 7.97649e8 0.729644
\(103\) 1.87149e9 1.63840 0.819201 0.573507i \(-0.194417\pi\)
0.819201 + 0.573507i \(0.194417\pi\)
\(104\) 1.79991e9 1.50870
\(105\) 0 0
\(106\) −7.00337e8 −0.538804
\(107\) 1.08424e9 0.799644 0.399822 0.916593i \(-0.369072\pi\)
0.399822 + 0.916593i \(0.369072\pi\)
\(108\) −3.52923e7 −0.0249617
\(109\) −1.13564e9 −0.770584 −0.385292 0.922795i \(-0.625899\pi\)
−0.385292 + 0.922795i \(0.625899\pi\)
\(110\) −1.06472e9 −0.693377
\(111\) −1.73289e9 −1.08347
\(112\) 0 0
\(113\) −1.05120e9 −0.606502 −0.303251 0.952911i \(-0.598072\pi\)
−0.303251 + 0.952911i \(0.598072\pi\)
\(114\) 3.01173e9 1.67011
\(115\) −7.86383e8 −0.419270
\(116\) −2.40124e8 −0.123133
\(117\) 2.43775e9 1.20269
\(118\) 1.55114e9 0.736517
\(119\) 0 0
\(120\) 1.44204e9 0.634837
\(121\) 4.02425e9 1.70667
\(122\) 2.70801e9 1.10670
\(123\) 3.20255e9 1.26160
\(124\) −3.88806e8 −0.147684
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) −1.82342e9 −0.621969 −0.310985 0.950415i \(-0.600659\pi\)
−0.310985 + 0.950415i \(0.600659\pi\)
\(128\) −2.43040e9 −0.800263
\(129\) −2.26958e9 −0.721591
\(130\) 1.97608e9 0.606820
\(131\) 2.64606e9 0.785018 0.392509 0.919748i \(-0.371607\pi\)
0.392509 + 0.919748i \(0.371607\pi\)
\(132\) −8.69752e8 −0.249352
\(133\) 0 0
\(134\) −1.91247e9 −0.512417
\(135\) −3.85079e8 −0.0997810
\(136\) 2.38912e9 0.598844
\(137\) −6.37677e8 −0.154653 −0.0773265 0.997006i \(-0.524638\pi\)
−0.0773265 + 0.997006i \(0.524638\pi\)
\(138\) 5.09948e9 1.19693
\(139\) 2.75678e9 0.626376 0.313188 0.949691i \(-0.398603\pi\)
0.313188 + 0.949691i \(0.398603\pi\)
\(140\) 0 0
\(141\) 1.04195e10 2.22004
\(142\) −4.14267e9 −0.855032
\(143\) −1.18451e10 −2.36879
\(144\) −3.77386e9 −0.731399
\(145\) −2.62003e9 −0.492209
\(146\) −4.73915e9 −0.863202
\(147\) 0 0
\(148\) −5.22254e8 −0.0894756
\(149\) 7.86514e9 1.30728 0.653639 0.756806i \(-0.273241\pi\)
0.653639 + 0.756806i \(0.273241\pi\)
\(150\) 1.58318e9 0.255341
\(151\) 1.15679e10 1.81075 0.905373 0.424617i \(-0.139591\pi\)
0.905373 + 0.424617i \(0.139591\pi\)
\(152\) 9.02076e9 1.37071
\(153\) 3.23577e9 0.477382
\(154\) 0 0
\(155\) −4.24231e9 −0.590350
\(156\) 1.61422e9 0.218224
\(157\) 1.55705e8 0.0204528 0.0102264 0.999948i \(-0.496745\pi\)
0.0102264 + 0.999948i \(0.496745\pi\)
\(158\) −4.86124e9 −0.620570
\(159\) −6.24216e9 −0.774548
\(160\) 8.25469e8 0.0995774
\(161\) 0 0
\(162\) 9.39793e9 1.07205
\(163\) −1.11616e10 −1.23846 −0.619229 0.785210i \(-0.712555\pi\)
−0.619229 + 0.785210i \(0.712555\pi\)
\(164\) 9.65176e8 0.104186
\(165\) −9.48997e9 −0.996752
\(166\) −3.15708e8 −0.0322700
\(167\) −5.25167e9 −0.522485 −0.261242 0.965273i \(-0.584132\pi\)
−0.261242 + 0.965273i \(0.584132\pi\)
\(168\) 0 0
\(169\) 1.13795e10 1.07308
\(170\) 2.62296e9 0.240864
\(171\) 1.22175e10 1.09270
\(172\) −6.83999e8 −0.0595906
\(173\) −7.59307e9 −0.644481 −0.322240 0.946658i \(-0.604436\pi\)
−0.322240 + 0.946658i \(0.604436\pi\)
\(174\) 1.69902e10 1.40516
\(175\) 0 0
\(176\) 1.83372e10 1.44055
\(177\) 1.38255e10 1.05877
\(178\) −9.54406e9 −0.712595
\(179\) 1.27063e10 0.925082 0.462541 0.886598i \(-0.346938\pi\)
0.462541 + 0.886598i \(0.346938\pi\)
\(180\) 5.88609e8 0.0417927
\(181\) 1.36557e10 0.945718 0.472859 0.881138i \(-0.343222\pi\)
0.472859 + 0.881138i \(0.343222\pi\)
\(182\) 0 0
\(183\) 2.41367e10 1.59092
\(184\) 1.52740e10 0.982364
\(185\) −5.69838e9 −0.357667
\(186\) 2.75102e10 1.68533
\(187\) −1.57226e10 −0.940239
\(188\) 3.14020e9 0.183335
\(189\) 0 0
\(190\) 9.90367e9 0.551322
\(191\) 5.55799e9 0.302181 0.151091 0.988520i \(-0.451721\pi\)
0.151091 + 0.988520i \(0.451721\pi\)
\(192\) −2.76896e10 −1.47049
\(193\) −1.23134e10 −0.638808 −0.319404 0.947619i \(-0.603483\pi\)
−0.319404 + 0.947619i \(0.603483\pi\)
\(194\) 1.44650e10 0.733179
\(195\) 1.76130e10 0.872323
\(196\) 0 0
\(197\) 6.37549e9 0.301589 0.150795 0.988565i \(-0.451817\pi\)
0.150795 + 0.988565i \(0.451817\pi\)
\(198\) 2.80087e10 1.29509
\(199\) −4.28681e9 −0.193774 −0.0968869 0.995295i \(-0.530889\pi\)
−0.0968869 + 0.995295i \(0.530889\pi\)
\(200\) 4.74196e9 0.209567
\(201\) −1.70460e10 −0.736617
\(202\) 3.99401e10 1.68783
\(203\) 0 0
\(204\) 2.14265e9 0.0866194
\(205\) 1.05312e10 0.416470
\(206\) −3.99080e10 −1.54403
\(207\) 2.06867e10 0.783113
\(208\) −3.40332e10 −1.26072
\(209\) −5.93649e10 −2.15215
\(210\) 0 0
\(211\) 2.59322e10 0.900676 0.450338 0.892858i \(-0.351303\pi\)
