Properties

Label 245.4.e.m.226.3
Level $245$
Weight $4$
Character 245.226
Analytic conductor $14.455$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(116,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.116");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.5567659200.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} - 28x^{3} + 289x^{2} - 238x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.3
Root \(1.81228 + 3.13896i\) of defining polynomial
Character \(\chi\) \(=\) 245.226
Dual form 245.4.e.m.116.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.31228 - 4.00499i) q^{2} +(4.19330 + 7.26300i) q^{3} +(-6.69330 - 11.5931i) q^{4} +(-2.50000 + 4.33013i) q^{5} +38.7844 q^{6} -24.9107 q^{8} +(-21.6675 + 37.5292i) q^{9} +(11.5614 + 20.0250i) q^{10} +(15.0558 + 26.0775i) q^{11} +(56.1340 - 97.2269i) q^{12} +88.9295 q^{13} -41.9330 q^{15} +(-4.05409 + 7.02189i) q^{16} +(2.36850 + 4.10236i) q^{17} +(100.203 + 173.556i) q^{18} +(-62.4089 + 108.095i) q^{19} +66.9330 q^{20} +139.253 q^{22} +(-10.1340 + 17.5526i) q^{23} +(-104.458 - 180.926i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(205.630 - 356.162i) q^{26} -136.995 q^{27} +134.088 q^{29} +(-96.9609 + 167.941i) q^{30} +(1.01883 + 1.76467i) q^{31} +(-80.8942 - 140.113i) q^{32} +(-126.267 + 218.701i) q^{33} +21.9065 q^{34} +580.108 q^{36} +(70.5687 - 122.229i) q^{37} +(288.614 + 499.894i) q^{38} +(372.908 + 645.895i) q^{39} +(62.2766 - 107.866i) q^{40} +95.2784 q^{41} -298.646 q^{43} +(201.546 - 349.088i) q^{44} +(-108.337 - 187.646i) q^{45} +(46.8653 + 81.1730i) q^{46} +(64.5268 - 111.764i) q^{47} -68.0000 q^{48} -115.614 q^{50} +(-19.8636 + 34.4048i) q^{51} +(-595.232 - 1030.97i) q^{52} +(-194.214 - 336.389i) q^{53} +(-316.771 + 548.663i) q^{54} -150.558 q^{55} -1046.80 q^{57} +(310.049 - 537.020i) q^{58} +(-419.250 - 726.163i) q^{59} +(280.670 + 486.135i) q^{60} +(-194.711 + 337.250i) q^{61} +9.42333 q^{62} -813.067 q^{64} +(-222.324 + 385.076i) q^{65} +(583.931 + 1011.40i) q^{66} +(-348.897 - 604.307i) q^{67} +(31.7061 - 54.9166i) q^{68} -169.979 q^{69} -523.450 q^{71} +(539.752 - 934.877i) q^{72} +(-33.2342 - 57.5633i) q^{73} +(-326.350 - 565.254i) q^{74} +(104.832 - 181.575i) q^{75} +1670.89 q^{76} +3449.07 q^{78} +(263.491 - 456.380i) q^{79} +(-20.2704 - 35.1094i) q^{80} +(10.5618 + 18.2936i) q^{81} +(220.311 - 381.589i) q^{82} +70.0265 q^{83} -23.6850 q^{85} +(-690.554 + 1196.07i) q^{86} +(562.270 + 973.880i) q^{87} +(-375.051 - 649.607i) q^{88} +(4.63963 - 8.03607i) q^{89} -1002.03 q^{90} +271.319 q^{92} +(-8.54456 + 14.7996i) q^{93} +(-298.408 - 516.858i) q^{94} +(-312.045 - 540.477i) q^{95} +(678.427 - 1175.07i) q^{96} -4.19493 q^{97} -1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 2 q^{3} - 13 q^{4} - 15 q^{5} + 48 q^{6} - 30 q^{8} - 81 q^{9} + 15 q^{10} + 74 q^{11} + 152 q^{12} + 88 q^{13} + 20 q^{15} + 79 q^{16} + 52 q^{17} + 411 q^{18} - 168 q^{19} + 130 q^{20}+ \cdots - 6976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31228 4.00499i 0.817515 1.41598i −0.0899925 0.995942i \(-0.528684\pi\)
0.907508 0.420035i \(-0.137982\pi\)
\(3\) 4.19330 + 7.26300i 0.807001 + 1.39777i 0.914932 + 0.403608i \(0.132244\pi\)
−0.107932 + 0.994158i \(0.534423\pi\)
\(4\) −6.69330 11.5931i −0.836662 1.44914i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 38.7844 2.63894
\(7\) 0 0
\(8\) −24.9107 −1.10091
\(9\) −21.6675 + 37.5292i −0.802500 + 1.38997i
\(10\) 11.5614 + 20.0250i 0.365604 + 0.633245i
\(11\) 15.0558 + 26.0775i 0.412682 + 0.714786i 0.995182 0.0980443i \(-0.0312587\pi\)
−0.582500 + 0.812831i \(0.697925\pi\)
\(12\) 56.1340 97.2269i 1.35037 2.33892i
\(13\) 88.9295 1.89728 0.948639 0.316362i \(-0.102461\pi\)
0.948639 + 0.316362i \(0.102461\pi\)
\(14\) 0 0
\(15\) −41.9330 −0.721803
\(16\) −4.05409 + 7.02189i −0.0633451 + 0.109717i
\(17\) 2.36850 + 4.10236i 0.0337909 + 0.0585275i 0.882426 0.470451i \(-0.155909\pi\)
−0.848635 + 0.528978i \(0.822575\pi\)
\(18\) 100.203 + 173.556i 1.31211 + 2.27264i
\(19\) −62.4089 + 108.095i −0.753557 + 1.30520i 0.192531 + 0.981291i \(0.438330\pi\)
−0.946088 + 0.323909i \(0.895003\pi\)
\(20\) 66.9330 0.748333
\(21\) 0 0
\(22\) 139.253 1.34950
\(23\) −10.1340 + 17.5526i −0.0918731 + 0.159129i −0.908299 0.418321i \(-0.862619\pi\)
0.816426 + 0.577450i \(0.195952\pi\)
\(24\) −104.458 180.926i −0.888432 1.53881i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 205.630 356.162i 1.55105 2.68650i
\(27\) −136.995 −0.976470
\(28\) 0 0
\(29\) 134.088 0.858603 0.429301 0.903161i \(-0.358760\pi\)
0.429301 + 0.903161i \(0.358760\pi\)
\(30\) −96.9609 + 167.941i −0.590085 + 1.02206i
\(31\) 1.01883 + 1.76467i 0.00590284 + 0.0102240i 0.868962 0.494879i \(-0.164788\pi\)
−0.863059 + 0.505103i \(0.831454\pi\)
\(32\) −80.8942 140.113i −0.446882 0.774022i
\(33\) −126.267 + 218.701i −0.666069 + 1.15367i
\(34\) 21.9065 0.110498
\(35\) 0 0
\(36\) 580.108 2.68568
\(37\) 70.5687 122.229i 0.313552 0.543088i −0.665577 0.746329i \(-0.731814\pi\)
0.979129 + 0.203242i \(0.0651477\pi\)
\(38\) 288.614 + 499.894i 1.23209 + 2.13404i
\(39\) 372.908 + 645.895i 1.53110 + 2.65195i
\(40\) 62.2766 107.866i 0.246170 0.426379i
\(41\) 95.2784 0.362927 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(42\) 0 0
\(43\) −298.646 −1.05914 −0.529571 0.848266i \(-0.677647\pi\)
−0.529571 + 0.848266i \(0.677647\pi\)
\(44\) 201.546 349.088i 0.690551 1.19607i
\(45\) −108.337 187.646i −0.358889 0.621614i
\(46\) 46.8653 + 81.1730i 0.150215 + 0.260181i
\(47\) 64.5268 111.764i 0.200260 0.346860i −0.748352 0.663301i \(-0.769155\pi\)
0.948612 + 0.316442i \(0.102488\pi\)
\(48\) −68.0000 −0.204478
\(49\) 0 0
\(50\) −115.614 −0.327006
\(51\) −19.8636 + 34.4048i −0.0545385 + 0.0944635i
\(52\) −595.232 1030.97i −1.58738 2.74942i
\(53\) −194.214 336.389i −0.503347 0.871823i −0.999993 0.00386911i \(-0.998768\pi\)
0.496646 0.867953i \(-0.334565\pi\)
\(54\) −316.771 + 548.663i −0.798279 + 1.38266i
\(55\) −150.558 −0.369114
\(56\) 0 0
\(57\) −1046.80 −2.43248
\(58\) 310.049 537.020i 0.701921 1.21576i
\(59\) −419.250 726.163i −0.925114 1.60235i −0.791377 0.611329i \(-0.790635\pi\)
−0.133738 0.991017i \(-0.542698\pi\)
\(60\) 280.670 + 486.135i 0.603905 + 1.04599i
\(61\) −194.711 + 337.250i −0.408692 + 0.707875i −0.994743 0.102399i \(-0.967348\pi\)
0.586051 + 0.810274i \(0.300682\pi\)
\(62\) 9.42333 0.0193027
\(63\) 0 0
\(64\) −813.067 −1.58802
\(65\) −222.324 + 385.076i −0.424244 + 0.734812i
\(66\) 583.931 + 1011.40i 1.08904 + 1.88628i
\(67\) −348.897 604.307i −0.636187 1.10191i −0.986262 0.165187i \(-0.947177\pi\)
