Properties

Label 245.4.a.g.1.1
Level $245$
Weight $4$
Character 245.1
Self dual yes
Analytic conductor $14.455$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4554679514\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.41421 q^{2} +3.24264 q^{3} +11.4853 q^{4} +5.00000 q^{5} -14.3137 q^{6} -15.3848 q^{8} -16.4853 q^{9} -22.0711 q^{10} -0.142136 q^{11} +37.2426 q^{12} -32.1421 q^{13} +16.2132 q^{15} -23.9706 q^{16} -114.368 q^{17} +72.7696 q^{18} +43.2304 q^{19} +57.4264 q^{20} +0.627417 q^{22} +154.463 q^{23} -49.8873 q^{24} +25.0000 q^{25} +141.882 q^{26} -141.007 q^{27} -40.1472 q^{29} -71.5685 q^{30} +75.4214 q^{31} +228.889 q^{32} -0.460895 q^{33} +504.843 q^{34} -189.338 q^{36} -400.333 q^{37} -190.828 q^{38} -104.225 q^{39} -76.9239 q^{40} -95.4264 q^{41} -340.071 q^{43} -1.63247 q^{44} -82.4264 q^{45} -681.833 q^{46} -7.49033 q^{47} -77.7279 q^{48} -110.355 q^{50} -370.853 q^{51} -369.161 q^{52} -676.818 q^{53} +622.436 q^{54} -0.710678 q^{55} +140.181 q^{57} +177.218 q^{58} +796.181 q^{59} +186.213 q^{60} -757.102 q^{61} -332.926 q^{62} -818.602 q^{64} -160.711 q^{65} +2.03449 q^{66} -740.581 q^{67} -1313.54 q^{68} +500.868 q^{69} +37.0253 q^{71} +253.622 q^{72} +80.8772 q^{73} +1767.16 q^{74} +81.0660 q^{75} +496.514 q^{76} +460.073 q^{78} -317.358 q^{79} -119.853 q^{80} -12.1329 q^{81} +421.233 q^{82} -945.929 q^{83} -571.838 q^{85} +1501.15 q^{86} -130.183 q^{87} +2.18672 q^{88} +783.205 q^{89} +363.848 q^{90} +1774.05 q^{92} +244.564 q^{93} +33.0639 q^{94} +216.152 q^{95} +742.206 q^{96} +393.107 q^{97} +2.34315 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} - 2 q^{3} + 6 q^{4} + 10 q^{5} - 6 q^{6} + 6 q^{8} - 16 q^{9} - 30 q^{10} + 28 q^{11} + 66 q^{12} - 36 q^{13} - 10 q^{15} - 14 q^{16} - 76 q^{17} + 72 q^{18} + 160 q^{19} + 30 q^{20} - 44 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.41421 −1.56066 −0.780330 0.625368i \(-0.784949\pi\)
−0.780330 + 0.625368i \(0.784949\pi\)
\(3\) 3.24264 0.624046 0.312023 0.950074i \(-0.398993\pi\)
0.312023 + 0.950074i \(0.398993\pi\)
\(4\) 11.4853 1.43566
\(5\) 5.00000 0.447214
\(6\) −14.3137 −0.973925
\(7\) 0 0
\(8\) −15.3848 −0.679917
\(9\) −16.4853 −0.610566
\(10\) −22.0711 −0.697948
\(11\) −0.142136 −0.00389595 −0.00194798 0.999998i \(-0.500620\pi\)
−0.00194798 + 0.999998i \(0.500620\pi\)
\(12\) 37.2426 0.895919
\(13\) −32.1421 −0.685740 −0.342870 0.939383i \(-0.611399\pi\)
−0.342870 + 0.939383i \(0.611399\pi\)
\(14\) 0 0
\(15\) 16.2132 0.279082
\(16\) −23.9706 −0.374540
\(17\) −114.368 −1.63166 −0.815829 0.578293i \(-0.803719\pi\)
−0.815829 + 0.578293i \(0.803719\pi\)
\(18\) 72.7696 0.952886
\(19\) 43.2304 0.521987 0.260993 0.965341i \(-0.415950\pi\)
0.260993 + 0.965341i \(0.415950\pi\)
\(20\) 57.4264 0.642047
\(21\) 0 0
\(22\) 0.627417 0.00608026
\(23\) 154.463 1.40034 0.700169 0.713977i \(-0.253108\pi\)
0.700169 + 0.713977i \(0.253108\pi\)
\(24\) −49.8873 −0.424300
\(25\) 25.0000 0.200000
\(26\) 141.882 1.07021
\(27\) −141.007 −1.00507
\(28\) 0 0
\(29\) −40.1472 −0.257074 −0.128537 0.991705i \(-0.541028\pi\)
−0.128537 + 0.991705i \(0.541028\pi\)
\(30\) −71.5685 −0.435552
\(31\) 75.4214 0.436970 0.218485 0.975840i \(-0.429888\pi\)
0.218485 + 0.975840i \(0.429888\pi\)
\(32\) 228.889 1.26445
\(33\) −0.460895 −0.00243126
\(34\) 504.843 2.54647
\(35\) 0 0
\(36\) −189.338 −0.876565
\(37\) −400.333 −1.77877 −0.889383 0.457163i \(-0.848866\pi\)
−0.889383 + 0.457163i \(0.848866\pi\)
\(38\) −190.828 −0.814644
\(39\) −104.225 −0.427934
\(40\) −76.9239 −0.304068
\(41\) −95.4264 −0.363490 −0.181745 0.983346i \(-0.558175\pi\)
−0.181745 + 0.983346i \(0.558175\pi\)
\(42\) 0 0
\(43\) −340.071 −1.20605 −0.603027 0.797721i \(-0.706039\pi\)
−0.603027 + 0.797721i \(0.706039\pi\)
\(44\) −1.63247 −0.00559327
\(45\) −82.4264 −0.273053
\(46\) −681.833 −2.18545
\(47\) −7.49033 −0.0232463 −0.0116232 0.999932i \(-0.503700\pi\)
−0.0116232 + 0.999932i \(0.503700\pi\)
\(48\) −77.7279 −0.233730
\(49\) 0 0
\(50\) −110.355 −0.312132
\(51\) −370.853 −1.01823
\(52\) −369.161 −0.984490
\(53\) −676.818 −1.75412 −0.877058 0.480385i \(-0.840497\pi\)
−0.877058 + 0.480385i \(0.840497\pi\)
\(54\) 622.436 1.56857
\(55\) −0.710678 −0.00174232
\(56\) 0 0
\(57\) 140.181 0.325744
\(58\) 177.218 0.401205
\(59\) 796.181 1.75685 0.878423 0.477884i \(-0.158596\pi\)
0.878423 + 0.477884i \(0.158596\pi\)
\(60\) 186.213 0.400667
\(61\) −757.102 −1.58913 −0.794565 0.607179i \(-0.792301\pi\)
−0.794565 + 0.607179i \(0.792301\pi\)
\(62\) −332.926 −0.681962
\(63\) 0 0
\(64\) −818.602 −1.59883
\(65\) −160.711 −0.306672
\(66\) 2.03449 0.00379437
\(67\) −740.581 −1.35039 −0.675197 0.737638i \(-0.735941\pi\)
−0.675197 + 0.737638i \(0.735941\pi\)
\(68\) −1313.54 −2.34251
\(69\) 500.868 0.873876
\(70\) 0 0
\(71\) 37.0253 0.0618886 0.0309443 0.999521i \(-0.490149\pi\)
0.0309443 + 0.999521i \(0.490149\pi\)
\(72\) 253.622 0.415134
\(73\) 80.8772 0.129671 0.0648353 0.997896i \(-0.479348\pi\)
0.0648353 + 0.997896i \(0.479348\pi\)