0.450338 + 0.892858i \(0.351303\pi\)
\(212\) −1.88125e9 −0.0639638
\(213\) −3.69239e10 −1.22914
\(214\) −2.31204e10 −0.753587
\(215\) −7.46320e9 −0.238206
\(216\) 7.47942e9 0.233790
\(217\) 0 0
\(218\) 2.42165e10 0.726201
\(219\) −4.22404e10 −1.24088
\(220\) −2.86006e9 −0.0823140
\(221\) 2.91806e10 0.822865
\(222\) 3.69524e10 1.02107
\(223\) −1.98676e10 −0.537990 −0.268995 0.963142i \(-0.586692\pi\)
−0.268995 + 0.963142i \(0.586692\pi\)
\(224\) 0 0
\(225\) 6.42239e9 0.167061
\(226\) 2.24159e10 0.571569
\(227\) 1.13329e10 0.283287 0.141643 0.989918i \(-0.454761\pi\)
0.141643 + 0.989918i \(0.454761\pi\)
\(228\) 8.09012e9 0.198266
\(229\) −2.76440e10 −0.664265 −0.332132 0.943233i \(-0.607768\pi\)
−0.332132 + 0.943233i \(0.607768\pi\)
\(230\) 1.67689e10 0.395121
\(231\) 0 0
\(232\) 5.08890e10 1.15326
\(233\) −3.57013e10 −0.793565 −0.396783 0.917913i \(-0.629873\pi\)
−0.396783 + 0.917913i \(0.629873\pi\)
\(234\) −5.19830e10 −1.13342
\(235\) 3.42631e10 0.732860
\(236\) 4.16669e9 0.0874353
\(237\) −4.33287e10 −0.892089
\(238\) 0 0
\(239\) 6.44509e10 1.27773 0.638864 0.769319i \(-0.279405\pi\)
0.638864 + 0.769319i \(0.279405\pi\)
\(240\) −2.72665e10 −0.530491
\(241\) 5.79781e10 1.10710 0.553550 0.832816i \(-0.313273\pi\)
0.553550 + 0.832816i \(0.313273\pi\)
\(242\) −8.58137e10 −1.60837
\(243\) 7.16374e10 1.31799
\(244\) 7.27426e9 0.131382
\(245\) 0 0
\(246\) −6.82916e10 −1.18894
\(247\) 1.10179e11 1.88348
\(248\) 8.23987e10 1.38321
\(249\) −2.81394e9 −0.0463892
\(250\) 5.20609e9 0.0842911
\(251\) −1.40076e10 −0.222757 −0.111378 0.993778i \(-0.535527\pi\)
−0.111378 + 0.993778i \(0.535527\pi\)
\(252\) 0 0
\(253\) −1.00517e11 −1.54240
\(254\) 3.88828e10 0.586146
\(255\) 2.33787e10 0.346250
\(256\) −2.27649e10 −0.331273
\(257\) 6.94525e10 0.993091 0.496545 0.868011i \(-0.334602\pi\)
0.496545 + 0.868011i \(0.334602\pi\)
\(258\) 4.83968e10 0.680030
\(259\) 0 0
\(260\) 5.30816e9 0.0720383
\(261\) 6.89227e10 0.919349
\(262\) −5.64250e10 −0.739803
\(263\) 1.12309e11 1.44748 0.723742 0.690071i \(-0.242421\pi\)
0.723742 + 0.690071i \(0.242421\pi\)
\(264\) 1.84325e11 2.33542
\(265\) −2.05265e10 −0.255687
\(266\) 0 0
\(267\) −8.50670e10 −1.02438
\(268\) −5.13729e9 −0.0608314
\(269\) −4.71714e9 −0.0549279 −0.0274640 0.999623i \(-0.508743\pi\)
−0.0274640 + 0.999623i \(0.508743\pi\)
\(270\) 8.21148e9 0.0940339
\(271\) −6.13139e10 −0.690554 −0.345277 0.938501i \(-0.612215\pi\)
−0.345277 + 0.938501i \(0.612215\pi\)
\(272\) −4.51741e10 −0.500414
\(273\) 0 0
\(274\) 1.35979e10 0.145745
\(275\) −3.12065e10 −0.329039
\(276\) 1.36982e10 0.142093
\(277\) −1.06922e11 −1.09121 −0.545605 0.838043i \(-0.683700\pi\)
−0.545605 + 0.838043i \(0.683700\pi\)
\(278\) −5.87859e10 −0.590298
\(279\) 1.11599e11 1.10266
\(280\) 0 0
\(281\) 9.68968e10 0.927110 0.463555 0.886068i \(-0.346574\pi\)
0.463555 + 0.886068i \(0.346574\pi\)
\(282\) −2.22187e11 −2.09217
\(283\) −2.94324e9 −0.0272763 −0.0136382 0.999907i \(-0.504341\pi\)
−0.0136382 + 0.999907i \(0.504341\pi\)
\(284\) −1.11280e10 −0.101505
\(285\) 8.82723e10 0.792543
\(286\) 2.52586e11 2.23235
\(287\) 0 0
\(288\) −2.17149e10 −0.185991
\(289\) −7.98549e10 −0.673381
\(290\) 5.58698e10 0.463860
\(291\) 1.28928e11 1.05397
\(292\) −1.27303e10 −0.102475
\(293\) −5.41297e10 −0.429073 −0.214536 0.976716i \(-0.568824\pi\)
−0.214536 + 0.976716i \(0.568824\pi\)
\(294\) 0 0
\(295\) 4.54632e10 0.349511
\(296\) 1.10680e11 0.838026
\(297\) −4.92215e10 −0.367072
\(298\) −1.67717e11 −1.23198
\(299\) 1.86555e11 1.34986
\(300\) 4.25275e9 0.0303127
\(301\) 0 0
\(302\) −2.46675e11 −1.70645
\(303\) 3.55990e11 2.42631
\(304\) −1.70567e11 −1.14541
\(305\) 7.93704e10 0.525181
\(306\) −6.90000e10 −0.449886
\(307\) −1.11130e11 −0.714014 −0.357007 0.934102i \(-0.616203\pi\)
−0.357007 + 0.934102i \(0.616203\pi\)
\(308\) 0 0
\(309\) −3.55703e11 −2.21960
\(310\) 9.04635e10 0.556347
\(311\) −3.88180e10 −0.235294 −0.117647 0.993055i \(-0.537535\pi\)
−0.117647 + 0.993055i \(0.537535\pi\)
\(312\) −3.42099e11 −2.04388
\(313\) −1.04187e11 −0.613568 −0.306784 0.951779i \(-0.599253\pi\)
−0.306784 + 0.951779i \(0.599253\pi\)
\(314\) −3.32027e9 −0.0192748
\(315\) 0 0
\(316\) −1.30583e10 −0.0736706
\(317\) −2.80972e11 −1.56278 −0.781388 0.624045i \(-0.785488\pi\)
−0.781388 + 0.624045i \(0.785488\pi\)
\(318\) 1.33109e11 0.729936