0.350075 0.936722i \(-0.386156\pi\)
\(68\) 31.7061 54.9166i 0.0565431 0.0979355i
\(69\) −169.979 −0.296567
\(70\) 0 0
\(71\) −523.450 −0.874959 −0.437479 0.899228i \(-0.644129\pi\)
−0.437479 + 0.899228i \(0.644129\pi\)
\(72\) 539.752 934.877i 0.883477 1.53023i
\(73\) −33.2342 57.5633i −0.0532845 0.0922915i 0.838153 0.545435i \(-0.183636\pi\)
−0.891437 + 0.453144i \(0.850302\pi\)
\(74\) −326.350 565.254i −0.512667 0.887965i
\(75\) 104.832 181.575i 0.161400 0.279553i
\(76\) 1670.89 2.52189
\(77\) 0 0
\(78\) 3449.07 5.00680
\(79\) 263.491 456.380i 0.375254 0.649959i −0.615111 0.788440i \(-0.710889\pi\)
0.990365 + 0.138482i \(0.0442222\pi\)
\(80\) −20.2704 35.1094i −0.0283288 0.0490669i
\(81\) 10.5618 + 18.2936i 0.0144881 + 0.0250941i
\(82\) 220.311 381.589i 0.296698 0.513896i
\(83\) 70.0265 0.0926074 0.0463037 0.998927i \(-0.485256\pi\)
0.0463037 + 0.998927i \(0.485256\pi\)
\(84\) 0 0
\(85\) −23.6850 −0.0302235
\(86\) −690.554 + 1196.07i −0.865864 + 1.49972i
\(87\) 562.270 + 973.880i 0.692893 + 1.20013i
\(88\) −375.051 649.607i −0.454324 0.786913i
\(89\) 4.63963 8.03607i 0.00552584 0.00957103i −0.863249 0.504778i \(-0.831574\pi\)
0.868775 + 0.495207i \(0.164908\pi\)
\(90\) −1002.03 −1.17359
\(91\) 0 0
\(92\) 271.319 0.307467
\(93\) −8.54456 + 14.7996i −0.00952720 + 0.0165016i
\(94\) −298.408 516.858i −0.327431 0.567126i
\(95\) −312.045 540.477i −0.337001 0.583703i
\(96\) 678.427 1175.07i 0.721268 1.24927i
\(97\) −4.19493 −0.00439104 −0.00219552 0.999998i \(-0.500699\pi\)
−0.00219552 + 0.999998i \(0.500699\pi\)
\(98\) 0 0
\(99\) −1304.89 −1.32471
\(100\) −167.332 + 289.828i −0.167332 + 0.289828i
\(101\) 432.922 + 749.843i 0.426508 + 0.738734i 0.996560 0.0828749i \(-0.0264102\pi\)
−0.570052 + 0.821609i \(0.693077\pi\)
\(102\) 91.8606 + 159.107i 0.0891721 + 0.154451i
\(103\) 583.058 1009.89i 0.557771 0.966088i −0.439911 0.898042i \(-0.644990\pi\)
0.997682 0.0680469i \(-0.0216768\pi\)
\(104\) −2215.29 −2.08872
\(105\) 0 0
\(106\) −1796.31 −1.64598
\(107\) −28.4826 + 49.3333i −0.0257338 + 0.0445722i −0.878606 0.477548i \(-0.841526\pi\)
0.852872 + 0.522121i \(0.174859\pi\)
\(108\) 916.948 + 1588.20i 0.816975 + 1.41504i
\(109\) 679.445 + 1176.83i 0.597055 + 1.03413i 0.993253 + 0.115965i \(0.0369959\pi\)
−0.396198 + 0.918165i \(0.629671\pi\)
\(110\) −348.133 + 602.985i −0.301756 + 0.522657i
\(111\) 1183.66 1.01215
\(112\) 0 0
\(113\) 436.038 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(114\) −2420.49 + 4192.41i −1.98859 + 3.44434i
\(115\) −50.6699 87.7629i −0.0410869 0.0711646i
\(116\) −897.490 1554.50i −0.718361 1.24424i
\(117\) −1926.88 + 3337.45i −1.52256 + 2.63716i
\(118\) −3877.70 −3.02518
\(119\) 0 0
\(120\) 1044.58 0.794637
\(121\) 212.144 367.444i 0.159387 0.276066i
\(122\) 900.454 + 1559.63i 0.668224 + 1.15740i
\(123\) 399.531 + 692.008i 0.292882 + 0.507286i
\(124\) 13.6387 23.6230i 0.00987737 0.0171081i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1186.69 0.829144 0.414572 0.910017i \(-0.363931\pi\)
0.414572 + 0.910017i \(0.363931\pi\)
\(128\) −1232.89 + 2135.42i −0.851349 + 1.47458i
\(129\) −1252.31 2169.07i −0.854728 1.48043i
\(130\) 1028.15 + 1780.81i 0.693652 + 1.20144i
\(131\) −517.278 + 895.952i −0.344999 + 0.597555i −0.985354 0.170524i \(-0.945454\pi\)
0.640355 + 0.768079i \(0.278787\pi\)
\(132\) 3380.57 2.22910
\(133\) 0 0
\(134\) −3226.99 −2.08037
\(135\) 342.487 593.205i 0.218345 0.378185i
\(136\) −59.0008 102.192i −0.0372006 0.0644333i
\(137\) −323.109 559.642i −0.201497 0.349003i 0.747514 0.664246i \(-0.231247\pi\)
−0.949011 + 0.315243i \(0.897914\pi\)
\(138\) −393.040 + 680.765i −0.242448 + 0.419932i
\(139\) 506.484 0.309061 0.154530 0.987988i \(-0.450614\pi\)
0.154530 + 0.987988i \(0.450614\pi\)
\(140\) 0 0
\(141\) 1082.32 0.646439
\(142\) −1210.36 + 2096.41i −0.715292 + 1.23892i
\(143\) 1338.91 + 2319.06i 0.782972 + 1.35615i
\(144\) −175.684 304.293i −0.101669 0.176096i
\(145\) −335.220 + 580.617i −0.191989 + 0.332535i
\(146\) −307.387 −0.174244
\(147\) 0 0
\(148\) −1889.35 −1.04935
\(149\) 914.058 1583.19i 0.502567 0.870472i −0.497428 0.867505i \(-0.665722\pi\)
0.999996 0.00296704i \(-0.000944438\pi\)
\(150\) −484.804 839.706i −0.263894 0.457078i
\(151\) −1487.58 2576.57i −0.801708 1.38860i −0.918491 0.395441i \(-0.870592\pi\)
0.116783 0.993157i \(-0.462742\pi\)
\(152\) 1554.65 2692.73i 0.829596 1.43690i
\(153\) −205.278 −0.108469
\(154\) 0 0
\(155\) −10.1883 −0.00527966
\(156\) 4991.97 8646.34i 2.56203 4.43757i
\(157\) 1065.87 + 1846.14i 0.541820 + 0.938459i 0.998800 + 0.0489821i \(0.0155977\pi\)
−0.456980 + 0.889477i \(0.651069\pi\)
\(158\) −1218.53 2110.56i −0.613551 1.06270i
\(159\) 1628.80 2821.16i 0.812403 1.40712i
\(160\) 808.942 0.399703
\(161\) 0 0
\(162\) 97.6876 0.0473769
\(163\) 296.969 514.366i 0.142702 0.247167i −0.785811 0.618466i \(-0.787754\pi\)
0.928513 + 0.371299i \(0.121088\pi\)
\(164\) −637.727 1104.58i −0.303647 0.525932i
\(165\) −631.336 1093.51i −0.297875 0.515935i
\(166\) 161.921 280.456i 0.0757079 0.131130i
\(167\) −2936.30 −1.36059 −0.680293 0.732941i \(-0.738147\pi\)
−0.680293 + 0.732941i \(0.738147\pi\)
\(168\) 0 0
\(169\) 5711.45 2.59966
\(170\) −54.7663 + 94.8581i −0.0247081 + 0.0427958i
\(171\) −2704.49 4684.31i −1.20946 2.09484i
\(172\) 1998.93 + 3462.24i 0.886144 + 1.53485i
\(173\) −1173.65 + 2032.83i −0.515788 + 0.893371i 0.484044 + 0.875044i \(0.339167\pi\)
−0.999832 + 0.0183273i \(0.994166\pi\)
\(174\) 5200.51 2.26580
\(175\) 0 0
\(176\) −244.151 −0.104566
\(177\) 3516.08 6090.04i 1.49314 2.58619i
\(178\) −21.4562 37.1633i −0.00903491 0.0156489i
\(179\) −1518.28 2629.74i −0.633975 1.09808i −0.986731 0.162362i \(-0.948089\pi\)
0.352756 0.935715i \(-0.385244\pi\)
\(180\) −1450.27 + 2511.94i −0.600537 + 1.04016i
\(181\) −899.776 −0.369502 −0.184751 0.982785i \(-0.559148\pi\)
−0.184751 + 0.982785i \(0.559148\pi\)
\(182\) 0 0
\(183\) −3265.93 −1.31926
\(184\) 252.444 437.246i 0.101144 0.175186i
\(185\) 352.844 + 611.143i 0.140225 + 0.242876i
\(186\) 39.5148 + 68.4417i 0.0155773 + 0.0269806i
\(187\) −71.3194 + 123.529i −0.0278898 + 0.0483065i
\(188\) −1727.59 −0.670199
\(189\) 0 0
\(190\) −2886.14 −1.10201
\(191\) −208.084 + 360.412i −0.0788294 + 0.136537i −0.902745 0.430176i \(-0.858452\pi\)
0.823916 + 0.566712i \(0.191785\pi\)
\(192\) −3409.43 5905.31i −1.28153 2.21968i
\(193\) 2590.52 + 4486.92i 0.966166 + 1.67345i 0.706450 + 0.707763i \(0.250296\pi\)
0.259716 + 0.965685i \(0.416371\pi\)
\(194\) −9.69986 + 16.8007i −0.00358974 + 0.00621761i
\(195\) −3729.08 −1.36946