\(74\) 1767.16 2.77605
\(75\) 81.0660 0.124809
\(76\) 496.514 0.749395
\(77\) 0 0
\(78\) 460.073 0.667859
\(79\) −317.358 −0.451970 −0.225985 0.974131i \(-0.572560\pi\)
−0.225985 + 0.974131i \(0.572560\pi\)
\(80\) −119.853 −0.167499
\(81\) −12.1329 −0.0166432
\(82\) 421.233 0.567285
\(83\) −945.929 −1.25095 −0.625477 0.780243i \(-0.715096\pi\)
−0.625477 + 0.780243i \(0.715096\pi\)
\(84\) 0 0
\(85\) −571.838 −0.729700
\(86\) 1501.15 1.88224
\(87\) −130.183 −0.160426
\(88\) 2.18672 0.00264893
\(89\) 783.205 0.932804 0.466402 0.884573i \(-0.345550\pi\)
0.466402 + 0.884573i \(0.345550\pi\)
\(90\) 363.848 0.426144
\(91\) 0 0
\(92\) 1774.05 2.01041
\(93\) 244.564 0.272690
\(94\) 33.0639 0.0362796
\(95\) 216.152 0.233439
\(96\) 742.206 0.789074
\(97\) 393.107 0.411484 0.205742 0.978606i \(-0.434039\pi\)
0.205742 + 0.978606i \(0.434039\pi\)
\(98\) 0 0
\(99\) 2.34315 0.00237874
\(100\) 287.132 0.287132
\(101\) 454.442 0.447709 0.223855 0.974623i \(-0.428136\pi\)
0.223855 + 0.974623i \(0.428136\pi\)
\(102\) 1637.02 1.58911
\(103\) −703.699 −0.673180 −0.336590 0.941651i \(-0.609274\pi\)
−0.336590 + 0.941651i \(0.609274\pi\)
\(104\) 494.500 0.466247
\(105\) 0 0
\(106\) 2987.62 2.73758
\(107\) 954.997 0.862832 0.431416 0.902153i \(-0.358014\pi\)
0.431416 + 0.902153i \(0.358014\pi\)
\(108\) −1619.51 −1.44294
\(109\) 288.927 0.253891 0.126946 0.991910i \(-0.459483\pi\)
0.126946 + 0.991910i \(0.459483\pi\)
\(110\) 3.13708 0.00271918
\(111\) −1298.14 −1.11003
\(112\) 0 0
\(113\) 1251.24 1.04165 0.520826 0.853663i \(-0.325624\pi\)
0.520826 + 0.853663i \(0.325624\pi\)
\(114\) −618.788 −0.508376
\(115\) 772.315 0.626250
\(116\) −461.102 −0.369071
\(117\) 529.872 0.418690
\(118\) −3514.51 −2.74184
\(119\) 0 0
\(120\) −249.437 −0.189753
\(121\) −1330.98 −0.999985
\(122\) 3342.01 2.48009
\(123\) −309.434 −0.226835
\(124\) 866.235 0.627341
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1947.62 −1.36082 −0.680408 0.732833i \(-0.738198\pi\)
−0.680408 + 0.732833i \(0.738198\pi\)
\(128\) 1782.37 1.23079
\(129\) −1102.73 −0.752634
\(130\) 709.411 0.478611
\(131\) 1061.65 0.708064 0.354032 0.935233i \(-0.384810\pi\)
0.354032 + 0.935233i \(0.384810\pi\)
\(132\) −5.29351 −0.00349046
\(133\) 0 0
\(134\) 3269.08 2.10750
\(135\) −705.036 −0.449480
\(136\) 1759.52 1.10939
\(137\) −1439.34 −0.897601 −0.448800 0.893632i \(-0.648149\pi\)
−0.448800 + 0.893632i \(0.648149\pi\)
\(138\) −2210.94 −1.36382
\(139\) 662.132 0.404038 0.202019 0.979382i \(-0.435250\pi\)
0.202019 + 0.979382i \(0.435250\pi\)
\(140\) 0 0
\(141\) −24.2885 −0.0145068
\(142\) −163.437 −0.0965870
\(143\) 4.56854 0.00267161
\(144\) 395.161 0.228681
\(145\) −200.736 −0.114967
\(146\) −357.009 −0.202372
\(147\) 0 0
\(148\) −4597.94 −2.55370
\(149\) −787.110 −0.432769 −0.216384 0.976308i \(-0.569426\pi\)
−0.216384 + 0.976308i \(0.569426\pi\)
\(150\) −357.843 −0.194785
\(151\) −848.355 −0.457206 −0.228603 0.973520i \(-0.573416\pi\)
−0.228603 + 0.973520i \(0.573416\pi\)
\(152\) −665.091 −0.354908
\(153\) 1885.38 0.996235
\(154\) 0 0
\(155\) 377.107 0.195419
\(156\) −1197.06 −0.614368
\(157\) 954.922 0.485421 0.242710 0.970099i \(-0.421964\pi\)
0.242710 + 0.970099i \(0.421964\pi\)
\(158\) 1400.89 0.705371
\(159\) −2194.68 −1.09465
\(160\) 1144.45 0.565478
\(161\) 0 0
\(162\) 53.5572 0.0259744
\(163\) −7.36421 −0.00353871 −0.00176936 0.999998i \(-0.500563\pi\)
−0.00176936 + 0.999998i \(0.500563\pi\)
\(164\) −1096.00 −0.521848
\(165\) −2.30447 −0.00108729
\(166\) 4175.53 1.95231
\(167\) 2921.40 1.35368 0.676841 0.736129i \(-0.263349\pi\)
0.676841 + 0.736129i \(0.263349\pi\)
\(168\) 0 0
\(169\) −1163.88 −0.529760
\(170\) 2524.21 1.13881
\(171\) −712.666 −0.318707
\(172\) −3905.81 −1.73148
\(173\) −3969.57 −1.74451 −0.872256 0.489049i \(-0.837344\pi\)
−0.872256 + 0.489049i \(0.837344\pi\)
\(174\) 574.655 0.250371
\(175\) 0 0
\(176\) 3.40707 0.00145919
\(177\) 2581.73 1.09635
\(178\) −3457.23 −1.45579
\(179\) −1105.95 −0.461803 −0.230901 0.972977i \(-0.574167\pi\)
−0.230901 + 0.972977i \(0.574167\pi\)
\(180\) −946.690 −0.392012
\(181\) −117.214 −0.0481349 −0.0240674 0.999710i \(-0.507662\pi\)
−0.0240674 + 0.999710i \(0.507662\pi\)
\(182\) 0 0
\(183\) −2455.01 −0.991691
\(184\) −2376.38 −0.952114
\(185\) −2001.67 −0.795488
\(186\) −1079.56 −0.425576
\(187\) 16.2557 0.00635687
\(188\) −86.0286 −0.0333738
\(189\) 0 0
\(190\) −954.142 −0.364320
\(191\) 1002.60 0.379820 0.189910 0.981802i \(-0.439180\pi\)
0.189910 + 0.981802i \(0.439180\pi\)
\(192\) −2654.43 −0.997746
\(193\) 3257.76 1.21502 0.607510 0.794312i \(-0.292169\pi\)
0.607510 + 0.794312i \(0.292169\pi\)
\(194\) −1735.26 −0.642187
\(195\) −521.127 −0.191378
\(196\) 0 0
\(197\) −41.6955 −0.0150796 −0.00753981 0.999972i \(-0.502400\pi\)
−0.00753981 + 0.999972i \(0.502400\pi\)
\(198\) −10.3431 −0.00371240
\(199\) 2405.61 0.856932 0.428466 0.903558i \(-0.359054\pi\)
0.428466 + 0.903558i \(0.359054\pi\)
\(200\) −384.619 −0.135983
\(201\) −2401.44 −0.842708