\(319\) −3.34897e11 −1.81073
\(320\) −9.10536e10 −0.485425
\(321\) −2.06074e11 −1.08331
\(322\) 0 0
\(323\) 1.46246e11 0.747608
\(324\) 2.52448e10 0.127268
\(325\) 5.79180e10 0.287964
\(326\) 2.38011e11 1.16713
\(327\) 2.15844e11 1.04394
\(328\) −2.04548e11 −0.975803
\(329\) 0 0
\(330\) 2.02366e11 0.939342
\(331\) −3.90426e11 −1.78778 −0.893888 0.448290i \(-0.852033\pi\)
−0.893888 + 0.448290i \(0.852033\pi\)
\(332\) −8.48057e8 −0.00383092
\(333\) 1.49902e11 0.668051
\(334\) 1.11987e11 0.492391
\(335\) −5.60536e10 −0.243166
\(336\) 0 0
\(337\) −1.89901e11 −0.802034 −0.401017 0.916071i \(-0.631343\pi\)
−0.401017 + 0.916071i \(0.631343\pi\)
\(338\) −2.42658e11 −1.01128
\(339\) 1.99795e11 0.821649
\(340\) 7.04581e9 0.0285941
\(341\) −5.42259e11 −2.17176
\(342\) −2.60527e11 −1.02976
\(343\) 0 0
\(344\) 1.44958e11 0.558124
\(345\) 1.49463e11 0.568000
\(346\) 1.61916e11 0.607361
\(347\) 3.81954e11 1.41426 0.707129 0.707085i \(-0.249990\pi\)
0.707129 + 0.707085i \(0.249990\pi\)
\(348\) 4.56390e10 0.166813
\(349\) −2.33327e10 −0.0841881 −0.0420940 0.999114i \(-0.513403\pi\)
−0.0420940 + 0.999114i \(0.513403\pi\)
\(350\) 0 0
\(351\) 9.13531e10 0.321249
\(352\) 1.05513e11 0.366323
\(353\) −1.84317e11 −0.631798 −0.315899 0.948793i \(-0.602306\pi\)
−0.315899 + 0.948793i \(0.602306\pi\)
\(354\) −2.94817e11 −0.997785
\(355\) −1.21419e11 −0.405752
\(356\) −2.56373e10 −0.0845954
\(357\) 0 0
\(358\) −2.70951e11 −0.871800
\(359\) −1.13296e11 −0.359990 −0.179995 0.983668i \(-0.557608\pi\)
−0.179995 + 0.983668i \(0.557608\pi\)
\(360\) −1.24743e11 −0.391430
\(361\) 2.29504e11 0.711225
\(362\) −2.91197e11 −0.891247
\(363\) −7.64865e11 −2.31209
\(364\) 0 0
\(365\) −1.38902e11 −0.409629
\(366\) −5.14695e11 −1.49929
\(367\) −2.24258e10 −0.0645283 −0.0322642 0.999479i \(-0.510272\pi\)
−0.0322642 + 0.999479i \(0.510272\pi\)
\(368\) −2.88804e11 −0.820896
\(369\) −2.77034e11 −0.777883
\(370\) 1.21513e11 0.337066
\(371\) 0 0
\(372\) 7.38979e10 0.200073
\(373\) −1.03980e11 −0.278139 −0.139069 0.990283i \(-0.544411\pi\)
−0.139069 + 0.990283i \(0.544411\pi\)
\(374\) 3.35272e11 0.886084
\(375\) 4.64023e10 0.121171
\(376\) −6.65495e11 −1.71711
\(377\) 6.21554e11 1.58469
\(378\) 0 0
\(379\) 2.82403e11 0.703060 0.351530 0.936177i \(-0.385662\pi\)
0.351530 + 0.936177i \(0.385662\pi\)
\(380\) 2.66033e10 0.0654499
\(381\) 3.46566e11 0.842603
\(382\) −1.18519e11 −0.284777
\(383\) −5.95330e11 −1.41372 −0.706860 0.707354i \(-0.749889\pi\)
−0.706860 + 0.707354i \(0.749889\pi\)
\(384\) 4.61932e11 1.08414
\(385\) 0 0
\(386\) 2.62573e11 0.602015
\(387\) 1.96328e11 0.444921
\(388\) 3.88559e10 0.0870390
\(389\) −5.34860e11 −1.18431 −0.592157 0.805822i \(-0.701724\pi\)
−0.592157 + 0.805822i \(0.701724\pi\)
\(390\) −3.75582e11 −0.822080
\(391\) 2.47625e11 0.535796
\(392\) 0 0
\(393\) −5.02921e11 −1.06349
\(394\) −1.35952e11 −0.284219
\(395\) −1.42481e11 −0.294489
\(396\) 7.52371e10 0.153746
\(397\) 7.42008e11 1.49917 0.749586 0.661907i \(-0.230253\pi\)
0.749586 + 0.661907i \(0.230253\pi\)
\(398\) 9.14125e10 0.182613
\(399\) 0 0
\(400\) −8.96621e10 −0.175121
\(401\) 2.20598e11 0.426041 0.213021 0.977048i \(-0.431670\pi\)
0.213021 + 0.977048i \(0.431670\pi\)
\(402\) 3.63492e11 0.694189
\(403\) 1.00641e12 1.90065
\(404\) 1.07287e11 0.200370
\(405\) 2.75449e11 0.508737
\(406\) 0 0
\(407\) −7.28378e11 −1.31578
\(408\) −4.54087e11 −0.811275
\(409\) 7.10410e11 1.25532 0.627660 0.778488i \(-0.284013\pi\)
0.627660 + 0.778488i \(0.284013\pi\)
\(410\) −2.24568e11 −0.392482
\(411\) 1.21199e11 0.209514
\(412\) −1.07201e11 −0.183299
\(413\) 0 0
\(414\) −4.41126e11 −0.738008
\(415\) −9.25325e9 −0.0153136
\(416\) −1.95828e11 −0.320593
\(417\) −5.23964e11 −0.848573
\(418\) 1.26591e12 2.02819
\(419\) 5.27046e11 0.835382 0.417691 0.908589i \(-0.362839\pi\)
0.417691 + 0.908589i \(0.362839\pi\)
\(420\) 0 0
\(421\) 7.36474e11 1.14258 0.571292 0.820747i \(-0.306442\pi\)
0.571292 + 0.820747i \(0.306442\pi\)
\(422\) −5.52982e11 −0.848800
\(423\) −9.01328e11 −1.36884
\(424\) 3.98688e11 0.599083
\(425\) 7.68777e10 0.114301
\(426\) 7.87372e11 1.15834
\(427\) 0 0
\(428\) −6.21061e10 −0.0894617
\(429\) 2.25133e12 3.20908
\(430\) 1.59146e11 0.224486
\(431\) 7.00260e11 0.977488 0.488744 0.872427i \(-0.337455\pi\)
0.488744 + 0.872427i \(0.337455\pi\)
\(432\) −1.41423e11 −0.195363
\(433\) −7.26185e11 −0.992777 −0.496388 0.868101i \(-0.665341\pi\)