\(196\) 0 0
\(197\) 1452.34 0.525255 0.262627 0.964897i \(-0.415411\pi\)
0.262627 + 0.964897i \(0.415411\pi\)
\(198\) −3017.27 + 5226.07i −1.08297 + 1.87576i
\(199\) 638.616 + 1106.12i 0.227489 + 0.394023i 0.957063 0.289879i \(-0.0936151\pi\)
−0.729574 + 0.683902i \(0.760282\pi\)
\(200\) 311.383 + 539.332i 0.110091 + 0.190683i
\(201\) 2926.06 5068.08i 1.02681 1.77848i
\(202\) 4004.15 1.39471
\(203\) 0 0
\(204\) 531.813 0.182521
\(205\) −238.196 + 412.568i −0.0811528 + 0.140561i
\(206\) −2696.39 4670.29i −0.911973 1.57958i
\(207\) −439.156 760.640i −0.147456 0.255402i
\(208\) −360.528 + 624.453i −0.120183 + 0.208164i
\(209\) −3758.47 −1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) −2599.87 + 4503.10i −0.842263 + 1.45884i
\(213\) −2194.98 3801.82i −0.706092 1.22299i
\(214\) 131.720 + 228.145i 0.0420755 + 0.0728770i
\(215\) 746.615 1293.18i 0.236831 0.410204i
\(216\) 3412.63 1.07500
\(217\) 0 0
\(218\) 6284.27 1.95241
\(219\) 278.722 482.760i 0.0860012 0.148959i
\(220\) 1007.73 + 1745.44i 0.308824 + 0.534899i
\(221\) 210.629 + 364.820i 0.0641107 + 0.111043i
\(222\) 2736.96 4740.56i 0.827445 1.43318i
\(223\) 4373.35 1.31328 0.656639 0.754205i \(-0.271977\pi\)
0.656639 + 0.754205i \(0.271977\pi\)
\(224\) 0 0
\(225\) 1083.37 0.321000
\(226\) 1008.24 1746.33i 0.296758 0.514000i
\(227\) 30.5573 + 52.9267i 0.00893461 + 0.0154752i 0.870458 0.492242i \(-0.163823\pi\)
−0.861524 + 0.507718i \(0.830489\pi\)
\(228\) 7006.52 + 12135.7i 2.03517 + 3.52501i
\(229\) −1509.71 + 2614.89i −0.435651 + 0.754570i −0.997349 0.0727728i \(-0.976815\pi\)
0.561697 + 0.827343i \(0.310149\pi\)
\(230\) −468.653 −0.134357
\(231\) 0 0
\(232\) −3340.22 −0.945241
\(233\) 1765.58 3058.08i 0.496426 0.859834i −0.503566 0.863957i \(-0.667979\pi\)
0.999992 + 0.00412242i \(0.00131221\pi\)
\(234\) 8910.98 + 15434.3i 2.48944 + 4.31184i
\(235\) 322.634 + 558.819i 0.0895588 + 0.155120i
\(236\) −5612.34 + 9720.85i −1.54802 + 2.68124i
\(237\) 4419.58 1.21132
\(238\) 0 0
\(239\) 2282.62 0.617785 0.308893 0.951097i \(-0.400042\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(240\) 170.000 294.449i 0.0457227 0.0791941i
\(241\) 1107.84 + 1918.83i 0.296109 + 0.512875i 0.975242 0.221140i \(-0.0709777\pi\)
−0.679134 + 0.734015i \(0.737644\pi\)
\(242\) −981.073 1699.27i −0.260602 0.451377i
\(243\) −1938.01 + 3356.73i −0.511619 + 0.886150i
\(244\) 5213.04 1.36775
\(245\) 0 0
\(246\) 3695.31 0.957742
\(247\) −5549.99 + 9612.87i −1.42971 + 2.47633i
\(248\) −25.3798 43.9592i −0.00649848 0.0112557i
\(249\) 293.642 + 508.603i 0.0747342 + 0.129443i
\(250\) 289.035 500.624i 0.0731208 0.126649i
\(251\) −3082.55 −0.775174 −0.387587 0.921833i \(-0.626691\pi\)
−0.387587 + 0.921833i \(0.626691\pi\)
\(252\) 0 0
\(253\) −610.302 −0.151658
\(254\) 2743.95 4752.66i 0.677838 1.17405i
\(255\) −99.3181 172.024i −0.0243904 0.0422453i
\(256\) 2449.29 + 4242.30i 0.597972 + 1.03572i
\(257\) 3016.20 5224.21i 0.732083 1.26801i −0.223908 0.974610i \(-0.571882\pi\)
0.955991 0.293395i \(-0.0947851\pi\)
\(258\) −11582.8 −2.79501
\(259\) 0 0
\(260\) 5952.32 1.41980
\(261\) −2905.35 + 5032.21i −0.689029 + 1.19343i
\(262\) 2392.19 + 4143.39i 0.564083 + 0.977021i
\(263\) −2961.91 5130.17i −0.694445 1.20281i −0.970368 0.241634i \(-0.922317\pi\)
0.275923 0.961180i \(-0.411017\pi\)
\(264\) 3145.40 5447.99i 0.733280 1.27008i
\(265\) 1942.14 0.450207
\(266\) 0 0
\(267\) 77.8213 0.0178374
\(268\) −4670.54 + 8089.62i −1.06455 + 1.84385i
\(269\) −1626.40 2817.00i −0.368637 0.638497i 0.620716 0.784035i \(-0.286842\pi\)
−0.989353 + 0.145538i \(0.953509\pi\)
\(270\) −1583.85 2743.32i −0.357001 0.618344i
\(271\) 3123.13 5409.42i 0.700061 1.21254i −0.268383 0.963312i \(-0.586489\pi\)
0.968444 0.249230i \(-0.0801774\pi\)
\(272\) −38.4084 −0.00856195
\(273\) 0 0
\(274\) −2988.48 −0.658907
\(275\) 376.396 651.937i 0.0825364 0.142957i
\(276\) 1137.72 + 1970.59i 0.248126 + 0.429767i
\(277\) 786.084 + 1361.54i 0.170510 + 0.295332i 0.938598 0.345012i \(-0.112125\pi\)
−0.768088 + 0.640344i \(0.778792\pi\)
\(278\) 1171.13 2028.47i 0.252662 0.437623i
\(279\) −88.3024 −0.0189481
\(280\) 0 0
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) 2502.63 4334.68i 0.528473 0.915343i
\(283\) −3132.79 5426.15i −0.658039 1.13976i −0.981123 0.193386i \(-0.938053\pi\)
0.323084 0.946370i \(-0.395280\pi\)
\(284\) 3503.61 + 6068.42i 0.732045 + 1.26794i
\(285\) 2616.99 4532.76i 0.543920 0.942097i
\(286\) 12383.7 2.56037
\(287\) 0 0
\(288\) 7011.10 1.43449
\(289\) 2445.28 4235.35i 0.497716 0.862070i
\(290\) 1550.24 + 2685.10i 0.313909 + 0.543706i
\(291\) −17.5906 30.4678i −0.00354357 0.00613764i
\(292\) −444.893 + 770.577i −0.0891623 + 0.154434i
\(293\) −7264.99 −1.44855 −0.724276 0.689511i \(-0.757826\pi\)
−0.724276 + 0.689511i \(0.757826\pi\)
\(294\) 0 0
\(295\) 4192.50 0.827448
\(296\) −1757.91 + 3044.79i −0.345191 + 0.597889i
\(297\) −2062.57 3572.48i −0.402972 0.697967i
\(298\) −4227.12 7321.59i −0.821713 1.42325i
\(299\) −901.210 + 1560.94i −0.174309 + 0.301912i
\(300\) −2806.70 −0.540149
\(301\) 0 0
\(302\) −13758.9 −2.62163
\(303\) −3630.74 + 6288.63i −0.688385 + 1.19232i
\(304\) −506.023 876.457i −0.0954684 0.165356i
\(305\) −973.556 1686.25i −0.182773 0.316571i
\(306\) −474.660 + 822.135i −0.0886748 + 0.153589i
\(307\) 1328.32 0.246943 0.123471 0.992348i \(-0.460597\pi\)
0.123471 + 0.992348i \(0.460597\pi\)
\(308\) 0 0
\(309\) 9779.75 1.80049
\(310\) −23.5583 + 40.8042i −0.00431621 + 0.00747589i
\(311\) −2434.34 4216.40i −0.443855 0.768779i 0.554117 0.832439i \(-0.313056\pi\)
−0.997972 + 0.0636600i \(0.979723\pi\)
\(312\) −9289.38 16089.7i −1.68560 2.91955i
\(313\) −3866.69 + 6697.31i −0.698270 + 1.20944i 0.270796 + 0.962637i \(0.412713\pi\)
−0.969066 + 0.246802i \(0.920620\pi\)
\(314\) 9858.37 1.77178
\(315\) 0 0
\(316\) −7054.49 −1.25584
\(317\) 4087.51 7079.78i 0.724220 1.25439i −0.235075 0.971977i \(-0.575534\pi\)
0.959294 0.282408i \(-0.0911331\pi\)
\(318\) −7532.48 13046.6i −1.32830 2.30069i
\(319\) 2018.80 + 3496.67i 0.354330 + 0.613718i
\(320\) 2032.67 3520.68i 0.355092 0.615038i
\(321\) −477.744 −0.0830688
\(322\) 0 0
\(323\) −591.261 −0.101853
\(324\) 141.387 244.889i 0.0242433 0.0419906i
\(325\) −1111.62 1925.38i −0.189728 0.328618i
\(326\) −1373.35 2378.72i −0.233322 0.404126i
\(327\) −5698.23 + 9869.62i −0.963647 + 1.66909i
\(328\) −2373.45 −0.399548
\(329\) 0 0
\(330\) −5839.31 −0.974070
\(331\) 1020.38 1767.35i 0.169442 0.293482i −0.768782 0.639511i \(-0.779137\pi\)
0.938224 + 0.346029i \(0.112470\pi\)