\(202\) −2006.00 −0.698722
\(203\) 0 0
\(204\) −4259.35 −1.46183
\(205\) −477.132 −0.162558
\(206\) 3106.28 1.05061
\(207\) −2546.37 −0.854998
\(208\) 770.465 0.256837
\(209\) −6.14459 −0.00203364
\(210\) 0 0
\(211\) 1211.24 0.395190 0.197595 0.980284i \(-0.436687\pi\)
0.197595 + 0.980284i \(0.436687\pi\)
\(212\) −7773.45 −2.51831
\(213\) 120.060 0.0386214
\(214\) −4215.56 −1.34659
\(215\) −1700.36 −0.539364
\(216\) 2169.36 0.683363
\(217\) 0 0
\(218\) −1275.38 −0.396238
\(219\) 262.256 0.0809205
\(220\) −8.16234 −0.00250139
\(221\) 3676.02 1.11889
\(222\) 5730.25 1.73238
\(223\) 4164.99 1.25071 0.625354 0.780341i \(-0.284954\pi\)
0.625354 + 0.780341i \(0.284954\pi\)
\(224\) 0 0
\(225\) −412.132 −0.122113
\(226\) −5523.24 −1.62566
\(227\) 2356.24 0.688940 0.344470 0.938797i \(-0.388059\pi\)
0.344470 + 0.938797i \(0.388059\pi\)
\(228\) 1610.02 0.467658
\(229\) 4345.16 1.25387 0.626935 0.779071i \(-0.284309\pi\)
0.626935 + 0.779071i \(0.284309\pi\)
\(230\) −3409.16 −0.977363
\(231\) 0 0
\(232\) 617.655 0.174789
\(233\) 2458.25 0.691182 0.345591 0.938385i \(-0.387679\pi\)
0.345591 + 0.938385i \(0.387679\pi\)
\(234\) −2338.97 −0.653432
\(235\) −37.4517 −0.0103961
\(236\) 9144.36 2.52223
\(237\) −1029.08 −0.282050
\(238\) 0 0
\(239\) 322.304 0.0872307 0.0436154 0.999048i \(-0.486112\pi\)
0.0436154 + 0.999048i \(0.486112\pi\)
\(240\) −388.640 −0.104527
\(241\) −5011.24 −1.33943 −0.669714 0.742619i \(-0.733583\pi\)
−0.669714 + 0.742619i \(0.733583\pi\)
\(242\) 5875.23 1.56064
\(243\) 3767.85 0.994682
\(244\) −8695.53 −2.28145
\(245\) 0 0
\(246\) 1365.91 0.354012
\(247\) −1389.52 −0.357947
\(248\) −1160.34 −0.297104
\(249\) −3067.31 −0.780654
\(250\) −551.777 −0.139590
\(251\) 3936.95 0.990031 0.495015 0.868884i \(-0.335162\pi\)
0.495015 + 0.868884i \(0.335162\pi\)
\(252\) 0 0
\(253\) −21.9547 −0.00545565
\(254\) 8597.23 2.12377
\(255\) −1854.26 −0.455367
\(256\) −1318.94 −0.322008
\(257\) −3626.16 −0.880131 −0.440066 0.897966i \(-0.645045\pi\)
−0.440066 + 0.897966i \(0.645045\pi\)
\(258\) 4867.68 1.17461
\(259\) 0 0
\(260\) −1845.81 −0.440277
\(261\) 661.838 0.156961
\(262\) −4686.33 −1.10505
\(263\) −786.555 −0.184415 −0.0922074 0.995740i \(-0.529392\pi\)
−0.0922074 + 0.995740i \(0.529392\pi\)
\(264\) 7.09076 0.00165305
\(265\) −3384.09 −0.784465
\(266\) 0 0
\(267\) 2539.65 0.582113
\(268\) −8505.78 −1.93871
\(269\) 4057.94 0.919766 0.459883 0.887979i \(-0.347891\pi\)
0.459883 + 0.887979i \(0.347891\pi\)
\(270\) 3112.18 0.701486
\(271\) 2899.42 0.649916 0.324958 0.945728i \(-0.394650\pi\)
0.324958 + 0.945728i \(0.394650\pi\)
\(272\) 2741.45 0.611122
\(273\) 0 0
\(274\) 6353.56 1.40085
\(275\) −3.55339 −0.000779191 0
\(276\) 5752.61 1.25459
\(277\) 5293.96 1.14831 0.574157 0.818745i \(-0.305330\pi\)
0.574157 + 0.818745i \(0.305330\pi\)
\(278\) −2922.79 −0.630566
\(279\) −1243.34 −0.266799
\(280\) 0 0
\(281\) 2359.40 0.500890 0.250445 0.968131i \(-0.419423\pi\)
0.250445 + 0.968131i \(0.419423\pi\)
\(282\) 107.214 0.0226402
\(283\) −2881.35 −0.605224 −0.302612 0.953114i \(-0.597859\pi\)
−0.302612 + 0.953114i \(0.597859\pi\)
\(284\) 425.245 0.0888510
\(285\) 700.904 0.145677
\(286\) −20.1665 −0.00416948
\(287\) 0 0
\(288\) −3773.31 −0.772028
\(289\) 8166.93 1.66231
\(290\) 886.091 0.179424
\(291\) 1274.70 0.256785
\(292\) 928.897 0.186163
\(293\) 760.730 0.151680 0.0758402 0.997120i \(-0.475836\pi\)
0.0758402 + 0.997120i \(0.475836\pi\)
\(294\) 0 0
\(295\) 3980.90 0.785685
\(296\) 6159.03 1.20941
\(297\) 20.0421 0.00391570
\(298\) 3474.47 0.675405
\(299\) −4964.77 −0.960268
\(300\) 931.066 0.179184
\(301\) 0 0
\(302\) 3744.82 0.713544
\(303\) 1473.59 0.279391
\(304\) −1036.26 −0.195505
\(305\) −3785.51 −0.710681
\(306\) −8322.47 −1.55478
\(307\) −4968.57 −0.923685 −0.461842 0.886962i \(-0.652811\pi\)
−0.461842 + 0.886962i \(0.652811\pi\)
\(308\) 0 0
\(309\) −2281.84 −0.420096
\(310\) −1664.63 −0.304983
\(311\) −5033.96 −0.917845 −0.458922 0.888476i \(-0.651764\pi\)
−0.458922 + 0.888476i \(0.651764\pi\)
\(312\) 1603.48 0.290960
\(313\) 3599.20 0.649965 0.324983 0.945720i \(-0.394642\pi\)
0.324983 + 0.945720i \(0.394642\pi\)
\(314\) −4215.23 −0.757577
\(315\) 0 0
\(316\) −3644.95 −0.648875
\(317\) 3541.56 0.627488 0.313744 0.949508i \(-0.398417\pi\)
0.313744 + 0.949508i \(0.398417\pi\)
\(318\) 9687.78 1.70838
\(319\) 5.70635 0.00100155
\(320\) −4093.01 −0.715020
\(321\) 3096.71 0.538447
\(322\) 0 0
\(323\) −4944.16 −0.851704
\(324\) −139.350 −0.0238940
\(325\) −803.553 −0.137148
\(326\) 32.5072 0.00552272
\(327\) 936.886 0.158440
\(328\) 1468.11 0.247143
\(329\) 0 0
\(330\) 10.1724 0.00169689
\(331\) −7357.96 −1.22184 −0.610922 0.791691i \(-0.709201\pi\)
−0.610922 + 0.791691i \(0.709201\pi\)
\(332\) −10864.3 −1.79594
\(333\) 6599.60 1.08605
\(334\) −12895.7 −2.11264
\(335\) −3702.90 −0.603914
\(336\) 0 0
\(337\) −2323.24 −0.375534 −0.187767 0.982214i \(-0.560125\pi\)
−0.187767 + 0.982214i \(0.560125\pi\)
\(338\) 5137.63 0.826776
