Properties

Label 245.10.a.n.1.10
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 6671 x^{16} + 28472 x^{15} + 18323094 x^{14} - 49525664 x^{13} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4}\cdot 5^{4}\cdot 7^{16} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(0.00962792\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.40459 q^{2} -144.425 q^{3} -482.790 q^{4} -625.000 q^{5} -780.557 q^{6} -5376.43 q^{8} +1175.54 q^{9} -3377.87 q^{10} -212.237 q^{11} +69727.0 q^{12} -175838. q^{13} +90265.5 q^{15} +218131. q^{16} -66313.9 q^{17} +6353.33 q^{18} +462571. q^{19} +301744. q^{20} -1147.05 q^{22} -27111.1 q^{23} +776490. q^{24} +390625. q^{25} -950330. q^{26} +2.67294e6 q^{27} -1.61946e6 q^{29} +487848. q^{30} +1.01955e6 q^{31} +3.93164e6 q^{32} +30652.3 q^{33} -358399. q^{34} -567542. q^{36} +1.69762e6 q^{37} +2.50000e6 q^{38} +2.53953e7 q^{39} +3.36027e6 q^{40} +502301. q^{41} +1.77723e7 q^{43} +102466. q^{44} -734716. q^{45} -146525. q^{46} +2.60269e7 q^{47} -3.15036e7 q^{48} +2.11117e6 q^{50} +9.57737e6 q^{51} +8.48927e7 q^{52} +7.85456e7 q^{53} +1.44461e7 q^{54} +132648. q^{55} -6.68067e7 q^{57} -8.75253e6 q^{58} +8.18513e7 q^{59} -4.35793e7 q^{60} -1.85662e8 q^{61} +5.51024e6 q^{62} -9.04343e7 q^{64} +1.09899e8 q^{65} +165663. q^{66} +2.72523e8 q^{67} +3.20157e7 q^{68} +3.91552e6 q^{69} +7.23098e7 q^{71} -6.32023e6 q^{72} +1.11403e8 q^{73} +9.17494e6 q^{74} -5.64160e7 q^{75} -2.23325e8 q^{76} +1.37251e8 q^{78} +3.48824e8 q^{79} -1.36332e8 q^{80} -4.09177e8 q^{81} +2.71473e6 q^{82} -4.04010e8 q^{83} +4.14462e7 q^{85} +9.60519e7 q^{86} +2.33891e8 q^{87} +1.14108e6 q^{88} +8.69802e7 q^{89} -3.97083e6 q^{90} +1.30890e7 q^{92} -1.47248e8 q^{93} +1.40664e8 q^{94} -2.89107e8 q^{95} -5.67827e8 q^{96} -1.04518e9 q^{97} -249494. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 66 q^{2} - 112 q^{3} + 4438 q^{4} - 11250 q^{5} - 5184 q^{6} + 58542 q^{8} + 117250 q^{9} - 41250 q^{10} - 50448 q^{11} + 51200 q^{12} - 265416 q^{13} + 70000 q^{15} + 275354 q^{16} - 742108 q^{17}+ \cdots - 3327698948 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.40459 0.238851 0.119426 0.992843i \(-0.461895\pi\)
0.119426 + 0.992843i \(0.461895\pi\)
\(3\) −144.425 −1.02943 −0.514714 0.857362i \(-0.672102\pi\)
−0.514714 + 0.857362i \(0.672102\pi\)
\(4\) −482.790 −0.942950
\(5\) −625.000 −0.447214
\(6\) −780.557 −0.245880
\(7\) 0 0
\(8\) −5376.43 −0.464076
\(9\) 1175.54 0.0597239
\(10\) −3377.87 −0.106818
\(11\) −212.237 −0.00437073 −0.00218536 0.999998i \(-0.500696\pi\)
−0.00218536 + 0.999998i \(0.500696\pi\)
\(12\) 69727.0 0.970700
\(13\) −175838. −1.70752 −0.853762 0.520663i \(-0.825685\pi\)
−0.853762 + 0.520663i \(0.825685\pi\)
\(14\) 0 0
\(15\) 90265.5 0.460375
\(16\) 218131. 0.832105
\(17\) −66313.9 −0.192568 −0.0962840 0.995354i \(-0.530696\pi\)
−0.0962840 + 0.995354i \(0.530696\pi\)
\(18\) 6353.33 0.0142651
\(19\) 462571. 0.814305 0.407152 0.913360i \(-0.366522\pi\)
0.407152 + 0.913360i \(0.366522\pi\)
\(20\) 301744. 0.421700
\(21\) 0 0
\(22\) −1147.05 −0.00104395
\(23\) −27111.1 −0.0202010 −0.0101005 0.999949i \(-0.503215\pi\)
−0.0101005 + 0.999949i \(0.503215\pi\)
\(24\) 776490. 0.477733
\(25\) 390625. 0.200000
\(26\) −950330. −0.407844
\(27\) 2.67294e6 0.967947
\(28\) 0 0
\(29\) −1.61946e6 −0.425187 −0.212594 0.977141i \(-0.568191\pi\)
−0.212594 + 0.977141i \(0.568191\pi\)
\(30\) 487848. 0.109961
\(31\) 1.01955e6 0.198281 0.0991404 0.995073i \(-0.468391\pi\)
0.0991404 + 0.995073i \(0.468391\pi\)
\(32\) 3.93164e6 0.662825
\(33\) 30652.3 0.00449936
\(34\) −358399. −0.0459951
\(35\) 0 0
\(36\) −567542. −0.0563166
\(37\) 1.69762e6 0.148913 0.0744566 0.997224i \(-0.476278\pi\)
0.0744566 + 0.997224i \(0.476278\pi\)
\(38\) 2.50000e6 0.194498
\(39\) 2.53953e7 1.75777
\(40\) 3.36027e6 0.207541
\(41\) 502301. 0.0277611 0.0138806 0.999904i \(-0.495582\pi\)
0.0138806 + 0.999904i \(0.495582\pi\)
\(42\) 0 0
\(43\) 1.77723e7 0.792748 0.396374 0.918089i \(-0.370268\pi\)
0.396374 + 0.918089i \(0.370268\pi\)
\(44\) 102466. 0.00412138
\(45\) −734716. −0.0267093
\(46\) −146525. −0.00482503
\(47\) 2.60269e7 0.778003 0.389002 0.921237i \(-0.372820\pi\)
0.389002 + 0.921237i \(0.372820\pi\)
\(48\) −3.15036e7 −0.856593
\(49\) 0 0
\(50\) 2.11117e6 0.0477702
\(51\) 9.57737e6 0.198235
\(52\) 8.48927e7 1.61011
\(53\) 7.85456e7 1.36735 0.683676 0.729786i \(-0.260380\pi\)
0.683676 + 0.729786i \(0.260380\pi\)
\(54\) 1.44461e7 0.231195
\(55\) 132648. 0.00195465
\(56\) 0 0
\(57\) −6.68067e7 −0.838269
\(58\) −8.75253e6 −0.101556
\(59\) 8.18513e7 0.879410 0.439705 0.898142i \(-0.355083\pi\)
0.439705 + 0.898142i \(0.355083\pi\)
\(60\) −4.35793e7 −0.434110
\(61\) −1.85662e8 −1.71688 −0.858440 0.512914i \(-0.828566\pi\)
−0.858440 + 0.512914i \(0.828566\pi\)
\(62\) 5.51024e6 0.0473596
\(63\) 0 0
\(64\) −9.04343e7 −0.673788
\(65\) 1.09899e8 0.763628
\(66\) 165663. 0.00107468
\(67\) 2.72523e8 1.65222 0.826109 0.563511i \(-0.190550\pi\)
0.826109 + 0.563511i \(0.190550\pi\)
\(68\) 3.20157e7 0.181582
\(69\) 3.91552e6 0.0207955
\(70\) 0 0
\(71\) 7.23098e7 0.337703 0.168851 0.985642i \(-0.445994\pi\)
0.168851 + 0.985642i \(0.445994\pi\)
\(72\) −6.32023e6 −0.0277164