−0.496388 + 0.868101i \(0.665341\pi\)
\(434\) 0 0
\(435\) 4.97973e11 0.666813
\(436\) 6.50504e10 0.0862106
\(437\) 9.34973e11 1.22640
\(438\) 9.00741e11 1.16941
\(439\) −3.28487e11 −0.422113 −0.211056 0.977474i \(-0.567690\pi\)
−0.211056 + 0.977474i \(0.567690\pi\)
\(440\) 6.06127e11 0.770950
\(441\) 0 0
\(442\) −6.22251e11 −0.775470
\(443\) −1.48530e12 −1.83231 −0.916154 0.400827i \(-0.868723\pi\)
−0.916154 + 0.400827i \(0.868723\pi\)
\(444\) 9.92618e10 0.121216
\(445\) −2.79732e11 −0.338159
\(446\) 4.23660e11 0.507003
\(447\) −1.49488e12 −1.77102
\(448\) 0 0
\(449\) −6.21938e11 −0.722168 −0.361084 0.932533i \(-0.617593\pi\)
−0.361084 + 0.932533i \(0.617593\pi\)
\(450\) −1.36952e11 −0.157439
\(451\) 1.34611e12 1.53210
\(452\) 6.02137e10 0.0678535
\(453\) −2.19864e12 −2.45308
\(454\) −2.41665e11 −0.266970
\(455\) 0 0
\(456\) −1.71452e12 −1.85695
\(457\) 9.59245e11 1.02874 0.514371 0.857568i \(-0.328025\pi\)
0.514371 + 0.857568i \(0.328025\pi\)
\(458\) 5.89485e11 0.626005
\(459\) 1.21258e11 0.127513
\(460\) 4.50448e10 0.0469066
\(461\) −1.83403e12 −1.89127 −0.945633 0.325236i \(-0.894556\pi\)
−0.945633 + 0.325236i \(0.894556\pi\)
\(462\) 0 0
\(463\) 1.43862e12 1.45489 0.727446 0.686165i \(-0.240707\pi\)
0.727446 + 0.686165i \(0.240707\pi\)
\(464\) −9.62221e11 −0.963705
\(465\) 8.06310e11 0.799767
\(466\) 7.61300e11 0.747858
\(467\) 4.34144e11 0.422385 0.211192 0.977445i \(-0.432265\pi\)
0.211192 + 0.977445i \(0.432265\pi\)
\(468\) −1.39637e11 −0.134553
\(469\) 0 0
\(470\) −7.30631e11 −0.690649
\(471\) −2.95939e10 −0.0277082
\(472\) −8.83036e11 −0.818917
\(473\) −9.53960e11 −0.876305
\(474\) 9.23947e11 0.840707
\(475\) 2.90272e11 0.261628
\(476\) 0 0
\(477\) 5.39973e11 0.477573
\(478\) −1.37436e12 −1.20414
\(479\) 1.45935e11 0.126663 0.0633314 0.997993i \(-0.479828\pi\)
0.0633314 + 0.997993i \(0.479828\pi\)
\(480\) −1.56892e11 −0.134901
\(481\) 1.35184e12 1.15152
\(482\) −1.23633e12 −1.04333
\(483\) 0 0
\(484\) −2.30513e11 −0.190937
\(485\) 4.23961e11 0.347927
\(486\) −1.52761e12 −1.24208
\(487\) 8.41559e11 0.677961 0.338980 0.940793i \(-0.389918\pi\)
0.338980 + 0.940793i \(0.389918\pi\)
\(488\) −1.54162e12 −1.23052
\(489\) 2.12141e12 1.67778
\(490\) 0 0
\(491\) −9.35646e11 −0.726515 −0.363258 0.931689i \(-0.618336\pi\)
−0.363258 + 0.931689i \(0.618336\pi\)
\(492\) −1.83445e11 −0.141144
\(493\) 8.25024e11 0.629007
\(494\) −2.34947e12 −1.77500
\(495\) 8.20922e11 0.614580
\(496\) −1.55801e12 −1.15586
\(497\) 0 0
\(498\) 6.00048e10 0.0437173
\(499\) −2.90555e11 −0.209786 −0.104893 0.994484i \(-0.533450\pi\)
−0.104893 + 0.994484i \(0.533450\pi\)
\(500\) 1.39846e10 0.0100066
\(501\) 9.98154e11 0.707828
\(502\) 2.98699e11 0.209926
\(503\) 1.11722e12 0.778185 0.389092 0.921199i \(-0.372789\pi\)
0.389092 + 0.921199i \(0.372789\pi\)
\(504\) 0 0
\(505\) 1.17062e12 0.800952
\(506\) 2.14344e12 1.45356
\(507\) −2.16283e12 −1.45374
\(508\) 1.04447e11 0.0695840
\(509\) 1.47628e12 0.974854 0.487427 0.873164i \(-0.337936\pi\)
0.487427 + 0.873164i \(0.337936\pi\)
\(510\) −4.98531e11 −0.326307
\(511\) 0 0
\(512\) 1.72981e12 1.11246
\(513\) 4.57841e11 0.291868
\(514\) −1.48102e12 −0.935892
\(515\) −1.16968e12 −0.732716
\(516\) 1.30004e11 0.0807294
\(517\) 4.37957e12 2.69603
\(518\) 0 0
\(519\) 1.44317e12 0.873101
\(520\) −1.12495e12 −0.674709
\(521\) 5.48457e11 0.326116 0.163058 0.986616i \(-0.447864\pi\)
0.163058 + 0.986616i \(0.447864\pi\)
\(522\) −1.46972e12 −0.866397
\(523\) 1.49093e12 0.871364 0.435682 0.900101i \(-0.356507\pi\)
0.435682 + 0.900101i \(0.356507\pi\)
\(524\) −1.51569e11 −0.0878254
\(525\) 0 0
\(526\) −2.39489e12 −1.36411
\(527\) 1.33587e12 0.754423
\(528\) −3.48525e12 −1.95156
\(529\) −2.18053e11 −0.121063
\(530\) 4.37710e11 0.240960
\(531\) −1.19596e12 −0.652817
\(532\) 0 0
\(533\) −2.49833e12 −1.34084
\(534\) 1.81398e12 0.965377
\(535\) −6.77648e11 −0.357612
\(536\) 1.08873e12 0.569745
\(537\) −2.41501e12 −1.25324
\(538\) 1.00589e11 0.0517642
\(539\) 0 0
\(540\) 2.20577e10 0.0111632
\(541\) 2.09478e12 1.05136 0.525679 0.850683i \(-0.323811\pi\)
0.525679 + 0.850683i \(0.323811\pi\)
\(542\) 1.30747e12 0.650780
\(543\) −2.59546e12 −1.28120
\(544\) −2.59933e11 −0.127252
\(545\) 7.09773e11 0.344616
\(546\) 0 0
\(547\) 3.14192e12 1.50056 0.750279 0.661121i \(-0.229919\pi\)
0.750279 + 0.661121i \(0.229919\pi\)