\(332\) −468.709 811.827i −0.0774811 0.134201i
\(333\) 3058.09 + 5296.77i 0.503251 + 0.871656i
\(334\) −6789.56 + 11759.9i −1.11230 + 1.92656i
\(335\) 3488.97 0.569023
\(336\) 0 0
\(337\) 7349.73 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(338\) 13206.5 22874.3i 2.12526 3.68106i
\(339\) 1828.44 + 3166.94i 0.292941 + 0.507389i
\(340\) 158.531 + 274.583i 0.0252868 + 0.0437981i
\(341\) −30.6788 + 53.1373i −0.00487200 + 0.00843855i
\(342\) −25014.2 −3.95500
\(343\) 0 0
\(344\) 7439.47 1.16602
\(345\) 424.948 736.032i 0.0663143 0.114860i
\(346\) 5427.64 + 9400.95i 0.843329 + 1.46069i
\(347\) 6034.96 + 10452.9i 0.933642 + 1.61712i 0.777037 + 0.629454i \(0.216722\pi\)
0.156605 + 0.987661i \(0.449945\pi\)
\(348\) 7526.88 13036.9i 1.15943 2.00820i
\(349\) −4484.96 −0.687892 −0.343946 0.938989i \(-0.611764\pi\)
−0.343946 + 0.938989i \(0.611764\pi\)
\(350\) 0 0
\(351\) −12182.9 −1.85263
\(352\) 2435.86 4219.03i 0.368840 0.638850i
\(353\) 6381.24 + 11052.6i 0.962151 + 1.66649i 0.717082 + 0.696989i \(0.245477\pi\)
0.245069 + 0.969506i \(0.421189\pi\)
\(354\) −16260.4 28163.8i −2.44132 4.22849i
\(355\) 1308.62 2266.60i 0.195647 0.338870i
\(356\) −124.218 −0.0184930
\(357\) 0 0
\(358\) −14042.8 −2.07314
\(359\) 1209.71 2095.28i 0.177844 0.308036i −0.763298 0.646047i \(-0.776421\pi\)
0.941142 + 0.338011i \(0.109754\pi\)
\(360\) 2698.76 + 4674.39i 0.395103 + 0.684338i
\(361\) −4360.25 7552.17i −0.635697 1.10106i
\(362\) −2080.54 + 3603.60i −0.302073 + 0.523207i
\(363\) 3558.33 0.514501
\(364\) 0 0
\(365\) 332.342 0.0476591
\(366\) −7551.75 + 13080.0i −1.07851 + 1.86804i
\(367\) 3564.87 + 6174.54i 0.507043 + 0.878224i 0.999967 + 0.00815152i \(0.00259474\pi\)
−0.492924 + 0.870072i \(0.664072\pi\)
\(368\) −82.1681 142.319i −0.0116394 0.0201601i
\(369\) −2064.44 + 3575.72i −0.291248 + 0.504457i
\(370\) 3263.50 0.458543
\(371\) 0 0
\(372\) 228.765 0.0318842
\(373\) −5798.46 + 10043.2i −0.804914 + 1.39415i 0.111435 + 0.993772i \(0.464455\pi\)
−0.916349 + 0.400380i \(0.868878\pi\)
\(374\) 329.821 + 571.267i 0.0456006 + 0.0789826i
\(375\) 524.162 + 907.876i 0.0721803 + 0.125020i
\(376\) −1607.41 + 2784.11i −0.220467 + 0.381860i
\(377\) 11924.4 1.62901
\(378\) 0 0
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) −4177.21 + 7235.15i −0.563912 + 0.976724i
\(381\) 4976.12 + 8618.90i 0.669120 + 1.15895i
\(382\) 962.297 + 1666.75i 0.128888 + 0.223241i
\(383\) −3735.05 + 6469.30i −0.498308 + 0.863096i −0.999998 0.00195209i \(-0.999379\pi\)
0.501690 + 0.865048i \(0.332712\pi\)
\(384\) −20679.4 −2.74816
\(385\) 0 0
\(386\) 23960.1 3.15942
\(387\) 6470.91 11207.9i 0.849961 1.47218i
\(388\) 28.0779 + 48.6324i 0.00367381 + 0.00636323i
\(389\) −4374.89 7577.53i −0.570220 0.987650i −0.996543 0.0830789i \(-0.973525\pi\)
0.426323 0.904571i \(-0.359809\pi\)
\(390\) −8622.68 + 14934.9i −1.11956 + 1.93913i
\(391\) −96.0092 −0.0124179
\(392\) 0 0
\(393\) −8676.41 −1.11366
\(394\) 3358.23 5816.62i 0.429404 0.743749i
\(395\) 1317.45 + 2281.90i 0.167819 + 0.290670i
\(396\) 8734.01 + 15127.7i 1.10833 + 1.91969i
\(397\) −2687.63 + 4655.11i −0.339769 + 0.588496i −0.984389 0.176006i \(-0.943682\pi\)
0.644621 + 0.764503i \(0.277015\pi\)
\(398\) 5906.65 0.743903
\(399\) 0 0
\(400\) 202.704 0.0253381
\(401\) −3680.67 + 6375.10i −0.458363 + 0.793909i −0.998875 0.0474281i \(-0.984897\pi\)
0.540511 + 0.841337i \(0.318231\pi\)
\(402\) −13531.7 23437.7i −1.67886 2.90787i
\(403\) 90.6045 + 156.932i 0.0111993 + 0.0193978i
\(404\) 5795.35 10037.8i 0.713687 1.23614i
\(405\) −105.618 −0.0129585
\(406\) 0 0
\(407\) 4249.88 0.517589
\(408\) 494.816 857.046i 0.0600418 0.103995i
\(409\) 1306.23 + 2262.45i 0.157919 + 0.273523i 0.934118 0.356964i \(-0.116188\pi\)
−0.776199 + 0.630488i \(0.782855\pi\)
\(410\) 1101.55 + 1907.95i 0.132687 + 0.229821i
\(411\) 2709.79 4693.49i 0.325216 0.563291i
\(412\) −15610.3 −1.86667
\(413\) 0 0
\(414\) −4061.81 −0.482191
\(415\) −175.066 + 303.224i −0.0207076 + 0.0358667i
\(416\) −7193.88 12460.2i −0.847859 1.46853i
\(417\) 2123.84 + 3678.60i 0.249412 + 0.431995i
\(418\) −8690.65 + 15052.6i −1.01692 + 1.76136i
\(419\) 4398.21 0.512808 0.256404 0.966570i \(-0.417462\pi\)
0.256404 + 0.966570i \(0.417462\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) −7535.93 + 13052.6i −0.869297 + 1.50567i
\(423\) 2796.27 + 4843.28i 0.321417 + 0.556710i
\(424\) 4838.01 + 8379.67i 0.554138 + 0.959795i
\(425\) 59.2124 102.559i 0.00675817 0.0117055i
\(426\) −20301.7 −2.30896
\(427\) 0 0
\(428\) 762.570 0.0861220
\(429\) −11228.9 + 19449.0i −1.26372 + 2.18882i
\(430\) −3452.77 5980.37i −0.387226 0.670696i
\(431\) 7157.27 + 12396.7i 0.799892 + 1.38545i 0.919686 + 0.392655i \(0.128443\pi\)
−0.119794 + 0.992799i \(0.538223\pi\)
\(432\) 555.390 961.963i 0.0618546 0.107135i
\(433\) −2373.62 −0.263438 −0.131719 0.991287i \(-0.542050\pi\)
−0.131719 + 0.991287i \(0.542050\pi\)
\(434\) 0 0
\(435\) −5622.70 −0.619742
\(436\) 9095.45 15753.8i 0.999067 1.73043i
\(437\) −1264.90 2190.87i −0.138463 0.239825i
\(438\) −1288.97 2232.56i −0.140615 0.243552i
\(439\) 4766.73 8256.22i 0.518231 0.897603i −0.481544 0.876422i \(-0.659924\pi\)
0.999776 0.0211814i \(-0.00674276\pi\)
\(440\) 3750.51 0.406360
\(441\) 0 0
\(442\) 1948.14 0.209646
\(443\) −3323.97 + 5757.29i −0.356493 + 0.617465i −0.987372 0.158416i \(-0.949361\pi\)
0.630879 + 0.775881i \(0.282694\pi\)
\(444\) −7922.60 13722.4i −0.846825 1.46674i
\(445\) 23.1981 + 40.1803i 0.00247123 + 0.00428029i
\(446\) 10112.4 17515.2i 1.07363 1.85957i
\(447\) 15331.7 1.62229
\(448\) 0 0
\(449\) −768.256 −0.0807489 −0.0403744 0.999185i \(-0.512855\pi\)
−0.0403744 + 0.999185i \(0.512855\pi\)
\(450\) 2505.07 4338.90i 0.262422 0.454529i
\(451\) 1434.50 + 2484.62i 0.149773 + 0.259415i
\(452\) −2918.53 5055.04i −0.303708 0.526038i
\(453\) 12475.8 21608.7i 1.29396 2.24120i
\(454\) 282.628 0.0292167
\(455\) 0 0
\(456\) 26076.4 2.67794
\(457\) 1661.75 2878.23i 0.170095 0.294613i −0.768358 0.640020i \(-0.778926\pi\)
0.938453 + 0.345407i \(0.112259\pi\)
\(458\) 6981.73 + 12092.7i 0.712303 + 1.23374i
\(459\) −324.472 562.002i −0.0329958 0.0571503i
\(460\) −678.298 + 1174.85i −0.0687517 + 0.119081i
\(461\) −18840.7 −1.90347 −0.951733 0.306926i \(-0.900700\pi\)
−0.951733 + 0.306926i \(0.900700\pi\)
\(462\) 0 0
\(463\) −10759.1 −1.07995 −0.539977 0.841679i \(-0.681567\pi\)
−0.539977 + 0.841679i \(0.681567\pi\)
\(464\) −543.604 + 941.549i −0.0543883 + 0.0942033i
\(465\) −42.7228 73.9980i −0.00426069 0.00737973i
\(466\) −8165.05 14142.3i −0.811671 1.40586i