\(73\) 1.11403e8 0.459138 0.229569 0.973292i \(-0.426268\pi\)
0.229569 + 0.973292i \(0.426268\pi\)
\(74\) 9.17494e6 0.0355681
\(75\) −5.64160e7 −0.205886
\(76\) −2.23325e8 −0.767849
\(77\) 0 0
\(78\) 1.37251e8 0.419847
\(79\) 3.48824e8 1.00759 0.503796 0.863823i \(-0.331936\pi\)
0.503796 + 0.863823i \(0.331936\pi\)
\(80\) −1.36332e8 −0.372129
\(81\) −4.09177e8 −1.05616
\(82\) 2.71473e6 0.00663078
\(83\) −4.04010e8 −0.934417 −0.467209 0.884147i \(-0.654740\pi\)
−0.467209 + 0.884147i \(0.654740\pi\)
\(84\) 0 0
\(85\) 4.14462e7 0.0861190
\(86\) 9.60519e7 0.189349
\(87\) 2.33891e8 0.437700
\(88\) 1.14108e6 0.00202835
\(89\) 8.69802e7 0.146949 0.0734743 0.997297i \(-0.476591\pi\)
0.0734743 + 0.997297i \(0.476591\pi\)
\(90\) −3.97083e6 −0.00637955
\(91\) 0 0
\(92\) 1.30890e7 0.0190485
\(93\) −1.47248e8 −0.204116
\(94\) 1.40664e8 0.185827
\(95\) −2.89107e8 −0.364168
\(96\) −5.67827e8 −0.682331
\(97\) −1.04518e9 −1.19873 −0.599363 0.800477i \(-0.704579\pi\)
−0.599363 + 0.800477i \(0.704579\pi\)
\(98\) 0 0
\(99\) −249494. −0.000261037 0
\(100\) −1.88590e8 −0.188590
\(101\) −1.57858e9 −1.50946 −0.754729 0.656036i \(-0.772232\pi\)
−0.754729 + 0.656036i \(0.772232\pi\)
\(102\) 5.17617e7 0.0473487
\(103\) −1.42282e9 −1.24561 −0.622806 0.782376i \(-0.714007\pi\)
−0.622806 + 0.782376i \(0.714007\pi\)
\(104\) 9.45379e8 0.792421
\(105\) 0 0
\(106\) 4.24506e8 0.326594
\(107\) −8.91273e8 −0.657331 −0.328665 0.944446i \(-0.606599\pi\)
−0.328665 + 0.944446i \(0.606599\pi\)
\(108\) −1.29047e9 −0.912726
\(109\) 5.97559e8 0.405473 0.202736 0.979233i \(-0.435017\pi\)
0.202736 + 0.979233i \(0.435017\pi\)
\(110\) 716908. 0.000466870 0
\(111\) −2.45179e8 −0.153296
\(112\) 0 0
\(113\) 5.05926e7 0.0291900 0.0145950 0.999893i \(-0.495354\pi\)
0.0145950 + 0.999893i \(0.495354\pi\)
\(114\) −3.61063e8 −0.200222
\(115\) 1.69445e7 0.00903416
\(116\) 7.81861e8 0.400930
\(117\) −2.06705e8 −0.101980
\(118\) 4.42372e8 0.210048
\(119\) 0 0
\(120\) −4.85306e8 −0.213649
\(121\) −2.35790e9 −0.999981
\(122\) −1.00343e9 −0.410079
\(123\) −7.25448e7 −0.0285781
\(124\) −4.92229e8 −0.186969
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) 2.09981e9 0.716249 0.358124 0.933674i \(-0.383416\pi\)
0.358124 + 0.933674i \(0.383416\pi\)
\(128\) −2.50176e9 −0.823760
\(129\) −2.56676e9 −0.816078
\(130\) 5.93956e8 0.182393
\(131\) 5.52459e9 1.63900 0.819500 0.573079i \(-0.194251\pi\)
0.819500 + 0.573079i \(0.194251\pi\)
\(132\) −1.47986e7 −0.00424267
\(133\) 0 0
\(134\) 1.47288e9 0.394634
\(135\) −1.67059e9 −0.432879
\(136\) 3.56532e8 0.0893662
\(137\) −2.23235e9 −0.541403 −0.270701 0.962663i \(-0.587256\pi\)
−0.270701 + 0.962663i \(0.587256\pi\)
\(138\) 2.11618e7 0.00496703
\(139\) −5.15166e9 −1.17052 −0.585262 0.810844i \(-0.699008\pi\)
−0.585262 + 0.810844i \(0.699008\pi\)
\(140\) 0 0
\(141\) −3.75893e9 −0.800899
\(142\) 3.90805e8 0.0806607
\(143\) 3.73192e7 0.00746313
\(144\) 2.56423e8 0.0496965
\(145\) 1.01216e9 0.190149
\(146\) 6.02086e8 0.109666
\(147\) 0 0
\(148\) −8.19595e8 −0.140418
\(149\) −9.71613e9 −1.61494 −0.807468 0.589912i \(-0.799163\pi\)
−0.807468 + 0.589912i \(0.799163\pi\)
\(150\) −3.04905e8 −0.0491761
\(151\) 1.07099e10 1.67645 0.838225 0.545325i \(-0.183594\pi\)
0.838225 + 0.545325i \(0.183594\pi\)
\(152\) −2.48698e9 −0.377899
\(153\) −7.79549e7 −0.0115009
\(154\) 0 0
\(155\) −6.37218e8 −0.0886739
\(156\) −1.22606e10 −1.65749
\(157\) 5.89468e9 0.774305 0.387152 0.922016i \(-0.373459\pi\)
0.387152 + 0.922016i \(0.373459\pi\)
\(158\) 1.88525e9 0.240664
\(159\) −1.13439e10 −1.40759
\(160\) −2.45728e9 −0.296424
\(161\) 0 0
\(162\) −2.21143e9 −0.252264
\(163\) 5.42581e8 0.0602034 0.0301017 0.999547i \(-0.490417\pi\)
0.0301017 + 0.999547i \(0.490417\pi\)
\(164\) −2.42506e8 −0.0261774
\(165\) −1.91577e7 −0.00201217
\(166\) −2.18351e9 −0.223187
\(167\) −1.64113e10 −1.63275 −0.816373 0.577525i \(-0.804019\pi\)
−0.816373 + 0.577525i \(0.804019\pi\)
\(168\) 0 0
\(169\) 2.03144e10 1.91564
\(170\) 2.23999e8 0.0205696
\(171\) 5.43773e8 0.0486334
\(172\) −8.58029e9 −0.747522
\(173\) −1.63721e9 −0.138962 −0.0694809 0.997583i \(-0.522134\pi\)
−0.0694809 + 0.997583i \(0.522134\pi\)
\(174\) 1.26408e9 0.104545
\(175\) 0 0
\(176\) −4.62955e7 −0.00363691
\(177\) −1.18214e10 −0.905290
\(178\) 4.70092e8 0.0350988
\(179\) 2.16058e10 1.57301 0.786506 0.617583i \(-0.211888\pi\)
0.786506 + 0.617583i \(0.211888\pi\)
\(180\) 3.54714e8 0.0251856
\(181\) −1.49930e10 −1.03833 −0.519163 0.854675i \(-0.673756\pi\)
−0.519163 + 0.854675i \(0.673756\pi\)
\(182\) 0 0
\(183\) 2.68143e10 1.76741
\(184\) 1.45761e8 0.00937479
\(185\) −1.06101e9 −0.0665960
\(186\) −7.95816e8 −0.0487533
\(187\) 1.40743e7 0.000841663 0
\(188\) −1.25655e10 −0.733618
\(189\) 0 0
\(190\) −1.56250e9 −0.0869820
\(191\) 1.53348e10 0.833734 0.416867 0.908967i \(-0.363128\pi\)
0.416867 + 0.908967i \(0.363128\pi\)
\(192\) 1.30610e10 0.693617
\(193\) 1.71662e9 0.0890569 0.0445284 0.999008i \(-0.485821\pi\)
0.0445284 + 0.999008i \(0.485821\pi\)
\(194\) −5.64879e9 −0.286317
\(195\) −1.58721e10 −0.786101
\(196\) 0 0
\(197\) 1.68528e10 0.797215 0.398607 0.917122i \(-0.369494\pi\)
0.398607 + 0.917122i \(0.369494\pi\)
\(198\) −1.34841e6 −6.23490e−5 0