\(548\) 3.65268e10 0.0173021
\(549\) −2.08793e12 −0.980934
\(550\) 6.65452e11 0.310088
\(551\) 3.11509e12 1.43975
\(552\) −2.90303e12 −1.33084
\(553\) 0 0
\(554\) 2.28002e12 1.02836
\(555\) 1.08306e12 0.484544
\(556\) −1.57911e11 −0.0700770
\(557\) 2.80927e12 1.23664 0.618322 0.785925i \(-0.287813\pi\)
0.618322 + 0.785925i \(0.287813\pi\)
\(558\) −2.37974e12 −1.03915
\(559\) 1.77051e12 0.766912
\(560\) 0 0
\(561\) 2.98831e12 1.27377
\(562\) −2.06624e12 −0.873711
\(563\) 1.39940e12 0.587022 0.293511 0.955956i \(-0.405176\pi\)
0.293511 + 0.955956i \(0.405176\pi\)
\(564\) −5.96838e11 −0.248371
\(565\) 6.56999e11 0.271236
\(566\) 6.27620e10 0.0257053
\(567\) 0 0
\(568\) 2.35834e12 0.950690
\(569\) −2.48494e12 −0.993828 −0.496914 0.867800i \(-0.665534\pi\)
−0.496914 + 0.867800i \(0.665534\pi\)
\(570\) −1.88233e12 −0.746895
\(571\) −3.24391e12 −1.27705 −0.638523 0.769602i \(-0.720454\pi\)
−0.638523 + 0.769602i \(0.720454\pi\)
\(572\) 6.78498e11 0.265013
\(573\) −1.05637e12 −0.409376
\(574\) 0 0
\(575\) 4.91489e11 0.187503
\(576\) 2.39527e12 0.906677
\(577\) −7.31430e11 −0.274715 −0.137357 0.990522i \(-0.543861\pi\)
−0.137357 + 0.990522i \(0.543861\pi\)
\(578\) 1.70284e12 0.634597
\(579\) 2.34034e12 0.865415
\(580\) 1.50078e11 0.0550669
\(581\) 0 0
\(582\) −2.74927e12 −0.993263
\(583\) −2.62374e12 −0.940615
\(584\) 2.69791e12 0.959774
\(585\) −1.52360e12 −0.537859
\(586\) 1.15427e12 0.404360
\(587\) 1.33193e12 0.463032 0.231516 0.972831i \(-0.425631\pi\)
0.231516 + 0.972831i \(0.425631\pi\)
\(588\) 0 0
\(589\) 5.04390e12 1.72682
\(590\) −9.69465e11 −0.329381
\(591\) −1.21175e12 −0.408573
\(592\) −2.09277e12 −0.700282
\(593\) −5.41331e12 −1.79770 −0.898850 0.438257i \(-0.855596\pi\)
−0.898850 + 0.438257i \(0.855596\pi\)
\(594\) 1.04961e12 0.345929
\(595\) 0 0
\(596\) −4.50523e11 −0.146254
\(597\) 8.14768e11 0.262512
\(598\) −3.97813e12 −1.27211
\(599\) −3.27443e11 −0.103924 −0.0519619 0.998649i \(-0.516547\pi\)
−0.0519619 + 0.998649i \(0.516547\pi\)
\(600\) −9.01277e11 −0.283908
\(601\) 7.56209e11 0.236432 0.118216 0.992988i \(-0.462282\pi\)
0.118216 + 0.992988i \(0.462282\pi\)
\(602\) 0 0
\(603\) 1.47455e12 0.454185
\(604\) −6.62620e11 −0.202581
\(605\) −2.51516e12 −0.763248
\(606\) −7.59118e12 −2.28656
\(607\) −4.79752e12 −1.43439 −0.717195 0.696872i \(-0.754574\pi\)
−0.717195 + 0.696872i \(0.754574\pi\)
\(608\) −9.81444e11 −0.291272
\(609\) 0 0
\(610\) −1.69251e12 −0.494932
\(611\) −8.12830e12 −2.35947
\(612\) −1.85348e11 −0.0534080
\(613\) 4.44786e12 1.27227 0.636134 0.771579i \(-0.280533\pi\)
0.636134 + 0.771579i \(0.280533\pi\)
\(614\) 2.36974e12 0.672889
\(615\) −2.00159e12 −0.564206
\(616\) 0 0
\(617\) −1.63327e12 −0.453707 −0.226854 0.973929i \(-0.572844\pi\)
−0.226854 + 0.973929i \(0.572844\pi\)
\(618\) 7.58507e12 2.09176
\(619\) 1.77545e12 0.486071 0.243035 0.970017i \(-0.421857\pi\)
0.243035 + 0.970017i \(0.421857\pi\)
\(620\) 2.43003e11 0.0660465
\(621\) 7.75218e11 0.209176
\(622\) 8.27761e11 0.221742
\(623\) 0 0
\(624\) 6.46848e12 1.70794
\(625\) 1.52588e11 0.0400000
\(626\) 2.22169e12 0.578228
\(627\) 1.12831e13 2.91559
\(628\) −8.91892e9 −0.00228820
\(629\) 1.79437e12 0.457072
\(630\) 0 0
\(631\) −5.81058e12 −1.45911 −0.729554 0.683923i \(-0.760272\pi\)
−0.729554 + 0.683923i \(0.760272\pi\)
\(632\) 2.76741e12 0.689997
\(633\) −4.92878e12 −1.22018
\(634\) 5.99149e12 1.47277
\(635\) 1.13963e12 0.278153
\(636\) 3.57557e11 0.0866540
\(637\) 0 0
\(638\) 7.14139e12 1.70643
\(639\) 3.19407e12 0.757864
\(640\) 1.51900e12 0.357889
\(641\) 1.81559e12 0.424772 0.212386 0.977186i \(-0.431877\pi\)
0.212386 + 0.977186i \(0.431877\pi\)
\(642\) 4.39436e12 1.02091
\(643\) −8.51767e12 −1.96504 −0.982521 0.186154i \(-0.940398\pi\)
−0.982521 + 0.186154i \(0.940398\pi\)
\(644\) 0 0
\(645\) 1.41849e12 0.322705
\(646\) −3.11858e12 −0.704548
\(647\) 4.28899e12 0.962245 0.481123 0.876653i \(-0.340229\pi\)
0.481123 + 0.876653i \(0.340229\pi\)
\(648\) −5.35006e12 −1.19199
\(649\) 5.81120e12 1.28577
\(650\) −1.23505e12 −0.271378
\(651\) 0 0
\(652\) 6.39346e11 0.138555
\(653\) 7.96742e12 1.71478 0.857390 0.514667i \(-0.172084\pi\)
0.857390 + 0.514667i \(0.172084\pi\)
\(654\) −4.60268e12 −0.983809
\(655\) −1.65379e12 −0.351071
\(656\) 3.86763e12 0.815413
\(657\) 3.65397e12 0.765105
\(658\) 0 0
\(659\) −5.80696e12 −1.19940 −0.599701 0.800224i \(-0.704714\pi\)