\(467\) −3720.85 + 6444.71i −0.368695 + 0.638598i −0.989362 0.145476i \(-0.953529\pi\)
0.620667 + 0.784074i \(0.286862\pi\)
\(468\) 51588.7 5.09549
\(469\) 0 0
\(470\) 2984.08 0.292863
\(471\) −8939.02 + 15482.8i −0.874497 + 1.51467i
\(472\) 10443.8 + 18089.2i 1.01846 + 1.76403i
\(473\) −4496.36 7787.93i −0.437089 0.757060i
\(474\) 10219.3 17700.4i 0.990273 1.71520i
\(475\) 3120.45 0.301423
\(476\) 0 0
\(477\) 16832.6 1.61574
\(478\) 5278.07 9141.88i 0.505049 0.874770i
\(479\) −2845.99 4929.39i −0.271475 0.470208i 0.697765 0.716327i \(-0.254178\pi\)
−0.969240 + 0.246119i \(0.920845\pi\)
\(480\) 3392.14 + 5875.35i 0.322561 + 0.558692i
\(481\) 6275.64 10869.7i 0.594895 1.03039i
\(482\) 10246.5 0.968293
\(483\) 0 0
\(484\) −5679.77 −0.533412
\(485\) 10.4873 18.1646i 0.000981866 0.00170064i
\(486\) 8962.45 + 15523.4i 0.836512 + 1.44888i
\(487\) 1010.12 + 1749.59i 0.0939899 + 0.162795i 0.909187 0.416389i \(-0.136705\pi\)
−0.815197 + 0.579184i \(0.803371\pi\)
\(488\) 4850.38 8401.11i 0.449931 0.779304i
\(489\) 4981.12 0.460642
\(490\) 0 0
\(491\) 7636.02 0.701851 0.350925 0.936403i \(-0.385867\pi\)
0.350925 + 0.936403i \(0.385867\pi\)
\(492\) 5348.36 9263.63i 0.490086 0.848855i
\(493\) 317.587 + 550.076i 0.0290129 + 0.0502519i
\(494\) 25666.3 + 44455.3i 2.33761 + 4.04887i
\(495\) 3262.22 5650.33i 0.296214 0.513058i
\(496\) −16.5218 −0.00149567
\(497\) 0 0
\(498\) 2715.93 0.244385
\(499\) −3142.28 + 5442.59i −0.281900 + 0.488264i −0.971853 0.235590i \(-0.924298\pi\)
0.689953 + 0.723854i \(0.257631\pi\)
\(500\) −836.662 1449.14i −0.0748333 0.129615i
\(501\) −12312.8 21326.4i −1.09799 1.90178i
\(502\) −7127.72 + 12345.6i −0.633716 + 1.09763i
\(503\) 11310.9 1.00264 0.501319 0.865262i \(-0.332848\pi\)
0.501319 + 0.865262i \(0.332848\pi\)
\(504\) 0 0
\(505\) −4329.22 −0.381481
\(506\) −1411.19 + 2444.25i −0.123982 + 0.214744i
\(507\) 23949.8 + 41482.3i 2.09793 + 3.63372i
\(508\) −7942.84 13757.4i −0.693713 1.20155i
\(509\) −5356.37 + 9277.50i −0.466438 + 0.807894i −0.999265 0.0383299i \(-0.987796\pi\)
0.532827 + 0.846224i \(0.321130\pi\)
\(510\) −918.606 −0.0797580
\(511\) 0 0
\(512\) 2927.65 0.252705
\(513\) 8549.70 14808.5i 0.735826 1.27449i
\(514\) −13948.6 24159.7i −1.19698 2.07323i
\(515\) 2915.29 + 5049.43i 0.249443 + 0.432048i
\(516\) −16764.2 + 29036.4i −1.43024 + 2.47724i
\(517\) 3886.02 0.330574
\(518\) 0 0
\(519\) −19685.9 −1.66496
\(520\) 5538.23 9592.50i 0.467053 0.808959i
\(521\) −8860.95 15347.6i −0.745116 1.29058i −0.950141 0.311821i \(-0.899061\pi\)
0.205025 0.978757i \(-0.434272\pi\)
\(522\) 13436.0 + 23271.8i 1.12658 + 1.95130i
\(523\) −118.597 + 205.415i −0.00991562 + 0.0171744i −0.870941 0.491388i \(-0.836490\pi\)
0.861025 + 0.508563i \(0.169823\pi\)
\(524\) 13849.2 1.15459
\(525\) 0 0
\(526\) −27395.0 −2.27088
\(527\) −4.82621 + 8.35925i −0.000398924 + 0.000690957i
\(528\) −1023.80 1773.27i −0.0843845 0.146158i
\(529\) 5878.10 + 10181.2i 0.483119 + 0.836786i
\(530\) 4490.78 7778.27i 0.368051 0.637484i
\(531\) 36336.4 2.96962
\(532\) 0 0
\(533\) 8473.06 0.688572
\(534\) 179.945 311.674i 0.0145824 0.0252574i
\(535\) −142.413 246.667i −0.0115085 0.0199333i
\(536\) 8691.26 + 15053.7i 0.700383 + 1.21310i
\(537\) 12733.2 22054.5i 1.02324 1.77230i
\(538\) −15042.8 −1.20546
\(539\) 0 0
\(540\) −9169.48 −0.730725
\(541\) 2676.47 4635.78i 0.212699 0.368406i −0.739859 0.672762i \(-0.765108\pi\)
0.952558 + 0.304356i \(0.0984412\pi\)
\(542\) −14443.1 25016.2i −1.14462 1.98254i
\(543\) −3773.03 6535.08i −0.298188 0.516477i
\(544\) 383.195 663.714i 0.0302010 0.0523098i
\(545\) −6794.45 −0.534022
\(546\) 0 0
\(547\) −192.162 −0.0150206 −0.00751030 0.999972i \(-0.502391\pi\)
−0.00751030 + 0.999972i \(0.502391\pi\)
\(548\) −4325.33 + 7491.70i −0.337170 + 0.583995i
\(549\) −8437.81 14614.7i −0.655950 1.13614i
\(550\) −1740.67 3014.92i −0.134950 0.233740i
\(551\) −8368.27 + 14494.3i −0.647006 + 1.12065i
\(552\) 4234.29 0.326492
\(553\) 0 0
\(554\) 7270.60 0.557578
\(555\) −2959.16 + 5125.41i −0.226323 + 0.392003i
\(556\) −3390.05 5871.74i −0.258579 0.447873i
\(557\) 2425.31 + 4200.76i 0.184495 + 0.319554i 0.943406 0.331640i \(-0.107602\pi\)
−0.758911 + 0.651194i \(0.774268\pi\)
\(558\) −204.180 + 353.650i −0.0154904 + 0.0268301i
\(559\) −26558.4 −2.00949
\(560\) 0 0
\(561\) −1196.25 −0.0900283
\(562\) −18142.2 + 31423.3i −1.36171 + 2.35856i
\(563\) −4849.56 8399.68i −0.363027 0.628782i 0.625430 0.780280i \(-0.284924\pi\)
−0.988458 + 0.151498i \(0.951590\pi\)
\(564\) −7244.29 12547.5i −0.540851 0.936781i
\(565\) −1090.09 + 1888.10i −0.0811692 + 0.140589i
\(566\) −28975.6 −2.15183
\(567\) 0 0
\(568\) 13039.5 0.963247
\(569\) −1554.76 + 2692.93i −0.114550 + 0.198407i −0.917600 0.397505i \(-0.869876\pi\)
0.803050 + 0.595912i \(0.203209\pi\)
\(570\) −12102.4 20962.1i −0.889326 1.54036i
\(571\) 7238.12 + 12536.8i 0.530483 + 0.918824i 0.999367 + 0.0355645i \(0.0113229\pi\)
−0.468884 + 0.883260i \(0.655344\pi\)
\(572\) 17923.4 31044.3i 1.31017 2.26928i
\(573\) −3490.23 −0.254461
\(574\) 0 0
\(575\) 506.699 0.0367492
\(576\) 17617.1 30513.7i 1.27439 2.20730i
\(577\) 1104.11 + 1912.38i 0.0796617 + 0.137978i 0.903104 0.429422i \(-0.141283\pi\)
−0.823442 + 0.567400i \(0.807949\pi\)
\(578\) −11308.4 19586.6i −0.813781 1.40951i
\(579\) −21725.7 + 37630.0i −1.55939 + 2.70095i
\(580\) 8974.90 0.642521
\(581\) 0 0
\(582\) −162.698 −0.0115877
\(583\) 5848.12 10129.2i 0.415445 0.719571i
\(584\) 827.886 + 1433.94i 0.0586612 + 0.101604i
\(585\) −9634.40 16687.3i −0.680912 1.17937i
\(586\) −16798.7 + 29096.2i −1.18421 + 2.05112i
\(587\) −23988.7 −1.68675 −0.843374 0.537327i \(-0.819434\pi\)
−0.843374 + 0.537327i \(0.819434\pi\)
\(588\) 0 0
\(589\) −254.338 −0.0177925
\(590\) 9694.25 16790.9i 0.676451 1.17165i
\(591\) 6090.11 + 10548.4i 0.423881 + 0.734183i
\(592\) 572.184 + 991.051i 0.0397240 + 0.0688040i
\(593\) 7934.68 13743.3i 0.549474 0.951717i −0.448837 0.893614i \(-0.648161\pi\)
0.998311 0.0581031i \(-0.0185052\pi\)
\(594\) −19077.0 −1.31774
\(595\) 0 0
\(596\) −24472.2 −1.68192
\(597\) −5355.82 + 9276.55i −0.367168 + 0.635953i
\(598\) 4167.70 + 7218.67i 0.285000 + 0.493635i
\(599\) 7618.32 + 13195.3i 0.519660 + 0.900077i 0.999739 + 0.0228519i \(0.00727462\pi\)
−0.480079 + 0.877225i \(0.659392\pi\)
\(600\) −2611.45 + 4523.16i −0.177686 + 0.307762i
\(601\) 12258.8 0.832026 0.416013 0.909359i \(-0.363427\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(602\) 0 0
\(603\) 30238.9 2.04216
\(604\) −19913.7 + 34491.5i −1.34152 + 2.32358i
\(605\) 1060.72 + 1837.22i 0.0712800 + 0.123461i
\(606\) 16790.6 + 29082.2i 1.12553 + 1.94948i