\(199\) 1.92812e9 0.0871558 0.0435779 0.999050i \(-0.486124\pi\)
0.0435779 + 0.999050i \(0.486124\pi\)
\(200\) −2.10017e9 −0.0928152
\(201\) −3.93592e10 −1.70084
\(202\) −8.53159e9 −0.360536
\(203\) 0 0
\(204\) −4.62386e9 −0.186926
\(205\) −3.13938e8 −0.0124152
\(206\) −7.68976e9 −0.297516
\(207\) −3.18704e7 −0.00120648
\(208\) −3.83557e10 −1.42084
\(209\) −9.81746e7 −0.00355911
\(210\) 0 0
\(211\) 8.00175e9 0.277916 0.138958 0.990298i \(-0.455625\pi\)
0.138958 + 0.990298i \(0.455625\pi\)
\(212\) −3.79211e10 −1.28934
\(213\) −1.04433e10 −0.347641
\(214\) −4.81696e9 −0.157004
\(215\) −1.11077e10 −0.354528
\(216\) −1.43709e10 −0.449201
\(217\) 0 0
\(218\) 3.22956e9 0.0968477
\(219\) −1.60893e10 −0.472650
\(220\) −6.40412e7 −0.00184314
\(221\) 1.16605e10 0.328815
\(222\) −1.32509e9 −0.0366148
\(223\) 4.99695e9 0.135311 0.0676554 0.997709i \(-0.478448\pi\)
0.0676554 + 0.997709i \(0.478448\pi\)
\(224\) 0 0
\(225\) 4.59197e8 0.0119448
\(226\) 2.73432e8 0.00697206
\(227\) 4.53936e10 1.13469 0.567346 0.823480i \(-0.307970\pi\)
0.567346 + 0.823480i \(0.307970\pi\)
\(228\) 3.22536e10 0.790446
\(229\) 9.09334e9 0.218506 0.109253 0.994014i \(-0.465154\pi\)
0.109253 + 0.994014i \(0.465154\pi\)
\(230\) 9.15778e7 0.00215782
\(231\) 0 0
\(232\) 8.70693e9 0.197319
\(233\) −4.15098e10 −0.922675 −0.461338 0.887225i \(-0.652630\pi\)
−0.461338 + 0.887225i \(0.652630\pi\)
\(234\) −1.11716e9 −0.0243580
\(235\) −1.62668e10 −0.347934
\(236\) −3.95170e10 −0.829240
\(237\) −5.03789e10 −1.03724
\(238\) 0 0
\(239\) 6.96132e10 1.38007 0.690035 0.723776i \(-0.257595\pi\)
0.690035 + 0.723776i \(0.257595\pi\)
\(240\) 1.96897e10 0.383080
\(241\) −8.75274e10 −1.67135 −0.835675 0.549224i \(-0.814923\pi\)
−0.835675 + 0.549224i \(0.814923\pi\)
\(242\) −1.27435e10 −0.238847
\(243\) 6.48390e9 0.119291
\(244\) 8.96361e10 1.61893
\(245\) 0 0
\(246\) −3.92075e8 −0.00682591
\(247\) −8.13374e10 −1.39044
\(248\) −5.48154e9 −0.0920173
\(249\) 5.83491e10 0.961916
\(250\) −1.31948e9 −0.0213635
\(251\) −9.14565e10 −1.45440 −0.727198 0.686428i \(-0.759178\pi\)
−0.727198 + 0.686428i \(0.759178\pi\)
\(252\) 0 0
\(253\) 5.75399e6 8.82931e−5 0
\(254\) 1.13486e10 0.171077
\(255\) −5.98586e9 −0.0886534
\(256\) 3.27814e10 0.477032
\(257\) 1.24795e11 1.78442 0.892209 0.451623i \(-0.149155\pi\)
0.892209 + 0.451623i \(0.149155\pi\)
\(258\) −1.38723e10 −0.194921
\(259\) 0 0
\(260\) −5.30580e10 −0.720063
\(261\) −1.90375e9 −0.0253938
\(262\) 2.98581e10 0.391477
\(263\) 4.16951e10 0.537384 0.268692 0.963226i \(-0.413409\pi\)
0.268692 + 0.963226i \(0.413409\pi\)
\(264\) −1.64800e8 −0.00208804
\(265\) −4.90910e10 −0.611498
\(266\) 0 0
\(267\) −1.25621e10 −0.151273
\(268\) −1.31572e11 −1.55796
\(269\) −9.09454e10 −1.05900 −0.529499 0.848310i \(-0.677620\pi\)
−0.529499 + 0.848310i \(0.677620\pi\)
\(270\) −9.02882e9 −0.103394
\(271\) 6.77697e10 0.763262 0.381631 0.924315i \(-0.375362\pi\)
0.381631 + 0.924315i \(0.375362\pi\)
\(272\) −1.44651e10 −0.160237
\(273\) 0 0
\(274\) −1.20649e10 −0.129315
\(275\) −8.29051e7 −0.000874146 0
\(276\) −1.89038e9 −0.0196091
\(277\) −1.87907e11 −1.91771 −0.958856 0.283894i \(-0.908373\pi\)
−0.958856 + 0.283894i \(0.908373\pi\)
\(278\) −2.78426e10 −0.279581
\(279\) 1.19853e9 0.0118421
\(280\) 0 0
\(281\) −1.60407e11 −1.53478 −0.767389 0.641181i \(-0.778445\pi\)
−0.767389 + 0.641181i \(0.778445\pi\)
\(282\) −2.03154e10 −0.191296
\(283\) 2.58420e10 0.239490 0.119745 0.992805i \(-0.461792\pi\)
0.119745 + 0.992805i \(0.461792\pi\)
\(284\) −3.49105e10 −0.318437
\(285\) 4.17542e10 0.374885
\(286\) 2.01695e8 0.00178258
\(287\) 0 0
\(288\) 4.62182e9 0.0395865
\(289\) −1.14190e11 −0.962918
\(290\) 5.47033e9 0.0454174
\(291\) 1.50951e11 1.23400
\(292\) −5.37842e10 −0.432944
\(293\) 1.10643e11 0.877040 0.438520 0.898721i \(-0.355503\pi\)
0.438520 + 0.898721i \(0.355503\pi\)
\(294\) 0 0
\(295\) −5.11570e10 −0.393284
\(296\) −9.12714e9 −0.0691070
\(297\) −5.67296e8 −0.00423064
\(298\) −5.25117e10 −0.385729
\(299\) 4.76716e9 0.0344937
\(300\) 2.72371e10 0.194140
\(301\) 0 0
\(302\) 5.78827e10 0.400422
\(303\) 2.27987e11 1.55388
\(304\) 1.00901e11 0.677587
\(305\) 1.16039e11 0.767812
\(306\) −4.21314e8 −0.00274701
\(307\) 1.08905e11 0.699722 0.349861 0.936802i \(-0.386229\pi\)
0.349861 + 0.936802i \(0.386229\pi\)
\(308\) 0 0
\(309\) 2.05491e11 1.28227
\(310\) −3.44390e9 −0.0211799
\(311\) −1.97229e11 −1.19550 −0.597749 0.801683i \(-0.703938\pi\)
−0.597749 + 0.801683i \(0.703938\pi\)
\(312\) −1.36536e11 −0.815741
\(313\) 7.57585e10 0.446151 0.223076 0.974801i \(-0.428390\pi\)
0.223076 + 0.974801i \(0.428390\pi\)
\(314\) 3.18583e10 0.184944
\(315\) 0 0
\(316\) −1.68409e11 −0.950108
\(317\) 1.87336e11 1.04197 0.520984 0.853566i \(-0.325565\pi\)
0.520984 + 0.853566i \(0.325565\pi\)
\(318\) −6.13093e10 −0.336205
\(319\) 3.43710e8 0.00185838
\(320\) 5.65215e10 0.301327
\(321\) 1.28722e11 0.676675
\(322\) 0 0
\(323\) −3.06749e10 −0.156809
\(324\) 1.97547e11 0.995903
\(325\) −6.86866e10 −0.341505
\(326\) 2.93243e9 0.0143796
\(327\) −8.63024e10 −0.417406
\(328\) −2.70059e9 −0.0128833
\(329\) 0 0
\(330\) −1.03539e8 −0.000480610 0
\(331\) 2.31201e11 1.05868 0.529340 0.848410i \(-0.322440\pi\)
0.529340 + 0.848410i \(0.322440\pi\)