\(339\) 4057.32 0.650039
\(340\) −6567.72 −1.04760
\(341\) −10.7201 −0.00170242
\(342\) 3145.86 0.497394
\(343\) 0 0
\(344\) 5231.92 0.820018
\(345\) 2504.34 0.390809
\(346\) 17522.5 2.72259
\(347\) −5447.79 −0.842803 −0.421401 0.906874i \(-0.638462\pi\)
−0.421401 + 0.906874i \(0.638462\pi\)
\(348\) −1495.19 −0.230317
\(349\) −1227.84 −0.188324 −0.0941618 0.995557i \(-0.530017\pi\)
−0.0941618 + 0.995557i \(0.530017\pi\)
\(350\) 0 0
\(351\) 4532.27 0.689216
\(352\) −32.5333 −0.00492623
\(353\) 1981.86 0.298821 0.149411 0.988775i \(-0.452262\pi\)
0.149411 + 0.988775i \(0.452262\pi\)
\(354\) −11396.3 −1.71104
\(355\) 185.126 0.0276774
\(356\) 8995.33 1.33919
\(357\) 0 0
\(358\) 4881.90 0.720717
\(359\) −12218.1 −1.79622 −0.898112 0.439768i \(-0.855061\pi\)
−0.898112 + 0.439768i \(0.855061\pi\)
\(360\) 1268.11 0.185654
\(361\) −4990.13 −0.727530
\(362\) 517.406 0.0751222
\(363\) −4315.89 −0.624037
\(364\) 0 0
\(365\) 404.386 0.0579905
\(366\) 10836.9 1.54769
\(367\) 13647.7 1.94115 0.970577 0.240789i \(-0.0774062\pi\)
0.970577 + 0.240789i \(0.0774062\pi\)
\(368\) −3702.56 −0.524482
\(369\) 1573.13 0.221935
\(370\) 8835.78 1.24149
\(371\) 0 0
\(372\) 2808.89 0.391490
\(373\) −5544.03 −0.769594 −0.384797 0.923001i \(-0.625729\pi\)
−0.384797 + 0.923001i \(0.625729\pi\)
\(374\) −71.7561 −0.00992091
\(375\) 405.330 0.0558164
\(376\) 115.237 0.0158056
\(377\) 1290.42 0.176286
\(378\) 0 0
\(379\) −634.243 −0.0859601 −0.0429801 0.999076i \(-0.513685\pi\)
−0.0429801 + 0.999076i \(0.513685\pi\)
\(380\) 2482.57 0.335140
\(381\) −6315.45 −0.849213
\(382\) −4425.69 −0.592769
\(383\) 5790.93 0.772592 0.386296 0.922375i \(-0.373754\pi\)
0.386296 + 0.922375i \(0.373754\pi\)
\(384\) 5779.58 0.768068
\(385\) 0 0
\(386\) −14380.5 −1.89623
\(387\) 5606.17 0.736376
\(388\) 4514.94 0.590751
\(389\) 1516.99 0.197724 0.0988619 0.995101i \(-0.468480\pi\)
0.0988619 + 0.995101i \(0.468480\pi\)
\(390\) 2300.37 0.298676
\(391\) −17665.6 −2.28487
\(392\) 0 0
\(393\) 3442.53 0.441865
\(394\) 184.053 0.0235341
\(395\) −1586.79 −0.202127
\(396\) 26.9117 0.00341506
\(397\) −7874.94 −0.995547 −0.497773 0.867307i \(-0.665849\pi\)
−0.497773 + 0.867307i \(0.665849\pi\)
\(398\) −10618.9 −1.33738
\(399\) 0 0
\(400\) −599.264 −0.0749080
\(401\) −11111.3 −1.38372 −0.691859 0.722033i \(-0.743208\pi\)
−0.691859 + 0.722033i \(0.743208\pi\)
\(402\) 10600.5 1.31518
\(403\) −2424.20 −0.299648
\(404\) 5219.39 0.642758
\(405\) −60.6645 −0.00744307
\(406\) 0 0
\(407\) 56.9016 0.00692999
\(408\) 5705.49 0.692313
\(409\) −10710.1 −1.29482 −0.647411 0.762141i \(-0.724148\pi\)
−0.647411 + 0.762141i \(0.724148\pi\)
\(410\) 2106.16 0.253697
\(411\) −4667.27 −0.560145
\(412\) −8082.19 −0.966458
\(413\) 0 0
\(414\) 11240.2 1.33436
\(415\) −4729.64 −0.559444
\(416\) −7356.99 −0.867082
\(417\) 2147.06 0.252139
\(418\) 27.1235 0.00317381
\(419\) 8615.98 1.00458 0.502289 0.864700i \(-0.332491\pi\)
0.502289 + 0.864700i \(0.332491\pi\)
\(420\) 0 0
\(421\) 6689.72 0.774435 0.387217 0.921988i \(-0.373436\pi\)
0.387217 + 0.921988i \(0.373436\pi\)
\(422\) −5346.67 −0.616758
\(423\) 123.480 0.0141934
\(424\) 10412.7 1.19265
\(425\) −2859.19 −0.326332
\(426\) −529.969 −0.0602748
\(427\) 0 0
\(428\) 10968.4 1.23873
\(429\) 14.8141 0.00166721
\(430\) 7505.73 0.841764
\(431\) 6170.64 0.689627 0.344814 0.938671i \(-0.387942\pi\)
0.344814 + 0.938671i \(0.387942\pi\)
\(432\) 3380.02 0.376438
\(433\) 14001.1 1.55392 0.776961 0.629548i \(-0.216760\pi\)
0.776961 + 0.629548i \(0.216760\pi\)
\(434\) 0 0
\(435\) −650.914 −0.0717447
\(436\) 3318.41 0.364502
\(437\) 6677.50 0.730957
\(438\) −1157.65 −0.126289
\(439\) 12207.0 1.32712 0.663562 0.748121i \(-0.269044\pi\)
0.663562 + 0.748121i \(0.269044\pi\)
\(440\) 10.9336 0.00118464
\(441\) 0 0
\(442\) −16226.7 −1.74621
\(443\) 1227.76 0.131677 0.0658384 0.997830i \(-0.479028\pi\)
0.0658384 + 0.997830i \(0.479028\pi\)
\(444\) −14909.5 −1.59363
\(445\) 3916.03 0.417163
\(446\) −18385.1 −1.95193
\(447\) −2552.32 −0.270068
\(448\) 0 0
\(449\) −1151.70 −0.121051 −0.0605257 0.998167i \(-0.519278\pi\)
−0.0605257 + 0.998167i \(0.519278\pi\)
\(450\) 1819.24 0.190577
\(451\) 13.5635 0.00141614
\(452\) 14370.8 1.49546
\(453\) −2750.91 −0.285318
\(454\) −10401.0 −1.07520
\(455\) 0 0
\(456\) −2156.65 −0.221479
\(457\) 18713.8 1.91553 0.957763 0.287558i \(-0.0928433\pi\)
0.957763 + 0.287558i \(0.0928433\pi\)
\(458\) −19180.5 −1.95687
\(459\) 16126.6 1.63993
\(460\) 8870.25 0.899082
\(461\) −3154.57 −0.318705 −0.159352 0.987222i \(-0.550941\pi\)
−0.159352 + 0.987222i \(0.550941\pi\)
\(462\) 0 0
\(463\) 4051.11 0.406633 0.203316 0.979113i \(-0.434828\pi\)
0.203316 + 0.979113i \(0.434828\pi\)
\(464\) 962.351 0.0962845
\(465\) 1222.82 0.121951
\(466\) −10851.2 −1.07870
\(467\) 16341.6 1.61927 0.809635 0.586934i \(-0.199665\pi\)
0.809635 + 0.586934i \(0.199665\pi\)
\(468\) 6085.73 0.601096
\(469\) 0 0
\(470\) 165.320 0.0162247
\(471\) 3096.47 0.302925
\(472\) −12249.1 −1.19451
