Properties

Label 245.4.j.e.214.4
Level $245$
Weight $4$
Character 245.214
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.4
Root \(-2.31676 - 1.33758i\) of defining polynomial
Character \(\chi\) \(=\) 245.214
Dual form 245.4.j.e.79.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.45073 + 0.837581i) q^{2} +(-2.15983 - 1.24698i) q^{3} +(-2.59692 + 4.49799i) q^{4} +(-11.1437 - 0.904354i) q^{5} +4.17779 q^{6} -22.1018i q^{8} +(-10.3901 - 17.9961i) q^{9} +(16.9240 - 8.02178i) q^{10} +(28.7940 - 49.8727i) q^{11} +(11.2178 - 6.47661i) q^{12} +45.5159i q^{13} +(22.9408 + 15.8492i) q^{15} +(-2.26327 - 3.92011i) q^{16} +(-79.6787 - 46.0025i) q^{17} +(30.1465 + 17.4051i) q^{18} +(62.5885 + 108.407i) q^{19} +(33.0070 - 47.7757i) q^{20} +96.4692i q^{22} +(-137.262 + 79.2481i) q^{23} +(-27.5605 + 47.7362i) q^{24} +(123.364 + 20.1557i) q^{25} +(-38.1233 - 66.0315i) q^{26} +119.162i q^{27} +40.1708 q^{29} +(-46.5560 - 3.77820i) q^{30} +(-24.7795 + 42.9194i) q^{31} +(159.693 + 92.1986i) q^{32} +(-124.381 + 71.8111i) q^{33} +154.123 q^{34} +107.929 q^{36} +(200.318 - 115.654i) q^{37} +(-181.598 - 104.846i) q^{38} +(56.7575 - 98.3069i) q^{39} +(-19.9879 + 246.296i) q^{40} +169.556 q^{41} +147.428i q^{43} +(149.551 + 259.030i) q^{44} +(99.5091 + 209.940i) q^{45} +(132.753 - 229.936i) q^{46} +(-58.0520 + 33.5164i) q^{47} +11.2890i q^{48} +(-195.851 + 74.0870i) q^{50} +(114.729 + 198.716i) q^{51} +(-204.730 - 118.201i) q^{52} +(232.655 + 134.323i) q^{53} +(-99.8077 - 172.872i) q^{54} +(-365.974 + 529.726i) q^{55} -312.187i q^{57} +(-58.2771 + 33.6463i) q^{58} +(-120.421 + 208.576i) q^{59} +(-130.865 + 62.0285i) q^{60} +(-45.2290 - 78.3389i) q^{61} -83.0194i q^{62} -272.683 q^{64} +(41.1625 - 507.216i) q^{65} +(120.295 - 208.358i) q^{66} +(352.038 + 203.249i) q^{67} +(413.838 - 238.929i) q^{68} +395.283 q^{69} +330.782 q^{71} +(-397.747 + 229.640i) q^{72} +(473.071 + 273.127i) q^{73} +(-193.739 + 335.565i) q^{74} +(-241.313 - 197.366i) q^{75} -650.149 q^{76} +190.156i q^{78} +(-12.6543 - 21.9179i) q^{79} +(21.6761 + 45.7313i) q^{80} +(-131.940 + 228.526i) q^{81} +(-245.981 + 142.017i) q^{82} -376.255i q^{83} +(846.314 + 584.697i) q^{85} +(-123.483 - 213.878i) q^{86} +(-86.7623 - 50.0922i) q^{87} +(-1102.28 - 636.399i) q^{88} +(513.219 + 888.921i) q^{89} +(-320.203 - 221.220i) q^{90} -823.203i q^{92} +(107.039 - 61.7992i) q^{93} +(56.1453 - 97.2466i) q^{94} +(-599.430 - 1264.65i) q^{95} +(-229.940 - 398.267i) q^{96} -942.660i q^{97} -1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} - 6 q^{5} + 24 q^{6} + 46 q^{9} + 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} - 72 q^{19} - 136 q^{20} - 72 q^{24} + 362 q^{25} + 620 q^{26} + 176 q^{29} - 52 q^{30} - 120 q^{31} + 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45073 + 0.837581i −0.512912 + 0.296130i −0.734030 0.679117i \(-0.762363\pi\)