\(332\) 1.95052e11 0.881109
\(333\) 1.99563e9 0.00889367
\(334\) −8.86963e10 −0.389983
\(335\) −1.70327e11 −0.738894
\(336\) 0 0
\(337\) 2.37206e11 1.00182 0.500911 0.865499i \(-0.332998\pi\)
0.500911 + 0.865499i \(0.332998\pi\)
\(338\) 1.09791e11 0.457552
\(339\) −7.30682e9 −0.0300490
\(340\) −2.00098e10 −0.0812060
\(341\) −2.16386e8 −0.000866632 0
\(342\) 2.93887e9 0.0116162
\(343\) 0 0
\(344\) −9.55515e10 −0.367895
\(345\) −2.44720e9 −0.00930002
\(346\) −8.84842e9 −0.0331912
\(347\) −2.06749e11 −0.765527 −0.382763 0.923846i \(-0.625028\pi\)
−0.382763 + 0.923846i \(0.625028\pi\)
\(348\) −1.12920e11 −0.412729
\(349\) 3.78449e10 0.136550 0.0682752 0.997667i \(-0.478250\pi\)
0.0682752 + 0.997667i \(0.478250\pi\)
\(350\) 0 0
\(351\) −4.70003e11 −1.65279
\(352\) −8.34440e8 −0.00289703
\(353\) 2.35080e11 0.805804 0.402902 0.915243i \(-0.368002\pi\)
0.402902 + 0.915243i \(0.368002\pi\)
\(354\) −6.38895e10 −0.216230
\(355\) −4.51936e10 −0.151025
\(356\) −4.19932e10 −0.138565
\(357\) 0 0
\(358\) 1.16770e11 0.375716
\(359\) 2.05933e11 0.654336 0.327168 0.944966i \(-0.393906\pi\)
0.327168 + 0.944966i \(0.393906\pi\)
\(360\) 3.95015e9 0.0123952
\(361\) −1.08716e11 −0.336908
\(362\) −8.10307e10 −0.248005
\(363\) 3.40540e11 1.02941
\(364\) 0 0
\(365\) −6.96267e10 −0.205333
\(366\) 1.44920e11 0.422147
\(367\) 5.67758e11 1.63368 0.816838 0.576868i \(-0.195725\pi\)
0.816838 + 0.576868i \(0.195725\pi\)
\(368\) −5.91379e9 −0.0168093
\(369\) 5.90478e8 0.00165800
\(370\) −5.73434e9 −0.0159065
\(371\) 0 0
\(372\) 7.10901e10 0.192471
\(373\) 4.13421e11 1.10587 0.552933 0.833226i \(-0.313509\pi\)
0.552933 + 0.833226i \(0.313509\pi\)
\(374\) 7.60655e7 0.000201032 0
\(375\) 3.52600e10 0.0920749
\(376\) −1.39932e11 −0.361053
\(377\) 2.84763e11 0.726017
\(378\) 0 0
\(379\) 2.48740e11 0.619255 0.309627 0.950858i \(-0.399796\pi\)
0.309627 + 0.950858i \(0.399796\pi\)
\(380\) 1.39578e11 0.343392
\(381\) −3.03265e11 −0.737327
\(382\) 8.28782e10 0.199138
\(383\) 3.56848e11 0.847399 0.423700 0.905803i \(-0.360731\pi\)
0.423700 + 0.905803i \(0.360731\pi\)
\(384\) 3.61316e11 0.848003
\(385\) 0 0
\(386\) 9.27764e9 0.0212713
\(387\) 2.08921e10 0.0473460
\(388\) 5.04605e11 1.13034
\(389\) −1.54494e11 −0.342089 −0.171045 0.985263i \(-0.554714\pi\)
−0.171045 + 0.985263i \(0.554714\pi\)
\(390\) −8.57820e10 −0.187761
\(391\) 1.79784e9 0.00389006
\(392\) 0 0
\(393\) −7.97888e11 −1.68723
\(394\) 9.10826e10 0.190416
\(395\) −2.18015e11 −0.450609
\(396\) 1.20453e8 0.000246145 0
\(397\) 6.14418e11 1.24139 0.620693 0.784054i \(-0.286851\pi\)
0.620693 + 0.784054i \(0.286851\pi\)
\(398\) 1.04207e10 0.0208173
\(399\) 0 0
\(400\) 8.52076e10 0.166421
\(401\) 4.70986e11 0.909616 0.454808 0.890589i \(-0.349708\pi\)
0.454808 + 0.890589i \(0.349708\pi\)
\(402\) −2.12720e11 −0.406248
\(403\) −1.79275e11 −0.338569
\(404\) 7.62125e11 1.42334
\(405\) 2.55736e11 0.472328
\(406\) 0 0
\(407\) −3.60298e8 −0.000650859 0
\(408\) −5.14921e10 −0.0919961
\(409\) 9.40676e11 1.66221 0.831103 0.556118i \(-0.187710\pi\)
0.831103 + 0.556118i \(0.187710\pi\)
\(410\) −1.69671e9 −0.00296537
\(411\) 3.22407e11 0.557336
\(412\) 6.86925e11 1.17455
\(413\) 0 0
\(414\) −1.72246e8 −0.000288169 0
\(415\) 2.52506e11 0.417884
\(416\) −6.91331e11 −1.13179
\(417\) 7.44028e11 1.20497
\(418\) −5.30593e8 −0.000850097 0
\(419\) −4.87630e11 −0.772907 −0.386453 0.922309i \(-0.626300\pi\)
−0.386453 + 0.922309i \(0.626300\pi\)
\(420\) 0 0
\(421\) −3.86173e11 −0.599118 −0.299559 0.954078i \(-0.596840\pi\)
−0.299559 + 0.954078i \(0.596840\pi\)
\(422\) 4.32461e10 0.0663806
\(423\) 3.05957e10 0.0464654
\(424\) −4.22295e11 −0.634555
\(425\) −2.59039e10 −0.0385136
\(426\) −5.64419e10 −0.0830345
\(427\) 0 0
\(428\) 4.30298e11 0.619830
\(429\) −5.38983e9 −0.00768276
\(430\) −6.00324e10 −0.0846794
\(431\) −7.19033e11 −1.00369 −0.501847 0.864957i \(-0.667346\pi\)
−0.501847 + 0.864957i \(0.667346\pi\)
\(432\) 5.83051e11 0.805434
\(433\) −2.33884e11 −0.319746 −0.159873 0.987138i \(-0.551109\pi\)
−0.159873 + 0.987138i \(0.551109\pi\)
\(434\) 0 0
\(435\) −1.46182e11 −0.195745
\(436\) −2.88496e11 −0.382341
\(437\) −1.25408e10 −0.0164498
\(438\) −8.69562e10 −0.112893
\(439\) 1.29065e12 1.65851 0.829254 0.558872i \(-0.188766\pi\)
0.829254 + 0.558872i \(0.188766\pi\)
\(440\) −7.13173e8 −0.000907106 0
\(441\) 0 0
\(442\) 6.30200e10 0.0785377
\(443\) −9.64626e11 −1.18999 −0.594994 0.803730i \(-0.702845\pi\)
−0.594994 + 0.803730i \(0.702845\pi\)
\(444\) 1.18370e11 0.144550
\(445\) −5.43626e10 −0.0657174
\(446\) 2.70064e10 0.0323192
\(447\) 1.40325e12 1.66246
\(448\) 0 0
\(449\) −1.25561e12 −1.45796 −0.728978 0.684537i \(-0.760005\pi\)
−0.728978 + 0.684537i \(0.760005\pi\)
\(450\) 2.48177e9 0.00285302
\(451\) −1.06607e8 −0.000121336 0
\(452\) −2.44256e10 −0.0275247
\(453\) −1.54678e12 −1.72579
\(454\) 2.45333e11 0.271022
\(455\) 0 0
\(456\) 3.59182e11 0.389020
\(457\) −4.67060e11 −0.500898 −0.250449 0.968130i \(-0.580578\pi\)
−0.250449 + 0.968130i \(0.580578\pi\)
\(458\) 4.91458e10 0.0521905
\(459\) −1.77253e11 −0.186396
\(460\) −8.18063e9 −0.00851876
\(461\) 1.84971e11 0.190744 0.0953718 0.995442i \(-0.469596\pi\)
0.0953718 + 0.995442i \(0.469596\pi\)
\(462\) 0 0