\(473\) 48.3362 0.00469873
\(474\) 4542.57 0.440184
\(475\) 1080.76 0.104397
\(476\) 0 0
\(477\) 11157.5 1.07100
\(478\) −1422.72 −0.136138
\(479\) 2531.45 0.241472 0.120736 0.992685i \(-0.461475\pi\)
0.120736 + 0.992685i \(0.461475\pi\)
\(480\) 3711.03 0.352885
\(481\) 12867.6 1.21977
\(482\) 22120.7 2.09039
\(483\) 0 0
\(484\) −15286.7 −1.43564
\(485\) 1965.53 0.184021
\(486\) −16632.1 −1.55236
\(487\) −8442.18 −0.785527 −0.392763 0.919640i \(-0.628481\pi\)
−0.392763 + 0.919640i \(0.628481\pi\)
\(488\) 11647.8 1.08048
\(489\) −23.8795 −0.00220832
\(490\) 0 0
\(491\) −15223.9 −1.39928 −0.699640 0.714496i \(-0.746656\pi\)
−0.699640 + 0.714496i \(0.746656\pi\)
\(492\) −3553.93 −0.325658
\(493\) 4591.53 0.419457
\(494\) 6133.63 0.558634
\(495\) 11.7157 0.00106380
\(496\) −1807.89 −0.163663
\(497\) 0 0
\(498\) 13539.8 1.21833
\(499\) −16622.6 −1.49125 −0.745623 0.666368i \(-0.767848\pi\)
−0.745623 + 0.666368i \(0.767848\pi\)
\(500\) 1435.66 0.128409
\(501\) 9473.06 0.844760
\(502\) −17378.5 −1.54510
\(503\) −17506.6 −1.55185 −0.775923 0.630828i \(-0.782715\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(504\) 0 0
\(505\) 2272.21 0.200222
\(506\) 96.9127 0.00851442
\(507\) −3774.05 −0.330595
\(508\) −22369.0 −1.95367
\(509\) 12383.2 1.07834 0.539169 0.842198i \(-0.318739\pi\)
0.539169 + 0.842198i \(0.318739\pi\)
\(510\) 8185.12 0.710673
\(511\) 0 0
\(512\) −8436.86 −0.728242
\(513\) −6095.80 −0.524632
\(514\) 16006.7 1.37359
\(515\) −3518.50 −0.301055
\(516\) −12665.1 −1.08053
\(517\) 1.06464 9.05666e−5 0
\(518\) 0 0
\(519\) −12871.9 −1.08866
\(520\) 2472.50 0.208512
\(521\) −14979.0 −1.25958 −0.629790 0.776765i \(-0.716859\pi\)
−0.629790 + 0.776765i \(0.716859\pi\)
\(522\) −2921.49 −0.244962
\(523\) 3719.11 0.310947 0.155474 0.987840i \(-0.450310\pi\)
0.155474 + 0.987840i \(0.450310\pi\)
\(524\) 12193.3 1.01654
\(525\) 0 0
\(526\) 3472.02 0.287809
\(527\) −8625.75 −0.712986
\(528\) 11.0479 0.000910603 0
\(529\) 11691.8 0.960945
\(530\) 14938.1 1.22428
\(531\) −13125.3 −1.07267
\(532\) 0 0
\(533\) 3067.21 0.249260
\(534\) −11210.6 −0.908481
\(535\) 4774.99 0.385870
\(536\) 11393.7 0.918156
\(537\) −3586.20 −0.288186
\(538\) −17912.6 −1.43544
\(539\) 0 0
\(540\) −8097.53 −0.645301
\(541\) −244.726 −0.0194484 −0.00972420 0.999953i \(-0.503095\pi\)
−0.00972420 + 0.999953i \(0.503095\pi\)
\(542\) −12798.7 −1.01430
\(543\) −380.081 −0.0300384
\(544\) −26177.5 −2.06315
\(545\) 1444.63 0.113544
\(546\) 0 0
\(547\) −12685.4 −0.991568 −0.495784 0.868446i \(-0.665119\pi\)
−0.495784 + 0.868446i \(0.665119\pi\)
\(548\) −16531.3 −1.28865
\(549\) 12481.0 0.970269
\(550\) 15.6854 0.00121605
\(551\) −1735.58 −0.134189
\(552\) −7705.74 −0.594163
\(553\) 0 0
\(554\) −23368.7 −1.79213
\(555\) −6490.68 −0.496422
\(556\) 7604.77 0.580062
\(557\) −22062.7 −1.67833 −0.839164 0.543879i \(-0.816955\pi\)
−0.839164 + 0.543879i \(0.816955\pi\)
\(558\) 5488.38 0.416383
\(559\) 10930.6 0.827040
\(560\) 0 0
\(561\) 52.7114 0.00396698
\(562\) −10414.9 −0.781719
\(563\) 7862.20 0.588547 0.294274 0.955721i \(-0.404922\pi\)
0.294274 + 0.955721i \(0.404922\pi\)
\(564\) −278.960 −0.0208268
\(565\) 6256.19 0.465841
\(566\) 12718.9 0.944549
\(567\) 0 0
\(568\) −569.625 −0.0420791
\(569\) 20941.5 1.54291 0.771453 0.636286i \(-0.219530\pi\)
0.771453 + 0.636286i \(0.219530\pi\)
\(570\) −3093.94 −0.227352
\(571\) −7131.66 −0.522681 −0.261341 0.965247i \(-0.584165\pi\)
−0.261341 + 0.965247i \(0.584165\pi\)
\(572\) 52.4710 0.00383553
\(573\) 3251.07 0.237025
\(574\) 0 0
\(575\) 3861.57 0.280067
\(576\) 13494.9 0.976193
\(577\) −15633.0 −1.12792 −0.563961 0.825801i \(-0.690723\pi\)
−0.563961 + 0.825801i \(0.690723\pi\)
\(578\) −36050.6 −2.59430
\(579\) 10563.7 0.758229
\(580\) −2305.51 −0.165054
\(581\) 0 0
\(582\) −5626.82 −0.400754
\(583\) 96.2000 0.00683396
\(584\) −1244.28 −0.0881654
\(585\) 2649.36 0.187244
\(586\) −3358.03 −0.236721
\(587\) −19406.2 −1.36453 −0.682266 0.731104i \(-0.739005\pi\)
−0.682266 + 0.731104i \(0.739005\pi\)
\(588\) 0 0
\(589\) 3260.50 0.228093
\(590\) −17572.6 −1.22619
\(591\) −135.204 −0.00941038
\(592\) 9596.21 0.666219
\(593\) −14859.6 −1.02903 −0.514513 0.857483i \(-0.672027\pi\)
−0.514513 + 0.857483i \(0.672027\pi\)
\(594\) −88.4703 −0.00611108
\(595\) 0 0
\(596\) −9040.18 −0.621309
\(597\) 7800.54 0.534765
\(598\) 21915.6 1.49865
\(599\) −10529.9 −0.718261 −0.359131 0.933287i \(-0.616927\pi\)
−0.359131 + 0.933287i \(0.616927\pi\)
\(600\) −1247.18 −0.0848600
\(601\) 11595.2 0.786984 0.393492 0.919328i \(-0.371267\pi\)
0.393492 + 0.919328i \(0.371267\pi\)
\(602\) 0 0
\(603\) 12208.7 0.824504
\(604\) −9743.60 −0.656393
\(605\) −6654.90 −0.447207
\(606\) −6504.74 −0.436035
\(607\) −23282.1 −1.55682 −0.778411 0.627755i \(-0.783974\pi\)
−0.778411 + 0.627755i \(0.783974\pi\)
\(608\) 9894.99 0.660024
\(609\) 0 0
\(610\) 16710.0 1.10913
\(611\) 240.755 0.0159409
\(612\) 21654.1 1.43026
\(613\) −7387.98 −0.486782 −0.243391 0.969928i \(-0.578260\pi\)