−0.599701 + 0.800224i \(0.704714\pi\)
\(660\) 5.43595e11 0.111514
\(661\) −4.58242e11 −0.0933660 −0.0466830 0.998910i \(-0.514865\pi\)
−0.0466830 + 0.998910i \(0.514865\pi\)
\(662\) 8.32551e12 1.68481
\(663\) −5.54618e12 −1.11476
\(664\) 1.79727e11 0.0358803
\(665\) 0 0
\(666\) −3.19654e12 −0.629573
\(667\) 5.27449e12 1.03184
\(668\) 3.00821e11 0.0584540
\(669\) 3.77612e12 0.728834
\(670\) 1.19530e12 0.229160
\(671\) 1.01453e13 1.93202
\(672\) 0 0
\(673\) −1.20278e12 −0.226005 −0.113002 0.993595i \(-0.536047\pi\)
−0.113002 + 0.993595i \(0.536047\pi\)
\(674\) 4.04948e12 0.755839
\(675\) 2.40674e11 0.0446234
\(676\) −6.51829e11 −0.120053
\(677\) −9.07750e11 −0.166080 −0.0830400 0.996546i \(-0.526463\pi\)
−0.0830400 + 0.996546i \(0.526463\pi\)
\(678\) −4.26046e12 −0.774324
\(679\) 0 0
\(680\) −1.49320e12 −0.267811
\(681\) −2.15398e12 −0.383778
\(682\) 1.15632e13 2.04668
\(683\) 4.70127e12 0.826651 0.413325 0.910583i \(-0.364367\pi\)
0.413325 + 0.910583i \(0.364367\pi\)
\(684\) −6.99829e11 −0.122247
\(685\) 3.98548e11 0.0691629
\(686\) 0 0
\(687\) 5.25413e12 0.899903
\(688\) −2.74091e12 −0.466387
\(689\) 4.86955e12 0.823194
\(690\) −3.18717e12 −0.535285
\(691\) −2.88818e12 −0.481917 −0.240959 0.970535i \(-0.577462\pi\)
−0.240959 + 0.970535i \(0.577462\pi\)
\(692\) 4.34939e11 0.0721025
\(693\) 0 0
\(694\) −8.14484e12 −1.33280
\(695\) −1.72299e12 −0.280124
\(696\) −9.67217e12 −1.56236
\(697\) −3.31617e12 −0.532218
\(698\) 4.97550e11 0.0793391
\(699\) 6.78553e12 1.07507
\(700\) 0 0
\(701\) 4.88547e11 0.0764145 0.0382072 0.999270i \(-0.487835\pi\)
0.0382072 + 0.999270i \(0.487835\pi\)
\(702\) −1.94803e12 −0.302746
\(703\) 6.77511e12 1.04621
\(704\) −1.16386e13 −1.78577
\(705\) −6.51218e12 −0.992831
\(706\) 3.93040e12 0.595409
\(707\) 0 0
\(708\) −7.91937e11 −0.118452
\(709\) 1.22900e13 1.82660 0.913302 0.407283i \(-0.133524\pi\)
0.913302 + 0.407283i \(0.133524\pi\)
\(710\) 2.58917e12 0.382382
\(711\) 3.74811e12 0.550046
\(712\) 5.43325e12 0.792318
\(713\) 8.54036e12 1.23758
\(714\) 0 0
\(715\) 7.40318e12 1.05935
\(716\) −7.27829e11 −0.103495
\(717\) −1.22498e13 −1.73098
\(718\) 2.41595e12 0.339256
\(719\) −1.07824e13 −1.50465 −0.752326 0.658791i \(-0.771068\pi\)
−0.752326 + 0.658791i \(0.771068\pi\)
\(720\) 2.35866e12 0.327092
\(721\) 0 0
\(722\) −4.89397e12 −0.670261
\(723\) −1.10195e13 −1.49983
\(724\) −7.82214e11 −0.105804
\(725\) 1.63752e12 0.220123
\(726\) 1.63101e13 2.17892
\(727\) 1.23298e13 1.63701 0.818503 0.574502i \(-0.194804\pi\)
0.818503 + 0.574502i \(0.194804\pi\)
\(728\) 0 0
\(729\) −4.94104e12 −0.647954
\(730\) 2.96197e12 0.386035
\(731\) 2.35010e12 0.304409
\(732\) −1.38258e12 −0.177987
\(733\) −6.25325e10 −0.00800088 −0.00400044 0.999992i \(-0.501273\pi\)
−0.00400044 + 0.999992i \(0.501273\pi\)
\(734\) 4.78211e11 0.0608117
\(735\) 0 0
\(736\) −1.66178e12 −0.208749
\(737\) −7.16488e12 −0.894551
\(738\) 5.90751e12 0.733079
\(739\) 1.37529e13 1.69627 0.848133 0.529783i \(-0.177727\pi\)
0.848133 + 0.529783i \(0.177727\pi\)
\(740\) 3.26409e11 0.0400147
\(741\) −2.09410e13 −2.55162
\(742\) 0 0
\(743\) 5.86908e12 0.706514 0.353257 0.935526i \(-0.385074\pi\)
0.353257 + 0.935526i \(0.385074\pi\)
\(744\) −1.56610e13 −1.87388
\(745\) −4.91571e12 −0.584633
\(746\) 2.21729e12 0.262119
\(747\) 2.43417e11 0.0286028
\(748\) 9.00609e11 0.105191
\(749\) 0 0
\(750\) −9.89490e11 −0.114192
\(751\) 9.01282e12 1.03391 0.516953 0.856014i \(-0.327066\pi\)
0.516953 + 0.856014i \(0.327066\pi\)
\(752\) 1.25833e13 1.43488
\(753\) 2.66233e12 0.301776
\(754\) −1.32541e13 −1.49341
\(755\) −7.22993e12 −0.809790
\(756\) 0 0
\(757\) 1.10513e13 1.22316 0.611580 0.791183i \(-0.290534\pi\)
0.611580 + 0.791183i \(0.290534\pi\)
\(758\) −6.02199e12 −0.662565
\(759\) 1.91047e13 2.08954
\(760\) −5.63797e12 −0.613002
\(761\) −2.58275e12 −0.279159 −0.139579 0.990211i \(-0.544575\pi\)
−0.139579 + 0.990211i \(0.544575\pi\)
\(762\) −7.39022e12 −0.794072
\(763\) 0 0
\(764\) −3.18367e11 −0.0338071
\(765\) −2.02235e12 −0.213492
\(766\) 1.26949e13 1.33229
\(767\) −1.07853e13 −1.12526
\(768\) 4.32679e12 0.448787
\(769\) −1.38646e13 −1.42968 −0.714838 0.699290i \(-0.753500\pi\)
−0.714838 + 0.699290i \(0.753500\pi\)
\(770\) 0 0
\(771\) −1.32004e13 −1.34537
\(772\) 7.05324e11 0.0714679
\(773\) −3.61445e12 −0.364111 −0.182056 0.983288i \(-0.558275\pi\)
−0.182056 + 0.983288i \(0.558275\pi\)