\(463\) −2.46173e11 −0.248958 −0.124479 0.992222i \(-0.539726\pi\)
−0.124479 + 0.992222i \(0.539726\pi\)
\(464\) −3.53256e11 −0.353800
\(465\) 9.20302e10 0.0912834
\(466\) −2.24343e11 −0.220382
\(467\) −7.93271e11 −0.771784 −0.385892 0.922544i \(-0.626106\pi\)
−0.385892 + 0.922544i \(0.626106\pi\)
\(468\) 9.97952e10 0.0961620
\(469\) 0 0
\(470\) −8.79153e10 −0.0831044
\(471\) −8.51339e11 −0.797092
\(472\) −4.40068e11 −0.408113
\(473\) −3.77194e9 −0.00346489
\(474\) −2.72277e11 −0.247747
\(475\) 1.80692e11 0.162861
\(476\) 0 0
\(477\) 9.23339e10 0.0816636
\(478\) 3.76231e11 0.329631
\(479\) −1.94824e12 −1.69095 −0.845477 0.534012i \(-0.820684\pi\)
−0.845477 + 0.534012i \(0.820684\pi\)
\(480\) 3.54892e11 0.305148
\(481\) −2.98506e11 −0.254273
\(482\) −4.73049e11 −0.399204
\(483\) 0 0
\(484\) 1.13837e12 0.942932
\(485\) 6.53240e11 0.536087
\(486\) 3.50428e10 0.0284928
\(487\) −5.77223e11 −0.465011 −0.232505 0.972595i \(-0.574692\pi\)
−0.232505 + 0.972595i \(0.574692\pi\)
\(488\) 9.98201e11 0.796763
\(489\) −7.83623e10 −0.0619751
\(490\) 0 0
\(491\) −6.72723e11 −0.522359 −0.261180 0.965290i \(-0.584112\pi\)
−0.261180 + 0.965290i \(0.584112\pi\)
\(492\) 3.50239e10 0.0269477
\(493\) 1.07393e11 0.0818774
\(494\) −4.39595e11 −0.332109
\(495\) 1.55934e8 0.000116739 0
\(496\) 2.22396e11 0.164990
\(497\) 0 0
\(498\) 3.15353e11 0.229755
\(499\) 5.98672e11 0.432251 0.216126 0.976366i \(-0.430658\pi\)
0.216126 + 0.976366i \(0.430658\pi\)
\(500\) 1.17869e11 0.0843400
\(501\) 2.37020e12 1.68080
\(502\) −4.94284e11 −0.347384
\(503\) −1.47666e12 −1.02855 −0.514274 0.857626i \(-0.671939\pi\)
−0.514274 + 0.857626i \(0.671939\pi\)
\(504\) 0 0
\(505\) 9.86614e11 0.675050
\(506\) 3.10979e7 2.10889e−5 0
\(507\) −2.93390e12 −1.97201
\(508\) −1.01377e12 −0.675387
\(509\) −8.53091e11 −0.563333 −0.281666 0.959512i \(-0.590887\pi\)
−0.281666 + 0.959512i \(0.590887\pi\)
\(510\) −3.23511e10 −0.0211750
\(511\) 0 0
\(512\) 1.45807e12 0.937700
\(513\) 1.23642e12 0.788204
\(514\) 6.74463e11 0.426210
\(515\) 8.89263e11 0.557055
\(516\) 1.23921e12 0.769521
\(517\) −5.52386e9 −0.00340044
\(518\) 0 0
\(519\) 2.36453e11 0.143051
\(520\) −5.90862e11 −0.354381
\(521\) 1.21815e12 0.724321 0.362160 0.932116i \(-0.382039\pi\)
0.362160 + 0.932116i \(0.382039\pi\)
\(522\) −1.02890e10 −0.00606534
\(523\) −1.44018e12 −0.841702 −0.420851 0.907130i \(-0.638268\pi\)
−0.420851 + 0.907130i \(0.638268\pi\)
\(524\) −2.66722e12 −1.54550
\(525\) 0 0
\(526\) 2.25345e11 0.128355
\(527\) −6.76102e10 −0.0381825
\(528\) 6.68623e9 0.00374394
\(529\) −1.80042e12 −0.999592
\(530\) −2.65316e11 −0.146057
\(531\) 9.62198e10 0.0525218
\(532\) 0 0
\(533\) −8.83235e10 −0.0474028
\(534\) −6.78930e10 −0.0361318
\(535\) 5.57046e11 0.293967
\(536\) −1.46520e12 −0.766754
\(537\) −3.12042e12 −1.61930
\(538\) −4.91522e11 −0.252943
\(539\) 0 0
\(540\) 8.06543e11 0.408184
\(541\) −3.26999e12 −1.64119 −0.820594 0.571512i \(-0.806357\pi\)
−0.820594 + 0.571512i \(0.806357\pi\)
\(542\) 3.66267e11 0.182306
\(543\) 2.16536e12 1.06888
\(544\) −2.60722e11 −0.127639
\(545\) −3.73475e11 −0.181333
\(546\) 0 0
\(547\) −1.33103e12 −0.635690 −0.317845 0.948143i \(-0.602959\pi\)
−0.317845 + 0.948143i \(0.602959\pi\)
\(548\) 1.07776e12 0.510516
\(549\) −2.18255e11 −0.102539
\(550\) −4.48067e8 −0.000208791 0
\(551\) −7.49116e11 −0.346232
\(552\) −2.10515e10 −0.00965068
\(553\) 0 0
\(554\) −1.01556e12 −0.458048
\(555\) 1.53237e11 0.0685558
\(556\) 2.48717e12 1.10375
\(557\) 3.21451e12 1.41503 0.707516 0.706697i \(-0.249816\pi\)
0.707516 + 0.706697i \(0.249816\pi\)
\(558\) 6.47754e9 0.00282850
\(559\) −3.12504e12 −1.35364
\(560\) 0 0
\(561\) −2.03267e9 −0.000866432 0
\(562\) −8.66935e11 −0.366584
\(563\) 4.13522e12 1.73465 0.867323 0.497746i \(-0.165839\pi\)
0.867323 + 0.497746i \(0.165839\pi\)
\(564\) 1.81477e12 0.755208
\(565\) −3.16203e10 −0.0130541
\(566\) 1.39665e11 0.0572024
\(567\) 0 0
\(568\) −3.88769e11 −0.156720
\(569\) −2.84974e11 −0.113972 −0.0569862 0.998375i \(-0.518149\pi\)
−0.0569862 + 0.998375i \(0.518149\pi\)
\(570\) 2.25664e11 0.0895418
\(571\) −9.60485e11 −0.378118 −0.189059 0.981966i \(-0.560544\pi\)
−0.189059 + 0.981966i \(0.560544\pi\)
\(572\) −1.80174e10 −0.00703735
\(573\) −2.21472e12 −0.858270
\(574\) 0 0
\(575\) −1.05903e10 −0.00404020
\(576\) −1.06310e11 −0.0402412
\(577\) −2.71877e12 −1.02113 −0.510566 0.859838i \(-0.670564\pi\)
−0.510566 + 0.859838i \(0.670564\pi\)
\(578\) −6.17152e11 −0.229994
\(579\) −2.47923e11 −0.0916777
\(580\) −4.88663e11 −0.179301
\(581\) 0 0
\(582\) 8.15826e11 0.294743
\(583\) −1.66703e10 −0.00597633
\(584\) −5.98949e11 −0.213075
\(585\) 1.29191e11 0.0456068
\(586\) 5.97979e11 0.209482
\(587\) −4.24800e12 −1.47677 −0.738385 0.674379i \(-0.764411\pi\)
−0.738385 + 0.674379i \(0.764411\pi\)
\(588\) 0 0
\(589\) 4.71614e11 0.161461
\(590\) −2.76483e11 −0.0939364
\(591\) −2.43397e12 −0.820676
\(592\) 3.70304e11 0.123911
\(593\) −2.98332e12 −0.990727 −0.495364 0.868686i \(-0.664965\pi\)
−0.495364 + 0.868686i \(0.664965\pi\)
\(594\) −3.06600e9 −0.00101049
\(595\) 0 0
\(596\) 4.69086e12 1.52280
\(597\) −2.78469e11 −0.0897207
\(598\) 2.57645e10 0.00823886
\(599\) 5.02044e12 1.59339 0.796693 0.604385i \(-0.206581\pi\)