−0.243391 + 0.969928i \(0.578260\pi\)
\(614\) 21932.3 1.44156
\(615\) −1547.17 −0.101444
\(616\) 0 0
\(617\) 667.085 0.0435265 0.0217632 0.999763i \(-0.493072\pi\)
0.0217632 + 0.999763i \(0.493072\pi\)
\(618\) 10072.5 0.655627
\(619\) −9425.78 −0.612042 −0.306021 0.952025i \(-0.598998\pi\)
−0.306021 + 0.952025i \(0.598998\pi\)
\(620\) 4331.18 0.280555
\(621\) −21780.4 −1.40743
\(622\) 22221.0 1.43244
\(623\) 0 0
\(624\) 2498.34 0.160278
\(625\) 625.000 0.0400000
\(626\) −15887.7 −1.01437
\(627\) −19.9247 −0.00126908
\(628\) 10967.5 0.696899
\(629\) 45785.1 2.90234
\(630\) 0 0
\(631\) 28047.3 1.76949 0.884744 0.466078i \(-0.154333\pi\)
0.884744 + 0.466078i \(0.154333\pi\)
\(632\) 4882.49 0.307302
\(633\) 3927.61 0.246617
\(634\) −15633.2 −0.979295
\(635\) −9738.12 −0.608576
\(636\) −25206.5 −1.57155
\(637\) 0 0
\(638\) −25.1890 −0.00156308
\(639\) −610.372 −0.0377871
\(640\) 8911.85 0.550425
\(641\) 23208.3 1.43007 0.715034 0.699090i \(-0.246411\pi\)
0.715034 + 0.699090i \(0.246411\pi\)
\(642\) −13669.5 −0.840333
\(643\) −4294.22 −0.263371 −0.131686 0.991292i \(-0.542039\pi\)
−0.131686 + 0.991292i \(0.542039\pi\)
\(644\) 0 0
\(645\) −5513.64 −0.336588
\(646\) 21824.6 1.32922
\(647\) −17393.4 −1.05689 −0.528443 0.848969i \(-0.677224\pi\)
−0.528443 + 0.848969i \(0.677224\pi\)
\(648\) 186.662 0.0113160
\(649\) −113.166 −0.00684459
\(650\) 3547.06 0.214042
\(651\) 0 0
\(652\) −84.5801 −0.00508039
\(653\) 14475.4 0.867486 0.433743 0.901037i \(-0.357193\pi\)
0.433743 + 0.901037i \(0.357193\pi\)
\(654\) −4135.61 −0.247271
\(655\) 5308.23 0.316656
\(656\) 2287.42 0.136142
\(657\) −1333.28 −0.0791725
\(658\) 0 0
\(659\) 620.113 0.0366558 0.0183279 0.999832i \(-0.494166\pi\)
0.0183279 + 0.999832i \(0.494166\pi\)
\(660\) −26.4675 −0.00156098
\(661\) 6105.50 0.359268 0.179634 0.983733i \(-0.442509\pi\)
0.179634 + 0.983733i \(0.442509\pi\)
\(662\) 32479.6 1.90688
\(663\) 11920.0 0.698242
\(664\) 14552.9 0.850546
\(665\) 0 0
\(666\) −29132.1 −1.69496
\(667\) −6201.25 −0.359990
\(668\) 33553.1 1.94343
\(669\) 13505.6 0.780500
\(670\) 16345.4 0.942505
\(671\) 107.611 0.00619118
\(672\) 0 0
\(673\) −16302.5 −0.933754 −0.466877 0.884322i \(-0.654621\pi\)
−0.466877 + 0.884322i \(0.654621\pi\)
\(674\) 10255.3 0.586081
\(675\) −3525.18 −0.201014
\(676\) −13367.5 −0.760556
\(677\) −4819.09 −0.273579 −0.136789 0.990600i \(-0.543678\pi\)
−0.136789 + 0.990600i \(0.543678\pi\)
\(678\) −17909.9 −1.01449
\(679\) 0 0
\(680\) 8797.59 0.496136
\(681\) 7640.45 0.429930
\(682\) 47.3206 0.00265689
\(683\) −8190.32 −0.458849 −0.229425 0.973326i \(-0.573684\pi\)
−0.229425 + 0.973326i \(0.573684\pi\)
\(684\) −8185.17 −0.457555
\(685\) −7196.71 −0.401419
\(686\) 0 0
\(687\) 14089.8 0.782473
\(688\) 8151.69 0.451716
\(689\) 21754.4 1.20287
\(690\) −11054.7 −0.609920
\(691\) 476.973 0.0262589 0.0131295 0.999914i \(-0.495821\pi\)
0.0131295 + 0.999914i \(0.495821\pi\)
\(692\) −45591.6 −2.50453
\(693\) 0 0
\(694\) 24047.7 1.31533
\(695\) 3310.66 0.180691
\(696\) 2002.83 0.109077
\(697\) 10913.7 0.593092
\(698\) 5419.96 0.293909
\(699\) 7971.22 0.431329
\(700\) 0 0
\(701\) −20366.7 −1.09735 −0.548673 0.836037i \(-0.684867\pi\)
−0.548673 + 0.836037i \(0.684867\pi\)
\(702\) −20006.4 −1.07563
\(703\) −17306.6 −0.928492
\(704\) 116.353 0.00622898
\(705\) −121.442 −0.00648763
\(706\) −8748.36 −0.466358
\(707\) 0 0
\(708\) 29651.9 1.57399
\(709\) 22415.1 1.18733 0.593664 0.804713i \(-0.297681\pi\)
0.593664 + 0.804713i \(0.297681\pi\)
\(710\) −817.187 −0.0431950
\(711\) 5231.74 0.275957
\(712\) −12049.4 −0.634230
\(713\) 11649.8 0.611906
\(714\) 0 0
\(715\) 22.8427 0.00119478
\(716\) −12702.2 −0.662992
\(717\) 1045.12 0.0544360
\(718\) 53933.1 2.80329
\(719\) −26156.0 −1.35668 −0.678340 0.734748i \(-0.737300\pi\)
−0.678340 + 0.734748i \(0.737300\pi\)
\(720\) 1975.81 0.102269
\(721\) 0 0
\(722\) 22027.5 1.13543
\(723\) −16249.6 −0.835866
\(724\) −1346.23 −0.0691053
\(725\) −1003.68 −0.0514148
\(726\) 19051.3 0.973910
\(727\) −13666.2 −0.697184 −0.348592 0.937275i \(-0.613340\pi\)
−0.348592 + 0.937275i \(0.613340\pi\)
\(728\) 0 0
\(729\) 12545.4 0.637371
\(730\) −1785.05 −0.0905035
\(731\) 38893.1 1.96787
\(732\) −28196.5 −1.42373
\(733\) 25038.2 1.26167 0.630836 0.775916i \(-0.282712\pi\)
0.630836 + 0.775916i \(0.282712\pi\)
\(734\) −60243.8 −3.02948
\(735\) 0 0
\(736\) 35354.9 1.77065
\(737\) 105.263 0.00526107
\(738\) −6944.14 −0.346365
\(739\) 3255.20 0.162036 0.0810178 0.996713i \(-0.474183\pi\)
0.0810178 + 0.996713i \(0.474183\pi\)
\(740\) −22989.7 −1.14205
\(741\) −4505.71 −0.223376
\(742\) 0 0
\(743\) −8366.48 −0.413104 −0.206552 0.978436i \(-0.566224\pi\)
−0.206552 + 0.978436i \(0.566224\pi\)
\(744\) −3762.57 −0.185406
\(745\) −3935.55 −0.193540
\(746\) 24472.5 1.20108
\(747\) 15593.9 0.763790
\(748\) 186.701 0.00912630
\(749\) 0 0
\(750\) −1789.21 −0.0871105
\(751\) −10164.5 −0.493884 −0.246942 0.969030i \(-0.579426\pi\)
−0.246942 + 0.969030i \(0.579426\pi\)
\(752\) 179.547 0.00870668