\(774\) −4.18652e12 −0.419294
\(775\) 2.65144e12 0.264012
\(776\) −8.23464e12 −0.815205
\(777\) 0 0
\(778\) 1.14054e13 1.11610
\(779\) −1.25211e13 −1.21821
\(780\) −1.00889e12 −0.0975928
\(781\) −1.55201e13 −1.49267
\(782\) −5.28039e12 −0.504936
\(783\) 2.58283e12 0.245566
\(784\) 0 0
\(785\) −9.73155e10 −0.00914679
\(786\) 1.07244e13 1.00224
\(787\) −4.22165e12 −0.392279 −0.196140 0.980576i \(-0.562841\pi\)
−0.196140 + 0.980576i \(0.562841\pi\)
\(788\) −3.65195e11 −0.0337409
\(789\) −2.13459e13 −1.96096
\(790\) 3.03828e12 0.277527
\(791\) 0 0
\(792\) −1.59448e13 −1.43998
\(793\) −1.88292e13 −1.69084
\(794\) −1.58227e13 −1.41282
\(795\) 3.90135e12 0.346388
\(796\) 2.45552e11 0.0216788
\(797\) −2.23662e13 −1.96349 −0.981747 0.190193i \(-0.939089\pi\)
−0.981747 + 0.190193i \(0.939089\pi\)
\(798\) 0 0
\(799\) −1.07891e13 −0.936540
\(800\) −5.15918e11 −0.0445324
\(801\) 7.35865e12 0.631614
\(802\) −4.70406e12 −0.401503
\(803\) −1.77547e13 −1.50693
\(804\) 9.76414e11 0.0824104
\(805\) 0 0
\(806\) −2.14608e13 −1.79118
\(807\) 8.96558e11 0.0744128
\(808\) −2.27371e13 −1.87666
\(809\) −5.09731e12 −0.418382 −0.209191 0.977875i \(-0.567083\pi\)
−0.209191 + 0.977875i \(0.567083\pi\)
\(810\) −5.87371e12 −0.479435
\(811\) −7.10602e12 −0.576809 −0.288405 0.957509i \(-0.593125\pi\)
−0.288405 + 0.957509i \(0.593125\pi\)
\(812\) 0 0
\(813\) 1.16536e13 0.935517
\(814\) 1.55320e13 1.23999
\(815\) 6.97599e12 0.553856
\(816\) 8.58597e12 0.677928
\(817\) 8.87340e12 0.696772
\(818\) −1.51489e13 −1.18302
\(819\) 0 0
\(820\) −6.03235e11 −0.0465934
\(821\) −1.43864e13 −1.10512 −0.552559 0.833474i \(-0.686349\pi\)
−0.552559 + 0.833474i \(0.686349\pi\)
\(822\) −2.58447e12 −0.197446
\(823\) −1.10546e13 −0.839932 −0.419966 0.907540i \(-0.637958\pi\)
−0.419966 + 0.907540i \(0.637958\pi\)
\(824\) 2.27188e13 1.71678
\(825\) 5.93123e12 0.445761
\(826\) 0 0
\(827\) −6.53464e12 −0.485788 −0.242894 0.970053i \(-0.578097\pi\)
−0.242894 + 0.970053i \(0.578097\pi\)
\(828\) −1.18495e12 −0.0876122
\(829\) −6.58701e12 −0.484388 −0.242194 0.970228i \(-0.577867\pi\)
−0.242194 + 0.970228i \(0.577867\pi\)
\(830\) 1.97318e11 0.0144316
\(831\) 2.03220e13 1.47830
\(832\) 2.16008e13 1.56284
\(833\) 0 0
\(834\) 1.11731e13 0.799697
\(835\) 3.28230e12 0.233662
\(836\) 3.40048e12 0.240775
\(837\) 4.18208e12 0.294529
\(838\) −1.12388e13 −0.787266
\(839\) −4.76554e12 −0.332035 −0.166017 0.986123i \(-0.553091\pi\)
−0.166017 + 0.986123i \(0.553091\pi\)
\(840\) 0 0
\(841\) 3.06609e12 0.211350
\(842\) −1.57047e13 −1.07677
\(843\) −1.84166e13 −1.25599
\(844\) −1.48542e12 −0.100765
\(845\) −7.11218e12 −0.479897
\(846\) 1.92201e13 1.28999
\(847\) 0 0
\(848\) −7.53849e12 −0.500614
\(849\) 5.59403e11 0.0369522
\(850\) −1.63935e12 −0.107718
\(851\) 1.14717e13 0.749796
\(852\) 2.11504e12 0.137512
\(853\) 1.95984e13 1.26751 0.633754 0.773535i \(-0.281513\pi\)
0.633754 + 0.773535i \(0.281513\pi\)
\(854\) 0 0
\(855\) −7.63592e12 −0.488668
\(856\) 1.31620e13 0.837896
\(857\) 2.63348e12 0.166769 0.0833847 0.996517i \(-0.473427\pi\)
0.0833847 + 0.996517i \(0.473427\pi\)
\(858\) −4.80076e13 −3.02425
\(859\) −1.98864e13 −1.24620 −0.623100 0.782142i \(-0.714127\pi\)
−0.623100 + 0.782142i \(0.714127\pi\)
\(860\) 4.27500e11 0.0266497
\(861\) 0 0
\(862\) −1.49324e13 −0.921188
\(863\) −2.16547e13 −1.32893 −0.664467 0.747318i \(-0.731341\pi\)
−0.664467 + 0.747318i \(0.731341\pi\)
\(864\) −8.13749e11 −0.0496797
\(865\) 4.74567e12 0.288221
\(866\) 1.54853e13 0.935596
\(867\) 1.51775e13 0.912253
\(868\) 0 0
\(869\) −1.82121e13 −1.08336
\(870\) −1.06188e13 −0.628407
\(871\) 1.32977e13 0.782880
\(872\) −1.37860e13 −0.807446
\(873\) −1.11528e13 −0.649858
\(874\) −1.99375e13 −1.15576
\(875\) 0 0
\(876\) 2.41957e12 0.138826
\(877\) 2.83238e12 0.161679 0.0808395 0.996727i \(-0.474240\pi\)
0.0808395 + 0.996727i \(0.474240\pi\)
\(878\) 7.00471e12 0.397800
\(879\) 1.02881e13 0.581280
\(880\) −1.14608e13 −0.644232
\(881\) 2.62782e13 1.46962 0.734809 0.678274i \(-0.237272\pi\)
0.734809 + 0.678274i \(0.237272\pi\)
\(882\) 0 0
\(883\) 1.46614e13 0.811620 0.405810 0.913957i \(-0.366989\pi\)
0.405810 + 0.913957i \(0.366989\pi\)
\(884\) −1.67149e12 −0.0920596
\(885\) −8.64093e12 −0.473495
\(886\) 3.16728e13 1.72677
\(887\) −2.09081e13 −1.13412 −0.567059 0.823677i \(-0.691919\pi\)
−0.567059 + 0.823677i \(0.691919\pi\)