0.796693 + 0.604385i \(0.206581\pi\)
\(600\) 3.03317e11 0.0955466
\(601\) −6.50005e11 −0.203227 −0.101613 0.994824i \(-0.532400\pi\)
−0.101613 + 0.994824i \(0.532400\pi\)
\(602\) 0 0
\(603\) 3.20363e11 0.0986768
\(604\) −5.17065e12 −1.58081
\(605\) 1.47369e12 0.447205
\(606\) 1.23217e12 0.371146
\(607\) 3.78352e12 1.13122 0.565610 0.824673i \(-0.308641\pi\)
0.565610 + 0.824673i \(0.308641\pi\)
\(608\) 1.81866e12 0.539742
\(609\) 0 0
\(610\) 6.27143e11 0.183393
\(611\) −4.57650e12 −1.32846
\(612\) 3.76359e10 0.0108448
\(613\) 5.13548e12 1.46896 0.734478 0.678632i \(-0.237427\pi\)
0.734478 + 0.678632i \(0.237427\pi\)
\(614\) 5.88587e11 0.167129
\(615\) 4.53405e10 0.0127805
\(616\) 0 0
\(617\) −6.73391e12 −1.87061 −0.935307 0.353837i \(-0.884877\pi\)
−0.935307 + 0.353837i \(0.884877\pi\)
\(618\) 1.11059e12 0.306272
\(619\) −1.11783e11 −0.0306032 −0.0153016 0.999883i \(-0.504871\pi\)
−0.0153016 + 0.999883i \(0.504871\pi\)
\(620\) 3.07643e11 0.0836150
\(621\) −7.24664e10 −0.0195535
\(622\) −1.06594e12 −0.285546
\(623\) 0 0
\(624\) 5.53952e12 1.46265
\(625\) 1.52588e11 0.0400000
\(626\) 4.09443e11 0.106564
\(627\) 1.41789e10 0.00366385
\(628\) −2.84590e12 −0.730131
\(629\) −1.12576e11 −0.0286759
\(630\) 0 0
\(631\) 3.95171e12 0.992322 0.496161 0.868231i \(-0.334743\pi\)
0.496161 + 0.868231i \(0.334743\pi\)
\(632\) −1.87543e12 −0.467599
\(633\) −1.15565e12 −0.286095
\(634\) 1.01247e12 0.248876
\(635\) −1.31238e12 −0.320316
\(636\) 5.47674e12 1.32729
\(637\) 0 0
\(638\) 1.85761e9 0.000443876 0
\(639\) 8.50034e10 0.0201689
\(640\) 1.56360e12 0.368397
\(641\) −8.34229e12 −1.95175 −0.975875 0.218332i \(-0.929939\pi\)
−0.975875 + 0.218332i \(0.929939\pi\)
\(642\) 6.95689e11 0.161625
\(643\) −3.74487e12 −0.863948 −0.431974 0.901886i \(-0.642183\pi\)
−0.431974 + 0.901886i \(0.642183\pi\)
\(644\) 0 0
\(645\) 1.60423e12 0.364961
\(646\) −1.65785e11 −0.0374540
\(647\) −2.12177e11 −0.0476024 −0.0238012 0.999717i \(-0.507577\pi\)
−0.0238012 + 0.999717i \(0.507577\pi\)
\(648\) 2.19991e12 0.490137
\(649\) −1.73719e10 −0.00384366
\(650\) −3.71223e11 −0.0815688
\(651\) 0 0
\(652\) −2.61953e11 −0.0567688
\(653\) −5.52575e12 −1.18927 −0.594637 0.803994i \(-0.702704\pi\)
−0.594637 + 0.803994i \(0.702704\pi\)
\(654\) −4.66429e11 −0.0996978
\(655\) −3.45287e12 −0.732983
\(656\) 1.09568e11 0.0231002
\(657\) 1.30959e11 0.0274215
\(658\) 0 0
\(659\) −7.16711e12 −1.48033 −0.740167 0.672423i \(-0.765254\pi\)
−0.740167 + 0.672423i \(0.765254\pi\)
\(660\) 9.24915e9 0.00189738
\(661\) −8.03527e12 −1.63717 −0.818586 0.574384i \(-0.805241\pi\)
−0.818586 + 0.574384i \(0.805241\pi\)
\(662\) 1.24955e12 0.252867
\(663\) −1.68406e12 −0.338491
\(664\) 2.17213e12 0.433641
\(665\) 0 0
\(666\) 1.07856e10 0.00212426
\(667\) 4.39055e10 0.00858920
\(668\) 7.92322e12 1.53960
\(669\) −7.21683e11 −0.139293
\(670\) −9.20547e11 −0.176486
\(671\) 3.94044e10 0.00750402
\(672\) 0 0
\(673\) −1.07643e12 −0.202264 −0.101132 0.994873i \(-0.532247\pi\)
−0.101132 + 0.994873i \(0.532247\pi\)
\(674\) 1.28200e12 0.239287
\(675\) 1.04412e12 0.193589
\(676\) −9.80759e12 −1.80635
\(677\) 2.34762e12 0.429516 0.214758 0.976667i \(-0.431104\pi\)
0.214758 + 0.976667i \(0.431104\pi\)
\(678\) −3.94904e10 −0.00717724
\(679\) 0 0
\(680\) −2.22832e11 −0.0399658
\(681\) −6.55596e12 −1.16808
\(682\) −1.16948e9 −0.000206996 0
\(683\) 9.76504e11 0.171704 0.0858521 0.996308i \(-0.472639\pi\)
0.0858521 + 0.996308i \(0.472639\pi\)
\(684\) −2.62528e11 −0.0458589
\(685\) 1.39522e12 0.242123
\(686\) 0 0
\(687\) −1.31330e12 −0.224937
\(688\) 3.87669e12 0.659650
\(689\) −1.38113e13 −2.33479
\(690\) −1.32261e10 −0.00222132
\(691\) 1.66239e12 0.277383 0.138692 0.990336i \(-0.455710\pi\)
0.138692 + 0.990336i \(0.455710\pi\)
\(692\) 7.90427e11 0.131034
\(693\) 0 0
\(694\) −1.11739e12 −0.182847
\(695\) 3.21979e12 0.523475
\(696\) −1.25750e12 −0.203126
\(697\) −3.33095e10 −0.00534590
\(698\) 2.04536e11 0.0326152
\(699\) 5.99505e12 0.949828
\(700\) 0 0
\(701\) 7.09258e12 1.10936 0.554681 0.832063i \(-0.312840\pi\)
0.554681 + 0.832063i \(0.312840\pi\)
\(702\) −2.54017e12 −0.394772
\(703\) 7.85270e11 0.121261
\(704\) 1.91935e10 0.00294495
\(705\) 2.34933e12 0.358173
\(706\) 1.27051e12 0.192467
\(707\) 0 0
\(708\) 5.70724e12 0.853643
\(709\) 1.05215e13 1.56377 0.781883 0.623426i \(-0.214260\pi\)
0.781883 + 0.623426i \(0.214260\pi\)
\(710\) −2.44253e11 −0.0360726
\(711\) 4.10058e11 0.0601773
\(712\) −4.67643e11 −0.0681953
\(713\) −2.76412e10 −0.00400547
\(714\) 0 0
\(715\) −2.33245e10 −0.00333761
\(716\) −1.04311e13 −1.48327
\(717\) −1.00539e13 −1.42068
\(718\) 1.11298e12 0.156289
\(719\) −3.31659e11 −0.0462819 −0.0231410 0.999732i \(-0.507367\pi\)
−0.0231410 + 0.999732i \(0.507367\pi\)
\(720\) −1.60264e11 −0.0222250
\(721\) 0 0
\(722\) −5.87565e11 −0.0804708
\(723\) 1.26411e13 1.72054
\(724\) 7.23846e12 0.979090
\(725\) −6.32603e11 −0.0850374
\(726\) 1.84048e12 0.245876
\(727\) −1.15087e13 −1.52799 −0.763996 0.645221i \(-0.776765\pi\)
−0.763996 + 0.645221i \(0.776765\pi\)
\(728\) 0 0
\(729\) 7.11739e12 0.933355
\(730\) −3.76304e11 −0.0490440
\(731\) −1.17855e12 −0.152658
\(732\) −1.29457e13 −1.66658