\(753\) 12766.1 0.617825
\(754\) −5696.17 −0.275123
\(755\) −4241.77 −0.204469
\(756\) 0 0
\(757\) 9031.23 0.433614 0.216807 0.976214i \(-0.430436\pi\)
0.216807 + 0.976214i \(0.430436\pi\)
\(758\) 2799.68 0.134155
\(759\) −71.1912 −0.00340458
\(760\) −3325.45 −0.158720
\(761\) −32434.7 −1.54502 −0.772508 0.635005i \(-0.780998\pi\)
−0.772508 + 0.635005i \(0.780998\pi\)
\(762\) 27877.7 1.32533
\(763\) 0 0
\(764\) 11515.1 0.545292
\(765\) 9426.90 0.445530
\(766\) −25562.4 −1.20575
\(767\) −25591.0 −1.20474
\(768\) −4276.86 −0.200948
\(769\) −22629.4 −1.06117 −0.530583 0.847633i \(-0.678027\pi\)
−0.530583 + 0.847633i \(0.678027\pi\)
\(770\) 0 0
\(771\) −11758.3 −0.549243
\(772\) 37416.3 1.74436
\(773\) 2707.01 0.125956 0.0629782 0.998015i \(-0.479940\pi\)
0.0629782 + 0.998015i \(0.479940\pi\)
\(774\) −24746.8 −1.14923
\(775\) 1885.53 0.0873940
\(776\) −6047.86 −0.279775
\(777\) 0 0
\(778\) −6696.33 −0.308580
\(779\) −4125.33 −0.189737
\(780\) −5985.29 −0.274754
\(781\) −5.26261 −0.000241115 0
\(782\) 77979.5 3.56591
\(783\) 5661.04 0.258377
\(784\) 0 0
\(785\) 4774.61 0.217087
\(786\) −15196.1 −0.689601
\(787\) −25084.6 −1.13618 −0.568088 0.822968i \(-0.692317\pi\)
−0.568088 + 0.822968i \(0.692317\pi\)
\(788\) −478.885 −0.0216492
\(789\) −2550.52 −0.115083
\(790\) 7004.44 0.315451
\(791\) 0 0
\(792\) −36.0488 −0.00161735
\(793\) 24334.9 1.08973
\(794\) 34761.7 1.55371
\(795\) −10973.4 −0.489542
\(796\) 27629.1 1.23026
\(797\) 7374.99 0.327774 0.163887 0.986479i \(-0.447597\pi\)
0.163887 + 0.986479i \(0.447597\pi\)
\(798\) 0 0
\(799\) 856.651 0.0379301
\(800\) 5722.23 0.252889
\(801\) −12911.4 −0.569539
\(802\) 49047.5 2.15951
\(803\) −11.4955 −0.000505191 0
\(804\) −27581.2 −1.20984
\(805\) 0 0
\(806\) 10701.0 0.467649
\(807\) 13158.5 0.573977
\(808\) −6991.48 −0.304405
\(809\) 2314.37 0.100580 0.0502899 0.998735i \(-0.483985\pi\)
0.0502899 + 0.998735i \(0.483985\pi\)
\(810\) 267.786 0.0116161
\(811\) 38300.1 1.65832 0.829160 0.559011i \(-0.188819\pi\)
0.829160 + 0.559011i \(0.188819\pi\)
\(812\) 0 0
\(813\) 9401.78 0.405578
\(814\) −251.176 −0.0108154
\(815\) −36.8211 −0.00158256
\(816\) 8889.55 0.381368
\(817\) −14701.4 −0.629544
\(818\) 47276.8 2.02078
\(819\) 0 0
\(820\) −5480.00 −0.233378
\(821\) 3942.93 0.167612 0.0838059 0.996482i \(-0.473292\pi\)
0.0838059 + 0.996482i \(0.473292\pi\)
\(822\) 20602.3 0.874195
\(823\) 18502.8 0.783679 0.391839 0.920034i \(-0.371839\pi\)
0.391839 + 0.920034i \(0.371839\pi\)
\(824\) 10826.3 0.457707
\(825\) −11.5224 −0.000486251 0
\(826\) 0 0
\(827\) −11965.2 −0.503110 −0.251555 0.967843i \(-0.580942\pi\)
−0.251555 + 0.967843i \(0.580942\pi\)
\(828\) −29245.7 −1.22749
\(829\) −35962.9 −1.50669 −0.753344 0.657626i \(-0.771561\pi\)
−0.753344 + 0.657626i \(0.771561\pi\)
\(830\) 20877.7 0.873101
\(831\) 17166.4 0.716602
\(832\) 26311.6 1.09638
\(833\) 0 0
\(834\) −9477.56 −0.393503
\(835\) 14607.0 0.605385
\(836\) −70.5723 −0.00291961
\(837\) −10634.9 −0.439185
\(838\) −38032.8 −1.56780
\(839\) −20174.0 −0.830137 −0.415069 0.909790i \(-0.636242\pi\)
−0.415069 + 0.909790i \(0.636242\pi\)
\(840\) 0 0
\(841\) −22777.2 −0.933913
\(842\) −29529.9 −1.20863
\(843\) 7650.69 0.312579
\(844\) 13911.4 0.567359
\(845\) −5819.42 −0.236916
\(846\) −545.068 −0.0221511
\(847\) 0 0
\(848\) 16223.7 0.656987
\(849\) −9343.17 −0.377688
\(850\) 12621.1 0.509293
\(851\) −61836.6 −2.49087
\(852\) 1378.92 0.0554471
\(853\) 25297.5 1.01544 0.507719 0.861523i \(-0.330489\pi\)
0.507719 + 0.861523i \(0.330489\pi\)
\(854\) 0 0
\(855\) −3563.33 −0.142530
\(856\) −14692.4 −0.586655
\(857\) 39269.1 1.56523 0.782617 0.622504i \(-0.213884\pi\)
0.782617 + 0.622504i \(0.213884\pi\)
\(858\) −65.3928 −0.00260195
\(859\) −14499.1 −0.575905 −0.287953 0.957645i \(-0.592975\pi\)
−0.287953 + 0.957645i \(0.592975\pi\)
\(860\) −19529.1 −0.774343
\(861\) 0 0
\(862\) −27238.5 −1.07627
\(863\) −24411.3 −0.962884 −0.481442 0.876478i \(-0.659887\pi\)
−0.481442 + 0.876478i \(0.659887\pi\)
\(864\) −32275.0 −1.27086
\(865\) −19847.8 −0.780170
\(866\) −61803.7 −2.42515
\(867\) 26482.4 1.03736
\(868\) 0 0
\(869\) 45.1079 0.00176085
\(870\) 2873.28 0.111969
\(871\) 23803.8 0.926019
\(872\) −4445.07 −0.172625
\(873\) −6480.48 −0.251238
\(874\) −29475.9 −1.14078
\(875\) 0 0
\(876\) 3012.08 0.116174
\(877\) −5056.65 −0.194699 −0.0973494 0.995250i \(-0.531036\pi\)
−0.0973494 + 0.995250i \(0.531036\pi\)
\(878\) −53884.2 −2.07119
\(879\) 2466.77 0.0946556
\(880\) 17.0354 0.000652570 0
\(881\) 13233.9 0.506086 0.253043 0.967455i \(-0.418569\pi\)
0.253043 + 0.967455i \(0.418569\pi\)
\(882\) 0 0
\(883\) −13824.2 −0.526866 −0.263433 0.964678i \(-0.584855\pi\)
−0.263433 + 0.964678i \(0.584855\pi\)
\(884\) 42220.1 1.60635
\(885\) 12908.6 0.490304
\(886\) −5419.61 −0.205503
\(887\) −37819.3 −1.43162 −0.715811 0.698294i \(-0.753943\pi\)
−0.715811 + 0.698294i \(0.753943\pi\)
\(888\) 19971.5 0.754731
\(889\) 0 0
\(890\) −17286.2 −0.651049
\(891\) 1.72452 6.48412e−5 0