\(607\) −11743.6 + 20340.5i −0.785269 + 1.36013i 0.143569 + 0.989640i \(0.454142\pi\)
−0.928838 + 0.370486i \(0.879191\pi\)
\(608\) 20194.1 1.34700
\(609\) 0 0
\(610\) −9004.54 −0.597678
\(611\) 5738.34 9939.09i 0.379948 0.658089i
\(612\) 1373.98 + 2379.81i 0.0907516 + 0.157186i
\(613\) 11152.6 + 19316.9i 0.734830 + 1.27276i 0.954798 + 0.297256i \(0.0960715\pi\)
−0.219968 + 0.975507i \(0.570595\pi\)
\(614\) 3071.46 5319.92i 0.201879 0.349666i
\(615\) −3995.31 −0.261962
\(616\) 0 0
\(617\) 3285.91 0.214402 0.107201 0.994237i \(-0.465811\pi\)
0.107201 + 0.994237i \(0.465811\pi\)
\(618\) 22613.5 39167.8i 1.47193 2.54945i
\(619\) 5806.54 + 10057.2i 0.377035 + 0.653043i 0.990629 0.136578i \(-0.0436104\pi\)
−0.613595 + 0.789621i \(0.710277\pi\)
\(620\) 68.1937 + 118.115i 0.00441730 + 0.00765098i
\(621\) 1388.30 2404.61i 0.0897113 0.155385i
\(622\) −22515.5 −1.45143
\(623\) 0 0
\(624\) −6047.21 −0.387952
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 17881.8 + 30972.1i 1.14169 + 1.97747i
\(627\) −15760.4 27297.8i −1.00384 1.73871i
\(628\) 14268.4 24713.5i 0.906640 1.57035i
\(629\) 668.567 0.0423808
\(630\) 0 0
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) −6563.73 + 11368.7i −0.413119 + 0.715543i
\(633\) −13666.3 23670.8i −0.858117 1.48630i
\(634\) −18903.0 32740.9i −1.18412 2.05096i
\(635\) −2966.71 + 5138.50i −0.185402 + 0.321126i
\(636\) −43608.1 −2.71883
\(637\) 0 0
\(638\) 18672.2 1.15868
\(639\) 11341.8 19644.7i 0.702154 1.21617i
\(640\) −6164.43 10677.1i −0.380735 0.659452i
\(641\) −9384.63 16254.7i −0.578269 1.00159i −0.995678 0.0928728i \(-0.970395\pi\)
0.417409 0.908719i \(-0.362938\pi\)
\(642\) −1104.68 + 1913.36i −0.0679100 + 0.117624i
\(643\) −3142.30 −0.192722 −0.0963609 0.995346i \(-0.530720\pi\)
−0.0963609 + 0.995346i \(0.530720\pi\)
\(644\) 0 0
\(645\) 12523.1 0.764492
\(646\) −1367.16 + 2368.00i −0.0832667 + 0.144222i
\(647\) −9519.07 16487.5i −0.578413 1.00184i −0.995662 0.0930486i \(-0.970339\pi\)
0.417248 0.908793i \(-0.362995\pi\)
\(648\) −263.102 455.706i −0.0159500 0.0276262i
\(649\) 12624.3 21866.0i 0.763557 1.32252i
\(650\) −10281.5 −0.620421
\(651\) 0 0
\(652\) −7950.82 −0.477574
\(653\) 10269.3 17787.0i 0.615420 1.06594i −0.374890 0.927069i \(-0.622320\pi\)
0.990311 0.138870i \(-0.0443471\pi\)
\(654\) 26351.8 + 45642.7i 1.57559 + 2.72901i
\(655\) −2586.39 4479.76i −0.154288 0.267235i
\(656\) −386.267 + 669.034i −0.0229896 + 0.0398192i
\(657\) 2880.41 0.171043
\(658\) 0 0
\(659\) −937.046 −0.0553902 −0.0276951 0.999616i \(-0.508817\pi\)
−0.0276951 + 0.999616i \(0.508817\pi\)
\(660\) −8451.44 + 14638.3i −0.498442 + 0.863327i
\(661\) −10558.3 18287.4i −0.621283 1.07609i −0.989247 0.146254i \(-0.953278\pi\)
0.367964 0.929840i \(-0.380055\pi\)
\(662\) −4718.82 8173.24i −0.277043 0.479852i
\(663\) −1766.46 + 3059.60i −0.103475 + 0.179223i
\(664\) −1744.41 −0.101952
\(665\) 0 0
\(666\) 28284.7 1.64566
\(667\) −1358.84 + 2353.59i −0.0788825 + 0.136628i
\(668\) 19653.5 + 34040.9i 1.13835 + 1.97168i
\(669\) 18338.8 + 31763.7i 1.05982 + 1.83566i
\(670\) 8067.48 13973.3i 0.465185 0.805725i
\(671\) −11726.2 −0.674640
\(672\) 0 0
\(673\) 13825.9 0.791903 0.395952 0.918271i \(-0.370415\pi\)
0.395952 + 0.918271i \(0.370415\pi\)
\(674\) 16994.6 29435.6i 0.971230 1.68222i
\(675\) 1712.44 + 2966.03i 0.0976470 + 0.169130i
\(676\) −38228.5 66213.6i −2.17504 3.76728i
\(677\) 8464.20 14660.4i 0.480510 0.832269i −0.519240 0.854629i \(-0.673785\pi\)
0.999750 + 0.0223602i \(0.00711808\pi\)
\(678\) 16911.4 0.957935
\(679\) 0 0
\(680\) 590.008 0.0332732
\(681\) −256.271 + 443.875i −0.0144205 + 0.0249770i
\(682\) 141.876 + 245.737i 0.00796586 + 0.0137973i
\(683\) 6908.65 + 11966.1i 0.387045 + 0.670382i 0.992051 0.125839i \(-0.0401623\pi\)
−0.605005 + 0.796222i \(0.706829\pi\)
\(684\) −36203.9 + 62707.0i −2.02382 + 3.50535i
\(685\) 3231.09 0.180224
\(686\) 0 0
\(687\) −25322.6 −1.40628
\(688\) 1210.74 2097.06i 0.0670915 0.116206i
\(689\) −17271.4 29914.9i −0.954989 1.65409i
\(690\) −1965.20 3403.83i −0.108426 0.187799i
\(691\) 11835.8 20500.2i 0.651600 1.12860i −0.331134 0.943584i \(-0.607431\pi\)
0.982735 0.185021i \(-0.0592353\pi\)
\(692\) 31422.5 1.72616
\(693\) 0 0
\(694\) 55818.2 3.05307
\(695\) −1266.21 + 2193.14i −0.0691081 + 0.119699i
\(696\) −14006.5 24260.0i −0.762810 1.32123i
\(697\) 225.667 + 390.866i 0.0122636 + 0.0212412i
\(698\) −10370.5 + 17962.2i −0.562362 + 0.974040i
\(699\) 29614.5 1.60246
\(700\) 0 0
\(701\) −17009.7 −0.916472 −0.458236 0.888831i \(-0.651519\pi\)
−0.458236 + 0.888831i \(0.651519\pi\)
\(702\) −28170.3 + 48792.3i −1.51456 + 2.62329i
\(703\) 8808.23 + 15256.3i 0.472559 + 0.818496i
\(704\) −12241.4 21202.7i −0.655348 1.13510i
\(705\) −2705.80 + 4686.59i −0.144548 + 0.250365i
\(706\) 59020.9 3.14629
\(707\) 0 0
\(708\) −94136.8 −4.99700
\(709\) −11019.5 + 19086.2i −0.583701 + 1.01100i 0.411335 + 0.911484i \(0.365063\pi\)
−0.995036 + 0.0995158i \(0.968271\pi\)
\(710\) −6051.82 10482.1i −0.319888 0.554063i
\(711\) 11418.4 + 19777.2i 0.602282 + 1.04318i
\(712\) −115.576 + 200.184i −0.00608343 + 0.0105368i
\(713\) −41.2994 −0.00216925
\(714\) 0 0
\(715\) −13389.1 −0.700312
\(716\) −20324.6 + 35203.2i −1.06085 + 1.83744i
\(717\) 9571.72 + 16578.7i 0.498553 + 0.863519i
\(718\) −5594.39 9689.77i −0.290781 0.503648i
\(719\) −3643.72 + 6311.11i −0.188996 + 0.327350i −0.944916 0.327314i \(-0.893857\pi\)
0.755920 + 0.654664i \(0.227190\pi\)
\(720\) 1756.84 0.0909354
\(721\) 0 0
\(722\) −40328.5 −2.07877
\(723\) −9290.99 + 16092.5i −0.477919 + 0.827781i
\(724\) 6022.47 + 10431.2i 0.309148 + 0.535461i
\(725\) −1676.10 2903.09i −0.0858603 0.148714i
\(726\) 8227.86 14251.1i 0.420612 0.728522i
\(727\) −29676.7 −1.51396 −0.756980 0.653438i \(-0.773326\pi\)
−0.756980 + 0.653438i \(0.773326\pi\)
\(728\) 0 0
\(729\) −31936.3 −1.62253
\(730\) 768.468 1331.03i 0.0389620 0.0674842i
\(731\) −707.342 1225.15i −0.0357893 0.0619889i
\(732\) 21859.8 + 37862.3i 1.10377 + 1.91179i
\(733\) −11555.9 + 20015.4i −0.582300 + 1.00857i 0.412906 + 0.910774i \(0.364514\pi\)
−0.995206 + 0.0977999i \(0.968819\pi\)
\(734\) 32971.9 1.65806
\(735\) 0 0
\(736\) 3279.12 0.164226
\(737\) 10505.9 18196.7i 0.525086 0.909476i
\(738\) 9547.16 + 16536.2i 0.476200 + 0.824803i
\(739\) 15585.7 + 26995.2i 0.775818 + 1.34376i 0.934334 + 0.356399i \(0.115996\pi\)
−0.158516 + 0.987356i \(0.550671\pi\)
\(740\) 4723.37 8181.12i 0.234641 0.406411i
\(741\) −93091.1 −4.61510
\(742\) 0 0
\(743\) −31324.4 −1.54668 −0.773338 0.633993i \(-0.781415\pi\)