\(733\) −1.93503e12 −0.247582 −0.123791 0.992308i \(-0.539505\pi\)
−0.123791 + 0.992308i \(0.539505\pi\)
\(734\) 3.06850e12 0.390205
\(735\) 0 0
\(736\) −1.06591e11 −0.0133897
\(737\) −5.78395e10 −0.00722139
\(738\) 3.19129e9 0.000396016 0
\(739\) −4.05351e12 −0.499955 −0.249977 0.968252i \(-0.580423\pi\)
−0.249977 + 0.968252i \(0.580423\pi\)
\(740\) 5.12247e11 0.0627967
\(741\) 1.17471e13 1.43136
\(742\) 0 0
\(743\) 3.85392e12 0.463930 0.231965 0.972724i \(-0.425485\pi\)
0.231965 + 0.972724i \(0.425485\pi\)
\(744\) 7.91670e11 0.0947253
\(745\) 6.07258e12 0.722221
\(746\) 2.23437e12 0.264137
\(747\) −4.74932e11 −0.0558070
\(748\) −6.79491e9 −0.000793646 0
\(749\) 0 0
\(750\) 1.90566e11 0.0219922
\(751\) 5.30260e12 0.608288 0.304144 0.952626i \(-0.401630\pi\)
0.304144 + 0.952626i \(0.401630\pi\)
\(752\) 5.67727e12 0.647380
\(753\) 1.32086e13 1.49720
\(754\) 1.53902e12 0.173410
\(755\) −6.69371e12 −0.749731
\(756\) 0 0
\(757\) −1.33892e13 −1.48192 −0.740959 0.671550i \(-0.765629\pi\)
−0.740959 + 0.671550i \(0.765629\pi\)
\(758\) 1.34434e12 0.147910
\(759\) −8.31019e8 −9.08914e−5 0
\(760\) 1.55436e12 0.169002
\(761\) 1.10632e13 1.19578 0.597890 0.801578i \(-0.296006\pi\)
0.597890 + 0.801578i \(0.296006\pi\)
\(762\) −1.63902e12 −0.176111
\(763\) 0 0
\(764\) −7.40349e12 −0.786170
\(765\) 4.87218e10 0.00514336
\(766\) 1.92861e12 0.202402
\(767\) −1.43925e13 −1.50161
\(768\) −4.73445e12 −0.491071
\(769\) 2.71361e12 0.279820 0.139910 0.990164i \(-0.455319\pi\)
0.139910 + 0.990164i \(0.455319\pi\)
\(770\) 0 0
\(771\) −1.80234e13 −1.83693
\(772\) −8.28770e11 −0.0839762
\(773\) 1.18476e13 1.19350 0.596749 0.802428i \(-0.296459\pi\)
0.596749 + 0.802428i \(0.296459\pi\)
\(774\) 1.12913e11 0.0113086
\(775\) 3.98261e11 0.0396562
\(776\) 5.61936e12 0.556300
\(777\) 0 0
\(778\) −8.34978e11 −0.0817084
\(779\) 2.32350e11 0.0226060
\(780\) 7.66289e12 0.741254
\(781\) −1.53468e10 −0.00147601
\(782\) 9.71661e9 0.000929147 0
\(783\) −4.32872e12 −0.411559
\(784\) 0 0
\(785\) −3.68418e12 −0.346280
\(786\) −4.31225e12 −0.402998
\(787\) −2.03165e12 −0.188783 −0.0943914 0.995535i \(-0.530091\pi\)
−0.0943914 + 0.995535i \(0.530091\pi\)
\(788\) −8.13639e12 −0.751734
\(789\) −6.02181e12 −0.553198
\(790\) −1.17828e12 −0.107628
\(791\) 0 0
\(792\) 1.34139e9 0.000121141 0
\(793\) 3.26465e13 2.93161
\(794\) 3.32067e12 0.296506
\(795\) 7.08996e12 0.629494
\(796\) −9.30880e11 −0.0821835
\(797\) 5.21189e12 0.457543 0.228772 0.973480i \(-0.426529\pi\)
0.228772 + 0.973480i \(0.426529\pi\)
\(798\) 0 0
\(799\) −1.72594e12 −0.149819
\(800\) 1.53580e12 0.132565
\(801\) 1.02249e11 0.00877634
\(802\) 2.54548e12 0.217263
\(803\) −2.36438e10 −0.00200677
\(804\) 1.90022e13 1.60381
\(805\) 0 0
\(806\) −9.68908e11 −0.0808677
\(807\) 1.31348e13 1.09016
\(808\) 8.48714e12 0.700504
\(809\) 1.34215e13 1.10162 0.550812 0.834630i \(-0.314318\pi\)
0.550812 + 0.834630i \(0.314318\pi\)
\(810\) 1.38214e12 0.112816
\(811\) 1.86464e12 0.151356 0.0756782 0.997132i \(-0.475888\pi\)
0.0756782 + 0.997132i \(0.475888\pi\)
\(812\) 0 0
\(813\) −9.78763e12 −0.785724
\(814\) −1.94726e9 −0.000155458 0
\(815\) −3.39113e11 −0.0269238
\(816\) 2.08912e12 0.164952
\(817\) 8.22094e12 0.645539
\(818\) 5.08396e12 0.397020
\(819\) 0 0
\(820\) 1.51566e11 0.0117069
\(821\) 2.27753e12 0.174952 0.0874762 0.996167i \(-0.472120\pi\)
0.0874762 + 0.996167i \(0.472120\pi\)
\(822\) 1.74248e12 0.133120
\(823\) 1.31485e13 0.999023 0.499511 0.866307i \(-0.333513\pi\)
0.499511 + 0.866307i \(0.333513\pi\)
\(824\) 7.64970e12 0.578059
\(825\) 1.19736e10 0.000899871 0
\(826\) 0 0
\(827\) 6.06740e12 0.451053 0.225527 0.974237i \(-0.427590\pi\)
0.225527 + 0.974237i \(0.427590\pi\)
\(828\) 1.53867e10 0.00113765
\(829\) −1.08516e13 −0.797991 −0.398995 0.916953i \(-0.630641\pi\)
−0.398995 + 0.916953i \(0.630641\pi\)
\(830\) 1.36469e12 0.0998121
\(831\) 2.71384e13 1.97415
\(832\) 1.59018e13 1.15051
\(833\) 0 0
\(834\) 4.02116e12 0.287809
\(835\) 1.02571e13 0.730187
\(836\) 4.73978e10 0.00335606
\(837\) 2.72519e12 0.191925
\(838\) −2.63544e12 −0.184610
\(839\) −1.44757e13 −1.00858 −0.504289 0.863535i \(-0.668245\pi\)
−0.504289 + 0.863535i \(0.668245\pi\)
\(840\) 0 0
\(841\) −1.18845e13 −0.819216
\(842\) −2.08711e12 −0.143100
\(843\) 2.31668e13 1.57995
\(844\) −3.86317e12 −0.262061
\(845\) −1.26965e13 −0.856699
\(846\) 1.65357e11 0.0110983
\(847\) 0 0
\(848\) 1.71333e13 1.13778
\(849\) −3.73223e12 −0.246538
\(850\) −1.40000e11 −0.00919902
\(851\) −4.60245e10 −0.00300819
\(852\) 5.04194e12 0.327808
\(853\) −4.07815e12 −0.263750 −0.131875 0.991266i \(-0.542100\pi\)
−0.131875 + 0.991266i \(0.542100\pi\)
\(854\) 0 0
\(855\) −3.39858e11 −0.0217495
\(856\) 4.79187e12 0.305051
\(857\) −5.88651e12 −0.372773 −0.186386 0.982477i \(-0.559678\pi\)
−0.186386 + 0.982477i \(0.559678\pi\)
\(858\) −2.91298e10 −0.00183504
\(859\) −8.19019e12 −0.513245 −0.256623 0.966512i \(-0.582610\pi\)
−0.256623 + 0.966512i \(0.582610\pi\)
\(860\) 5.36268e12 0.334302
\(861\) 0 0
\(862\) −3.88607e12 −0.239733
\(863\) 2.82802e13 1.73554 0.867768 0.496970i \(-0.165554\pi\)
0.867768 + 0.496970i \(0.165554\pi\)
\(864\) 1.05090e13 0.641580
\(865\) 1.02325e12 0.0621456
\(866\) −1.26405e12 −0.0763718
\(867\) 1.64919e13 0.991255