\(888\) −2.10363e13 −1.13530
\(889\) 0 0
\(890\) 5.96503e12 0.318682
\(891\) 3.52084e13 1.87153
\(892\) 1.13804e12 0.0601887
\(893\) −4.07372e13 −2.14368
\(894\) 3.18770e13 1.66901
\(895\) −7.94144e12 −0.413709
\(896\) 0 0
\(897\) −3.54574e13 −1.82870
\(898\) 1.32623e13 0.680573
\(899\) 2.84543e13 1.45288
\(900\) −3.67881e11 −0.0186903
\(901\) 6.46362e12 0.326749
\(902\) −2.87047e13 −1.44385
\(903\) 0 0
\(904\) −1.27610e13 −0.635514
\(905\) −8.53483e12 −0.422938
\(906\) 4.68841e13 2.31179
\(907\) 1.89149e13 0.928049 0.464025 0.885822i \(-0.346405\pi\)
0.464025 + 0.885822i \(0.346405\pi\)
\(908\) −6.49162e11 −0.0316932
\(909\) −3.07946e13 −1.49602
\(910\) 0 0
\(911\) −7.67112e12 −0.369000 −0.184500 0.982833i \(-0.559067\pi\)
−0.184500 + 0.982833i \(0.559067\pi\)
\(912\) 3.24186e13 1.55173
\(913\) −1.18277e12 −0.0563353
\(914\) −2.04551e13 −0.969490
\(915\) −1.50855e13 −0.711481
\(916\) 1.58348e12 0.0743159
\(917\) 0 0
\(918\) −2.58572e12 −0.120168
\(919\) −3.52484e13 −1.63012 −0.815060 0.579377i \(-0.803296\pi\)
−0.815060 + 0.579377i \(0.803296\pi\)
\(920\) −9.54624e12 −0.439326
\(921\) 2.11217e13 0.967300
\(922\) 3.91091e13 1.78233
\(923\) 2.88046e13 1.30633
\(924\) 0 0
\(925\) 3.56149e12 0.159954
\(926\) −3.06773e13 −1.37109
\(927\) 3.07698e13 1.36857
\(928\) −5.53664e12 −0.245065
\(929\) 3.48477e13 1.53498 0.767492 0.641059i \(-0.221505\pi\)
0.767492 + 0.641059i \(0.221505\pi\)
\(930\) −1.71939e13 −0.753703
\(931\) 0 0
\(932\) 2.04501e12 0.0887816
\(933\) 7.37790e12 0.318761
\(934\) −9.25776e12 −0.398057
\(935\) 9.82666e12 0.420488
\(936\) 2.95929e13 1.26022
\(937\) −2.95277e13 −1.25142 −0.625709 0.780057i \(-0.715190\pi\)
−0.625709 + 0.780057i \(0.715190\pi\)
\(938\) 0 0
\(939\) 1.98021e13 0.831222
\(940\) −1.96262e12 −0.0819901
\(941\) 2.62047e12 0.108950 0.0544748 0.998515i \(-0.482652\pi\)
0.0544748 + 0.998515i \(0.482652\pi\)
\(942\) 6.31064e11 0.0261122
\(943\) −2.12007e13 −0.873067
\(944\) 1.66967e13 0.684314
\(945\) 0 0
\(946\) 2.03424e13 0.825832
\(947\) −1.38273e12 −0.0558680 −0.0279340 0.999610i \(-0.508893\pi\)
−0.0279340 + 0.999610i \(0.508893\pi\)
\(948\) 2.48191e12 0.0998041
\(949\) 3.29520e13 1.31881
\(950\) −6.18980e12 −0.246559
\(951\) 5.34027e13 2.11715
\(952\) 0 0
\(953\) 1.17712e12 0.0462278 0.0231139 0.999733i \(-0.492642\pi\)
0.0231139 + 0.999733i \(0.492642\pi\)
\(954\) −1.15145e13 −0.450066
\(955\) −3.47374e12 −0.135140
\(956\) −3.69181e12 −0.142948
\(957\) 6.36518e13 2.45305
\(958\) −3.11193e12 −0.119367
\(959\) 0 0
\(960\) 1.73060e13 0.657622
\(961\) 1.96331e13 0.742564
\(962\) −2.88268e13 −1.08520
\(963\) 1.78263e13 0.667947
\(964\) −3.32104e12 −0.123859
\(965\) 7.69588e12 0.285684
\(966\) 0 0
\(967\) 4.43188e13 1.62993 0.814965 0.579510i \(-0.196756\pi\)
0.814965 + 0.579510i \(0.196756\pi\)
\(968\) 4.88521e13 1.78831
\(969\) −2.77962e13 −1.01281
\(970\) −9.04061e12 −0.327888
\(971\) −1.26267e13 −0.455832 −0.227916 0.973681i \(-0.573191\pi\)
−0.227916 + 0.973681i \(0.573191\pi\)
\(972\) −4.10346e12 −0.147452
\(973\) 0 0
\(974\) −1.79455e13 −0.638912
\(975\) −1.10081e13 −0.390115
\(976\) 2.91493e13 1.02826
\(977\) −1.82582e13 −0.641110 −0.320555 0.947230i \(-0.603869\pi\)
−0.320555 + 0.947230i \(0.603869\pi\)
\(978\) −4.52373e13 −1.58115
\(979\) −3.57558e13 −1.24401
\(980\) 0 0
\(981\) −1.86714e13 −0.643674
\(982\) 1.99518e13 0.684670
\(983\) −2.13278e13 −0.728542 −0.364271 0.931293i \(-0.618682\pi\)
−0.364271 + 0.931293i \(0.618682\pi\)
\(984\) 3.88771e13 1.32195
\(985\) −3.98468e12 −0.134875
\(986\) −1.75929e13 −0.592778
\(987\) 0 0
\(988\) −6.31115e12 −0.210718
\(989\) 1.50245e13 0.499363
\(990\) −1.75055e13 −0.579182
\(991\) 3.39103e13 1.11686 0.558431 0.829551i \(-0.311404\pi\)
0.558431 + 0.829551i \(0.311404\pi\)
\(992\) −8.96484e12 −0.293927
\(993\) 7.42060e13 2.42196
\(994\) 0 0
\(995\) 2.67925e12 0.0866583
\(996\) 1.61185e11 0.00518988
\(997\) 2.14211e13 0.686616 0.343308 0.939223i \(-0.388453\pi\)
0.343308 + 0.939223i \(0.388453\pi\)
\(998\) 6.19584e12 0.197703
\(999\) 5.61748e12 0.178442
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.l.1.4 13
7.3 odd 6 35.10.e.b.16.10 yes 26
7.5 odd 6 35.10.e.b.11.10 26
7.6 odd 2 245.10.a.m.1.4 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.e.b.11.10 26 7.5 odd 6
35.10.e.b.16.10 yes 26 7.3 odd 6
245.10.a.l.1.4 13 1.1 even 1 trivial
245.10.a.m.1.4 13 7.6 odd 2