−0.773338 + 0.633993i \(0.781415\pi\)
\(744\) 212.851 368.668i 0.0104885 0.0181667i
\(745\) 4570.29 + 7915.97i 0.224755 + 0.389287i
\(746\) 26815.4 + 46445.6i 1.31606 + 2.27948i
\(747\) −1517.30 + 2628.04i −0.0743174 + 0.128722i
\(748\) 1909.45 0.0933373
\(749\) 0 0
\(750\) 4848.04 0.236034
\(751\) −2016.10 + 3491.99i −0.0979608 + 0.169673i −0.910840 0.412759i \(-0.864565\pi\)
0.812880 + 0.582432i \(0.197899\pi\)
\(752\) 523.195 + 906.200i 0.0253709 + 0.0439438i
\(753\) −12926.0 22388.5i −0.625566 1.08351i
\(754\) 27572.5 47756.9i 1.33174 2.30664i
\(755\) 14875.8 0.717069
\(756\) 0 0
\(757\) 34263.7 1.64509 0.822546 0.568699i \(-0.192553\pi\)
0.822546 + 0.568699i \(0.192553\pi\)
\(758\) −29529.7 + 51146.9i −1.41499 + 2.45084i
\(759\) −2559.18 4432.63i −0.122388 0.211982i
\(760\) 7773.24 + 13463.6i 0.371006 + 0.642602i
\(761\) −3632.94 + 6292.44i −0.173054 + 0.299738i −0.939486 0.342587i \(-0.888697\pi\)
0.766432 + 0.642325i \(0.222030\pi\)
\(762\) 46024.8 2.18806
\(763\) 0 0
\(764\) 5571.07 0.263814
\(765\) 513.194 888.878i 0.0242543 0.0420097i
\(766\) 17273.0 + 29917.7i 0.814750 + 1.41119i
\(767\) −37283.7 64577.3i −1.75520 3.04009i
\(768\) −20541.2 + 35578.4i −0.965127 + 1.67165i
\(769\) 38116.2 1.78739 0.893695 0.448674i \(-0.148104\pi\)
0.893695 + 0.448674i \(0.148104\pi\)
\(770\) 0 0
\(771\) 50591.3 2.36317
\(772\) 34678.3 60064.6i 1.61671 2.80022i
\(773\) −8079.11 13993.4i −0.375919 0.651111i 0.614545 0.788882i \(-0.289340\pi\)
−0.990464 + 0.137771i \(0.956006\pi\)
\(774\) −29925.1 51831.9i −1.38971 2.40705i
\(775\) 25.4709 44.1168i 0.00118057 0.00204480i
\(776\) 104.498 0.00483412
\(777\) 0 0
\(778\) −40463.9 −1.86465
\(779\) −5946.22 + 10299.2i −0.273486 + 0.473692i
\(780\) 24959.8 + 43231.7i 1.14578 + 1.98454i
\(781\) −7880.97 13650.2i −0.361080 0.625409i
\(782\) −222.000 + 384.516i −0.0101518 + 0.0175835i
\(783\) −18369.3 −0.838400
\(784\) 0 0
\(785\) −10658.7 −0.484618
\(786\) −20062.3 + 34748.9i −0.910431 + 1.57691i
\(787\) −2546.24 4410.22i −0.115329 0.199755i 0.802582 0.596541i \(-0.203459\pi\)
−0.917911 + 0.396786i \(0.870126\pi\)
\(788\) −9720.97 16837.2i −0.439461 0.761169i
\(789\) 24840.3 43024.7i 1.12083 1.94134i
\(790\) 12185.3 0.548777
\(791\) 0 0
\(792\) 32505.6 1.45838
\(793\) −17315.6 + 29991.4i −0.775402 + 1.34304i
\(794\) 12429.1 + 21527.8i 0.555532 + 0.962209i
\(795\) 8143.99 + 14105.8i 0.363317 + 0.629284i
\(796\) 8548.90 14807.1i 0.380663 0.659328i
\(797\) −34666.2 −1.54070 −0.770350 0.637621i \(-0.779919\pi\)
−0.770350 + 0.637621i \(0.779919\pi\)
\(798\) 0 0
\(799\) 611.326 0.0270678
\(800\) −2022.36 + 3502.82i −0.0893764 + 0.154804i
\(801\) 201.058 + 348.243i 0.00886896 + 0.0153615i
\(802\) 17021.5 + 29482.1i 0.749438 + 1.29806i
\(803\) 1000.74 1733.33i 0.0439791 0.0761741i
\(804\) −78339.9 −3.43636
\(805\) 0 0
\(806\) 838.012 0.0366225
\(807\) 13639.9 23625.1i 0.594980 1.03054i
\(808\) −10784.4 18679.1i −0.469545 0.813277i
\(809\) −7563.10 13099.7i −0.328683 0.569295i 0.653568 0.756868i \(-0.273271\pi\)
−0.982251 + 0.187573i \(0.939938\pi\)
\(810\) −244.219 + 423.000i −0.0105938 + 0.0183490i
\(811\) 29416.5 1.27368 0.636840 0.770996i \(-0.280241\pi\)
0.636840 + 0.770996i \(0.280241\pi\)
\(812\) 0 0
\(813\) 52384.9 2.25980
\(814\) 9826.93 17020.7i 0.423137 0.732895i
\(815\) 1484.85 + 2571.83i 0.0638183 + 0.110537i
\(816\) −161.058 278.960i −0.00690950 0.0119676i
\(817\) 18638.2 32282.3i 0.798124 1.38239i
\(818\) 12081.5 0.516404
\(819\) 0 0
\(820\) 6377.27 0.271590
\(821\) 7667.19 13280.0i 0.325928 0.564524i −0.655772 0.754959i \(-0.727657\pi\)
0.981700 + 0.190435i \(0.0609900\pi\)
\(822\) −12531.6 21705.3i −0.531739 0.920998i
\(823\) 5501.84 + 9529.46i 0.233028 + 0.403616i 0.958698 0.284427i \(-0.0918033\pi\)
−0.725670 + 0.688043i \(0.758470\pi\)
\(824\) −14524.4 + 25156.9i −0.614054 + 1.06357i
\(825\) 6313.36 0.266428
\(826\) 0 0
\(827\) −3261.59 −0.137142 −0.0685711 0.997646i \(-0.521844\pi\)
−0.0685711 + 0.997646i \(0.521844\pi\)
\(828\) −5878.80 + 10182.4i −0.246742 + 0.427370i
\(829\) −2581.65 4471.55i −0.108160 0.187338i 0.806865 0.590736i \(-0.201162\pi\)
−0.915025 + 0.403398i \(0.867829\pi\)
\(830\) 809.606 + 1402.28i 0.0338576 + 0.0586431i
\(831\) −6592.57 + 11418.7i −0.275203 + 0.476666i
\(832\) −72305.6 −3.01292
\(833\) 0 0
\(834\) 19643.7 0.815593
\(835\) 7340.75 12714.6i 0.304236 0.526952i
\(836\) 25156.6 + 43572.5i 1.04074 + 1.80261i
\(837\) −139.575 241.751i −0.00576395 0.00998345i
\(838\) 10169.9 17614.8i 0.419228 0.726125i
\(839\) −5641.70 −0.232149 −0.116075 0.993241i \(-0.537031\pi\)
−0.116075 + 0.993241i \(0.537031\pi\)
\(840\) 0 0
\(841\) −6409.46 −0.262801
\(842\) 22483.1 38941.8i 0.920211 1.59385i
\(843\) −32900.7 56985.7i −1.34420 2.32822i
\(844\) 21814.1 + 37783.0i 0.889657 + 1.54093i
\(845\) −14278.6 + 24731.3i −0.581302 + 1.00684i
\(846\) 25863.0 1.05105
\(847\) 0 0
\(848\) 3149.45 0.127538
\(849\) 26273.4 45506.9i 1.06207 1.83957i
\(850\) −273.832 474.290i −0.0110498 0.0191389i
\(851\) 1430.28 + 2477.32i 0.0576140 + 0.0997903i
\(852\) −29383.3 + 50893.4i −1.18152 + 2.04645i
\(853\) −7799.52 −0.313072 −0.156536 0.987672i \(-0.550033\pi\)
−0.156536 + 0.987672i \(0.550033\pi\)
\(854\) 0 0
\(855\) 27044.9 1.08177
\(856\) 709.520 1228.93i 0.0283305 0.0490699i
\(857\) 10770.0 + 18654.2i 0.429284 + 0.743542i 0.996810 0.0798140i \(-0.0254327\pi\)
−0.567526 + 0.823356i \(0.692099\pi\)
\(858\) 51928.7 + 89943.1i 2.06622 + 3.57879i
\(859\) −2223.99 + 3852.06i −0.0883370 + 0.153004i −0.906808 0.421543i \(-0.861489\pi\)
0.818471 + 0.574547i \(0.194822\pi\)
\(860\) −19989.3 −0.792591
\(861\) 0 0
\(862\) 66198.5 2.61569
\(863\) 4712.60 8162.47i 0.185885 0.321963i −0.757989 0.652267i \(-0.773818\pi\)
0.943874 + 0.330304i \(0.107151\pi\)
\(864\) 11082.1 + 19194.8i 0.436367 + 0.755809i
\(865\) −5868.27 10164.1i −0.230667 0.399528i
\(866\) −5488.48 + 9506.32i −0.215365 + 0.373023i
\(867\) 41015.2 1.60663
\(868\) 0 0
\(869\) 15868.3 0.619442
\(870\) −13001.3 + 22518.9i −0.506649 + 0.877541i
\(871\) −31027.2 53740.8i −1.20702 2.09063i
\(872\) −16925.4 29315.7i −0.657301 1.13848i
\(873\) 90.8936 157.432i 0.00352381 0.00610341i
\(874\) −11699.2 −0.452783
\(875\) 0 0
\(876\) −7462.27 −0.287816
\(877\) −11173.0 + 19352.3i −0.430201 + 0.745131i −0.996890 0.0788011i \(-0.974891\pi\)
0.566689 + 0.823932i \(0.308224\pi\)
\(878\) −22044.1 38181.4i −0.847324 1.46761i
\(879\) −30464.3 52765.7i −1.16898 2.02474i
\(880\) 610.377 1057.20i 0.0233816 0.0404981i
\(881\) 12074.9 0.461762 0.230881 0.972982i \(-0.425839\pi\)