\(868\) 0 0
\(869\) −7.40333e10 −0.00440391
\(870\) −7.90052e11 −0.0467540
\(871\) −4.79199e13 −2.82120
\(872\) −3.21274e12 −0.188170
\(873\) −1.22866e12 −0.0715926
\(874\) −6.77780e10 −0.00392905
\(875\) 0 0
\(876\) 7.76778e12 0.445685
\(877\) −7.31598e12 −0.417614 −0.208807 0.977957i \(-0.566958\pi\)
−0.208807 + 0.977957i \(0.566958\pi\)
\(878\) 6.97542e12 0.396137
\(879\) −1.59796e13 −0.902851
\(880\) 2.89347e10 0.00162647
\(881\) 9.97541e12 0.557878 0.278939 0.960309i \(-0.410017\pi\)
0.278939 + 0.960309i \(0.410017\pi\)
\(882\) 0 0
\(883\) −2.04212e13 −1.13047 −0.565233 0.824931i \(-0.691214\pi\)
−0.565233 + 0.824931i \(0.691214\pi\)
\(884\) −5.62957e12 −0.310056
\(885\) 7.38835e12 0.404858
\(886\) −5.21341e12 −0.284230
\(887\) 2.97743e13 1.61505 0.807524 0.589835i \(-0.200807\pi\)
0.807524 + 0.589835i \(0.200807\pi\)
\(888\) 1.31819e12 0.0711408
\(889\) 0 0
\(890\) −2.93807e11 −0.0156967
\(891\) 8.68424e10 0.00461618
\(892\) −2.41248e12 −0.127591
\(893\) 1.20393e13 0.633532
\(894\) 7.58399e12 0.397081
\(895\) −1.35036e13 −0.703472
\(896\) 0 0
\(897\) −6.88497e11 −0.0355088
\(898\) −6.78603e12 −0.348235
\(899\) −1.65112e12 −0.0843064
\(900\) −2.21696e11 −0.0112633
\(901\) −5.20866e12 −0.263308
\(902\) −5.76166e8 −2.89813e−5 0
\(903\) 0 0
\(904\) −2.72007e11 −0.0135464
\(905\) 9.37060e12 0.464354
\(906\) −8.35971e12 −0.412206
\(907\) −2.06267e13 −1.01204 −0.506019 0.862523i \(-0.668883\pi\)
−0.506019 + 0.862523i \(0.668883\pi\)
\(908\) −2.19156e13 −1.06996
\(909\) −1.85570e12 −0.0901507
\(910\) 0 0
\(911\) −2.52587e13 −1.21500 −0.607502 0.794318i \(-0.707828\pi\)
−0.607502 + 0.794318i \(0.707828\pi\)
\(912\) −1.45726e13 −0.697528
\(913\) 8.57459e10 0.00408408
\(914\) −2.52426e12 −0.119640
\(915\) −1.67589e13 −0.790408
\(916\) −4.39018e12 −0.206041
\(917\) 0 0
\(918\) −9.57978e11 −0.0445208
\(919\) −2.09741e13 −0.969981 −0.484991 0.874519i \(-0.661177\pi\)
−0.484991 + 0.874519i \(0.661177\pi\)
\(920\) −9.11007e10 −0.00419254
\(921\) −1.57286e13 −0.720314
\(922\) 9.99692e11 0.0455593
\(923\) −1.27148e13 −0.576636
\(924\) 0 0
\(925\) 6.63133e11 0.0297826
\(926\) −1.33046e12 −0.0594640
\(927\) −1.67259e12 −0.0743928
\(928\) −6.36715e12 −0.281825
\(929\) −1.64770e13 −0.725786 −0.362893 0.931831i \(-0.618211\pi\)
−0.362893 + 0.931831i \(0.618211\pi\)
\(930\) 4.97385e11 0.0218032
\(931\) 0 0
\(932\) 2.00405e13 0.870037
\(933\) 2.84848e13 1.23068
\(934\) −4.28730e12 −0.184341
\(935\) −8.79641e9 −0.000376403 0
\(936\) 1.11134e12 0.0473264
\(937\) 2.36772e13 1.00346 0.501732 0.865023i \(-0.332696\pi\)
0.501732 + 0.865023i \(0.332696\pi\)
\(938\) 0 0
\(939\) −1.09414e13 −0.459281
\(940\) 7.85345e12 0.328084
\(941\) −4.05889e13 −1.68754 −0.843770 0.536706i \(-0.819669\pi\)
−0.843770 + 0.536706i \(0.819669\pi\)
\(942\) −4.60113e12 −0.190386
\(943\) −1.36180e10 −0.000560802 0
\(944\) 1.78543e13 0.731761
\(945\) 0 0
\(946\) −2.03858e10 −0.000827593 0
\(947\) −4.78061e13 −1.93156 −0.965780 0.259364i \(-0.916487\pi\)
−0.965780 + 0.259364i \(0.916487\pi\)
\(948\) 2.43224e13 0.978069
\(949\) −1.95888e13 −0.783989
\(950\) 9.76564e11 0.0388995
\(951\) −2.70560e13 −1.07263
\(952\) 0 0
\(953\) 2.83337e13 1.11272 0.556358 0.830943i \(-0.312198\pi\)
0.556358 + 0.830943i \(0.312198\pi\)
\(954\) 4.99026e11 0.0195054
\(955\) −9.58424e12 −0.372857
\(956\) −3.36086e13 −1.30134
\(957\) −4.96403e10 −0.00191307
\(958\) −1.05294e13 −0.403886
\(959\) 0 0
\(960\) −8.16311e12 −0.310195
\(961\) −2.54001e13 −0.960685
\(962\) −1.61330e12 −0.0607334
\(963\) −1.04773e12 −0.0392583
\(964\) 4.22574e13 1.57600
\(965\) −1.07289e12 −0.0398274
\(966\) 0 0
\(967\) 2.91402e13 1.07170 0.535850 0.844313i \(-0.319991\pi\)
0.535850 + 0.844313i \(0.319991\pi\)
\(968\) 1.26771e13 0.464067
\(969\) 4.43021e12 0.161424
\(970\) 3.53049e12 0.128045
\(971\) 4.08627e12 0.147517 0.0737583 0.997276i \(-0.476501\pi\)
0.0737583 + 0.997276i \(0.476501\pi\)
\(972\) −3.13036e12 −0.112485
\(973\) 0 0
\(974\) −3.11965e12 −0.111068
\(975\) 9.92005e12 0.351555
\(976\) −4.04988e13 −1.42862
\(977\) 4.35920e13 1.53067 0.765335 0.643632i \(-0.222573\pi\)
0.765335 + 0.643632i \(0.222573\pi\)
\(978\) −4.23515e11 −0.0148028
\(979\) −1.84604e10 −0.000642272 0
\(980\) 0 0
\(981\) 7.02458e11 0.0242164
\(982\) −3.63579e12 −0.124766
\(983\) 3.75023e13 1.28105 0.640526 0.767937i \(-0.278717\pi\)
0.640526 + 0.767937i \(0.278717\pi\)
\(984\) 3.90032e11 0.0132624
\(985\) −1.05330e13 −0.356525
\(986\) 5.80414e11 0.0195565
\(987\) 0 0
\(988\) 3.92689e13 1.31112
\(989\) −4.81827e11 −0.0160143
\(990\) 8.42757e8 2.78833e−5 0
\(991\) −2.18234e12 −0.0718772 −0.0359386 0.999354i \(-0.511442\pi\)
−0.0359386 + 0.999354i \(0.511442\pi\)
\(992\) 4.00850e12 0.131425
\(993\) −3.33912e13 −1.08984
\(994\) 0 0
\(995\) −1.20508e12 −0.0389772
\(996\) −2.81704e13 −0.907039
\(997\) −2.40921e13 −0.772230 −0.386115 0.922451i \(-0.626183\pi\)
−0.386115 + 0.922451i \(0.626183\pi\)
\(998\) 3.23557e12 0.103244
\(999\) 4.53763e12 0.144140
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.n.1.10 18
7.6 odd 2 245.10.a.o.1.10 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.10.a.n.1.10 18 1.1 even 1 trivial
245.10.a.o.1.10 yes 18 7.6 odd 2