\(892\) 47836.0 1.79559
\(893\) −323.810 −0.0121343
\(894\) 11266.5 0.421484
\(895\) −5529.76 −0.206524
\(896\) 0 0
\(897\) −16099.0 −0.599252
\(898\) 5083.85 0.188920
\(899\) −3027.96 −0.112334
\(900\) −4733.45 −0.175313
\(901\) 77406.0 2.86212
\(902\) −59.8721 −0.00221012
\(903\) 0 0
\(904\) −19250.0 −0.708237
\(905\) −586.068 −0.0215266
\(906\) 12143.1 0.445284
\(907\) 1052.75 0.0385404 0.0192702 0.999814i \(-0.493866\pi\)
0.0192702 + 0.999814i \(0.493866\pi\)
\(908\) 27062.1 0.989083
\(909\) −7491.60 −0.273356
\(910\) 0 0
\(911\) 7854.40 0.285651 0.142825 0.989748i \(-0.454381\pi\)
0.142825 + 0.989748i \(0.454381\pi\)
\(912\) −3360.21 −0.122004
\(913\) 134.450 0.00487366
\(914\) −82606.8 −2.98949
\(915\) −12275.0 −0.443498
\(916\) 49905.4 1.80013
\(917\) 0 0
\(918\) −71186.4 −2.55937
\(919\) 4935.85 0.177169 0.0885846 0.996069i \(-0.471766\pi\)
0.0885846 + 0.996069i \(0.471766\pi\)
\(920\) −11881.9 −0.425798
\(921\) −16111.3 −0.576422
\(922\) 13924.9 0.497390
\(923\) −1190.07 −0.0424395
\(924\) 0 0
\(925\) −10008.3 −0.355753
\(926\) −17882.4 −0.634615
\(927\) 11600.7 0.411021
\(928\) −9189.27 −0.325056
\(929\) −15705.0 −0.554645 −0.277322 0.960777i \(-0.589447\pi\)
−0.277322 + 0.960777i \(0.589447\pi\)
\(930\) −5397.80 −0.190323
\(931\) 0 0
\(932\) 28233.7 0.992302
\(933\) −16323.3 −0.572778
\(934\) −72135.3 −2.52713
\(935\) 81.2785 0.00284288
\(936\) −8151.96 −0.284674
\(937\) −43806.5 −1.52732 −0.763658 0.645621i \(-0.776599\pi\)
−0.763658 + 0.645621i \(0.776599\pi\)
\(938\) 0 0
\(939\) 11670.9 0.405608
\(940\) −430.143 −0.0149252
\(941\) 4062.42 0.140734 0.0703672 0.997521i \(-0.477583\pi\)
0.0703672 + 0.997521i \(0.477583\pi\)
\(942\) −13668.5 −0.472763
\(943\) −14739.8 −0.509009
\(944\) −19084.9 −0.658009
\(945\) 0 0
\(946\) −213.366 −0.00733313
\(947\) −4860.13 −0.166772 −0.0833859 0.996517i \(-0.526573\pi\)
−0.0833859 + 0.996517i \(0.526573\pi\)
\(948\) −11819.3 −0.404928
\(949\) −2599.57 −0.0889204
\(950\) −4770.71 −0.162929
\(951\) 11484.0 0.391581
\(952\) 0 0
\(953\) −18999.6 −0.645811 −0.322906 0.946431i \(-0.604660\pi\)
−0.322906 + 0.946431i \(0.604660\pi\)
\(954\) −49251.8 −1.67147
\(955\) 5013.00 0.169861
\(956\) 3701.76 0.125234
\(957\) 18.5036 0.000625013 0
\(958\) −11174.4 −0.376855
\(959\) 0 0
\(960\) −13272.2 −0.446205
\(961\) −24102.6 −0.809057
\(962\) −56800.2 −1.90365
\(963\) −15743.4 −0.526816
\(964\) −57555.5 −1.92296
\(965\) 16288.8 0.543373
\(966\) 0 0
\(967\) −32695.1 −1.08728 −0.543641 0.839318i \(-0.682955\pi\)
−0.543641 + 0.839318i \(0.682955\pi\)
\(968\) 20476.8 0.679907
\(969\) −16032.1 −0.531503
\(970\) −8676.29 −0.287195
\(971\) −6189.69 −0.204569 −0.102285 0.994755i \(-0.532615\pi\)
−0.102285 + 0.994755i \(0.532615\pi\)
\(972\) 43274.8 1.42803
\(973\) 0 0
\(974\) 37265.6 1.22594
\(975\) −2605.63 −0.0855868
\(976\) 18148.2 0.595193
\(977\) 2142.44 0.0701563 0.0350782 0.999385i \(-0.488832\pi\)
0.0350782 + 0.999385i \(0.488832\pi\)
\(978\) 105.409 0.00344644
\(979\) −111.321 −0.00363416
\(980\) 0 0
\(981\) −4763.04 −0.155018
\(982\) 67201.7 2.18380
\(983\) 16808.2 0.545371 0.272685 0.962103i \(-0.412088\pi\)
0.272685 + 0.962103i \(0.412088\pi\)
\(984\) 4760.57 0.154229
\(985\) −208.478 −0.00674381
\(986\) −20268.0 −0.654630
\(987\) 0 0
\(988\) −15959.0 −0.513891
\(989\) −52528.4 −1.68888
\(990\) −51.7157 −0.00166024
\(991\) 21250.8 0.681185 0.340593 0.940211i \(-0.389372\pi\)
0.340593 + 0.940211i \(0.389372\pi\)
\(992\) 17263.1 0.552526
\(993\) −23859.2 −0.762487
\(994\) 0 0
\(995\) 12028.1 0.383231
\(996\) −35228.9 −1.12075
\(997\) −37639.9 −1.19566 −0.597828 0.801624i \(-0.703969\pi\)
−0.597828 + 0.801624i \(0.703969\pi\)
\(998\) 73375.9 2.32733
\(999\) 56449.8 1.78778
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.4.a.g.1.1 2
3.2 odd 2 2205.4.a.bf.1.2 2
5.4 even 2 1225.4.a.x.1.2 2
7.2 even 3 35.4.e.b.11.2 4
7.3 odd 6 245.4.e.l.226.2 4
7.4 even 3 35.4.e.b.16.2 yes 4
7.5 odd 6 245.4.e.l.116.2 4
7.6 odd 2 245.4.a.h.1.1 2
21.2 odd 6 315.4.j.c.46.1 4
21.11 odd 6 315.4.j.c.226.1 4
21.20 even 2 2205.4.a.bg.1.2 2
28.11 odd 6 560.4.q.i.401.2 4
28.23 odd 6 560.4.q.i.81.2 4
35.2 odd 12 175.4.k.c.74.1 8
35.4 even 6 175.4.e.c.51.1 4
35.9 even 6 175.4.e.c.151.1 4
35.18 odd 12 175.4.k.c.149.1 8
35.23 odd 12 175.4.k.c.74.4 8
35.32 odd 12 175.4.k.c.149.4 8
35.34 odd 2 1225.4.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.e.b.11.2 4 7.2 even 3
35.4.e.b.16.2 yes 4 7.4 even 3
175.4.e.c.51.1 4 35.4 even 6
175.4.e.c.151.1 4 35.9 even 6
175.4.k.c.74.1 8 35.2 odd 12
175.4.k.c.74.4 8 35.23 odd 12
175.4.k.c.149.1 8 35.18 odd 12
175.4.k.c.149.4 8 35.32 odd 12
245.4.a.g.1.1 2 1.1 even 1 trivial
245.4.a.h.1.1 2 7.6 odd 2
245.4.e.l.116.2 4 7.5 odd 6
245.4.e.l.226.2 4 7.3 odd 6
315.4.j.c.46.1 4 21.2 odd 6
315.4.j.c.226.1 4 21.11 odd 6
560.4.q.i.81.2 4 28.23 odd 6
560.4.q.i.401.2 4 28.11 odd 6
1225.4.a.v.1.2 2 35.34 odd 2
1225.4.a.x.1.2 2 5.4 even 2
2205.4.a.bf.1.2 2 3.2 odd 2
2205.4.a.bg.1.2 2 21.20 even 2