0.230881 + 0.972982i \(0.425839\pi\)
\(882\) 0 0
\(883\) −30499.6 −1.16239 −0.581196 0.813764i \(-0.697415\pi\)
−0.581196 + 0.813764i \(0.697415\pi\)
\(884\) 2819.61 4883.70i 0.107278 0.185811i
\(885\) 17580.4 + 30450.2i 0.667751 + 1.15658i
\(886\) 15371.9 + 26624.9i 0.582878 + 1.00957i
\(887\) −11672.1 + 20216.6i −0.441838 + 0.765285i −0.997826 0.0659050i \(-0.979007\pi\)
0.555988 + 0.831190i \(0.312340\pi\)
\(888\) −29485.8 −1.11428
\(889\) 0 0
\(890\) 214.562 0.00808107
\(891\) −318.034 + 550.851i −0.0119580 + 0.0207118i
\(892\) −29272.1 50700.8i −1.09877 1.90313i
\(893\) 8054.10 + 13950.1i 0.301814 + 0.522758i
\(894\) 35451.1 61403.2i 1.32625 2.29712i
\(895\) 15182.8 0.567044
\(896\) 0 0
\(897\) −15116.2 −0.562669
\(898\) −1776.42 + 3076.86i −0.0660134 + 0.114339i
\(899\) 136.613 + 236.621i 0.00506820 + 0.00877838i
\(900\) −7251.35 12559.7i −0.268568 0.465174i
\(901\) 919.992 1593.47i 0.0340171 0.0589193i
\(902\) 13267.8 0.489768
\(903\) 0 0
\(904\) −10862.0 −0.399629
\(905\) 2249.44 3896.15i 0.0826231 0.143107i
\(906\) −57695.0 99930.7i −2.11566 3.66443i
\(907\) 7546.25 + 13070.5i 0.276262 + 0.478499i 0.970453 0.241292i \(-0.0775711\pi\)
−0.694191 + 0.719791i \(0.744238\pi\)
\(908\) 409.058 708.509i 0.0149505 0.0258950i
\(909\) −37521.3 −1.36909
\(910\) 0 0
\(911\) −15207.8 −0.553081 −0.276541 0.961002i \(-0.589188\pi\)
−0.276541 + 0.961002i \(0.589188\pi\)
\(912\) 4243.81 7350.49i 0.154086 0.266885i
\(913\) 1054.31 + 1826.11i 0.0382174 + 0.0661945i
\(914\) −7684.87 13310.6i −0.278110 0.481701i
\(915\) 8164.82 14141.9i 0.294995 0.510947i
\(916\) 40419.6 1.45797
\(917\) 0 0
\(918\) −3001.08 −0.107898
\(919\) −12409.1 + 21493.1i −0.445415 + 0.771482i −0.998081 0.0619209i \(-0.980277\pi\)
0.552666 + 0.833403i \(0.313611\pi\)
\(920\) 1262.22 + 2186.23i 0.0452328 + 0.0783455i
\(921\) 5570.06 + 9647.62i 0.199283 + 0.345168i
\(922\) −43565.0 + 75456.8i −1.55611 + 2.69527i
\(923\) −46550.1 −1.66004
\(924\) 0 0
\(925\) −3528.44 −0.125421
\(926\) −24878.1 + 43090.2i −0.882880 + 1.52919i
\(927\) 25266.8 + 43763.4i 0.895223 + 1.55057i
\(928\) −10846.9 18787.4i −0.383694 0.664577i
\(929\) −19953.2 + 34560.0i −0.704675 + 1.22053i 0.262133 + 0.965032i \(0.415574\pi\)
−0.966809 + 0.255502i \(0.917759\pi\)
\(930\) −395.148 −0.0139327
\(931\) 0 0
\(932\) −47270.3 −1.66136
\(933\) 20415.8 35361.3i 0.716382 1.24081i
\(934\) 17207.3 + 29804.0i 0.602827 + 1.04413i
\(935\) −356.597 617.644i −0.0124727 0.0216033i
\(936\) 47999.8 83138.1i 1.67620 2.90326i
\(937\) 16923.0 0.590020 0.295010 0.955494i \(-0.404677\pi\)
0.295010 + 0.955494i \(0.404677\pi\)
\(938\) 0 0
\(939\) −64856.8 −2.25402
\(940\) 4318.97 7480.68i 0.149861 0.259567i
\(941\) 26507.1 + 45911.6i 0.918285 + 1.59052i 0.802020 + 0.597298i \(0.203759\pi\)
0.116265 + 0.993218i \(0.462908\pi\)
\(942\) 41339.1 + 71601.4i 1.42983 + 2.47654i
\(943\) −965.550 + 1672.38i −0.0333432 + 0.0577521i
\(944\) 6798.71 0.234406
\(945\) 0 0
\(946\) −41587.4 −1.42931
\(947\) 12899.5 22342.5i 0.442636 0.766668i −0.555248 0.831685i \(-0.687377\pi\)
0.997884 + 0.0650170i \(0.0207101\pi\)
\(948\) −29581.6 51236.8i −1.01347 1.75537i
\(949\) −2955.50 5119.08i −0.101095 0.175102i
\(950\) 7215.35 12497.4i 0.246418 0.426808i
\(951\) 68560.6 2.33778
\(952\) 0 0
\(953\) −17942.7 −0.609885 −0.304943 0.952371i \(-0.598637\pi\)
−0.304943 + 0.952371i \(0.598637\pi\)
\(954\) 38921.6 67414.2i 1.32089 2.28786i
\(955\) −1040.42 1802.06i −0.0352536 0.0610610i
\(956\) −15278.3 26462.8i −0.516877 0.895258i
\(957\) −16930.9 + 29325.2i −0.571889 + 0.990541i
\(958\) −26322.9 −0.887739
\(959\) 0 0
\(960\) 34094.3 1.14624
\(961\) 14893.4 25796.2i 0.499930 0.865905i
\(962\) −29022.1 50267.7i −0.972671 1.68472i
\(963\) −1234.29 2137.86i −0.0413027 0.0715384i
\(964\) 14830.2 25686.6i 0.495486 0.858206i
\(965\) −25905.2 −0.864165
\(966\) 0 0
\(967\) 19668.3 0.654073 0.327036 0.945012i \(-0.393950\pi\)
0.327036 + 0.945012i \(0.393950\pi\)
\(968\) −5284.64 + 9153.27i −0.175470 + 0.303923i
\(969\) −2479.33 4294.33i −0.0821958 0.142367i
\(970\) −48.4993 84.0033i −0.00160538 0.00278060i
\(971\) −3166.48 + 5484.51i −0.104652 + 0.181263i −0.913596 0.406623i \(-0.866706\pi\)
0.808944 + 0.587886i \(0.200040\pi\)
\(972\) 51886.7 1.71221
\(973\) 0 0
\(974\) 9342.76 0.307353
\(975\) 9322.70 16147.4i 0.306221 0.530390i
\(976\) −1578.75 2734.48i −0.0517773 0.0896809i
\(977\) 5667.04 + 9815.59i 0.185573 + 0.321421i 0.943769 0.330605i \(-0.107253\pi\)
−0.758197 + 0.652026i \(0.773919\pi\)
\(978\) 11517.8 19949.3i 0.376582 0.652259i
\(979\) 279.414 0.00912166
\(980\) 0 0
\(981\) −58887.4 −1.91655
\(982\) 17656.6 30582.2i 0.573774 0.993805i
\(983\) 18827.1 + 32609.6i 0.610877 + 1.05807i 0.991093 + 0.133173i \(0.0425165\pi\)
−0.380216 + 0.924898i \(0.624150\pi\)
\(984\) −9952.57 17238.4i −0.322435 0.558475i
\(985\) −3630.86 + 6288.83i −0.117451 + 0.203430i
\(986\) 2937.40 0.0948741
\(987\) 0 0
\(988\) 148591. 4.78473
\(989\) 3026.47 5242.01i 0.0973066 0.168540i
\(990\) −15086.4 26130.3i −0.484319 0.838865i
\(991\) 26720.8 + 46281.7i 0.856522 + 1.48354i 0.875226 + 0.483715i \(0.160713\pi\)
−0.0187038 + 0.999825i \(0.505954\pi\)
\(992\) 164.836 285.504i 0.00527575 0.00913786i
\(993\) 17115.1 0.546959
\(994\) 0 0
\(995\) −6386.16 −0.203472
\(996\) 3930.87 6808.46i 0.125055 0.216601i
\(997\) −18959.7 32839.1i −0.602266 1.04315i −0.992477 0.122429i \(-0.960931\pi\)
0.390212 0.920725i \(-0.372402\pi\)
\(998\) 14531.7 + 25169.6i 0.460914 + 0.798327i
\(999\) −9667.55 + 16744.7i −0.306174 + 0.530309i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.4.e.m.226.3 6
7.2 even 3 35.4.a.c.1.1 3
7.3 odd 6 245.4.e.n.116.3 6
7.4 even 3 inner 245.4.e.m.116.3 6
7.5 odd 6 245.4.a.l.1.1 3
7.6 odd 2 245.4.e.n.226.3 6
21.2 odd 6 315.4.a.p.1.3 3
21.5 even 6 2205.4.a.bm.1.3 3
28.23 odd 6 560.4.a.u.1.3 3
35.2 odd 12 175.4.b.e.99.1 6
35.9 even 6 175.4.a.f.1.3 3
35.19 odd 6 1225.4.a.y.1.3 3
35.23 odd 12 175.4.b.e.99.6 6
56.37 even 6 2240.4.a.bt.1.3 3
56.51 odd 6 2240.4.a.bv.1.1 3
105.44 odd 6 1575.4.a.ba.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 7.2 even 3
175.4.a.f.1.3 3 35.9 even 6
175.4.b.e.99.1 6 35.2 odd 12
175.4.b.e.99.6 6 35.23 odd 12
245.4.a.l.1.1 3 7.5 odd 6
245.4.e.m.116.3 6 7.4 even 3 inner
245.4.e.m.226.3 6 1.1 even 1 trivial
245.4.e.n.116.3 6 7.3 odd 6
245.4.e.n.226.3 6 7.6 odd 2
315.4.a.p.1.3 3 21.2 odd 6
560.4.a.u.1.3 3 28.23 odd 6
1225.4.a.y.1.3 3 35.19 odd 6
1575.4.a.ba.1.1 3 105.44 odd 6
2205.4.a.bm.1.3 3 21.5 even 6
2240.4.a.bt.1.3 3 56.37 even 6
2240.4.a.bv.1.1 3 56.51 odd 6