0.221118 + 0.975247i \(0.429029\pi\)
\(3\) −2.15983 1.24698i −0.415660 0.239982i 0.277559 0.960709i \(-0.410475\pi\)
−0.693219 + 0.720727i \(0.743808\pi\)
\(4\) −2.59692 + 4.49799i −0.324615 + 0.562249i
\(5\) −11.1437 0.904354i −0.996723 0.0808879i
\(6\) 4.17779 0.284263
\(7\) 0 0
\(8\) 22.1018i 0.976771i
\(9\) −10.3901 17.9961i −0.384818 0.666524i
\(10\) 16.9240 8.02178i 0.535184 0.253671i
\(11\) 28.7940 49.8727i 0.789247 1.36702i −0.137182 0.990546i \(-0.543804\pi\)
0.926429 0.376470i \(-0.122862\pi\)
\(12\) 11.2178 6.47661i 0.269859 0.155803i
\(13\) 45.5159i 0.971066i 0.874218 + 0.485533i \(0.161374\pi\)
−0.874218 + 0.485533i \(0.838626\pi\)
\(14\) 0 0
\(15\) 22.9408 + 15.8492i 0.394887 + 0.272817i
\(16\) −2.26327 3.92011i −0.0353637 0.0612517i
\(17\) −79.6787 46.0025i −1.13676 0.656309i −0.191134 0.981564i \(-0.561217\pi\)
−0.945626 + 0.325255i \(0.894550\pi\)
\(18\) 30.1465 + 17.4051i 0.394755 + 0.227912i
\(19\) 62.5885 + 108.407i 0.755726 + 1.30896i 0.945013 + 0.327034i \(0.106049\pi\)
−0.189286 + 0.981922i \(0.560617\pi\)
\(20\) 33.0070 47.7757i 0.369030 0.534149i
\(21\) 0 0
\(22\) 96.4692i 0.934878i
\(23\) −137.262 + 79.2481i −1.24439 + 0.718451i −0.969986 0.243162i \(-0.921815\pi\)
−0.274408 + 0.961613i \(0.588482\pi\)
\(24\) −27.5605 + 47.7362i −0.234407 + 0.406005i
\(25\) 123.364 + 20.1557i 0.986914 + 0.161246i
\(26\) −38.1233 66.0315i −0.287561 0.498071i
\(27\) 119.162i 0.849360i
\(28\) 0 0
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) −46.5560 3.77820i −0.283331 0.0229934i
\(31\) −24.7795 + 42.9194i −0.143566 + 0.248663i −0.928837 0.370489i \(-0.879190\pi\)
0.785271 + 0.619152i \(0.212523\pi\)
\(32\) 159.693 + 92.1986i 0.882185 + 0.509330i
\(33\) −124.381 + 71.8111i −0.656117 + 0.378809i
\(34\) 154.123 0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) 200.318 115.654i 0.890056 0.513874i 0.0160950 0.999870i \(-0.494877\pi\)
0.873961 + 0.485997i \(0.161543\pi\)
\(38\) −181.598 104.846i −0.775241 0.447586i
\(39\) 56.7575 98.3069i 0.233038 0.403633i
\(40\) −19.9879 + 246.296i −0.0790090 + 0.973570i
\(41\) 169.556 0.645859 0.322929 0.946423i \(-0.395332\pi\)
0.322929 + 0.946423i \(0.395332\pi\)
\(42\) 0 0
\(43\) 147.428i 0.522849i 0.965224 + 0.261425i \(0.0841923\pi\)
−0.965224 + 0.261425i \(0.915808\pi\)
\(44\) 149.551 + 259.030i 0.512402 + 0.887507i
\(45\) 99.5091 + 209.940i 0.329643 + 0.695467i
\(46\) 132.753 229.936i 0.425509 0.737004i
\(47\) −58.0520 + 33.5164i −0.180165 + 0.104018i −0.587370 0.809318i \(-0.699837\pi\)
0.407205 + 0.913337i \(0.366503\pi\)
\(48\) 11.2890i 0.0339465i
\(49\) 0 0
\(50\) −195.851 + 74.0870i −0.553949 + 0.209550i
\(51\) 114.729 + 198.716i 0.315004 + 0.545603i
\(52\) −204.730 118.201i −0.545980 0.315222i
\(53\) 232.655 + 134.323i 0.602974 + 0.348127i 0.770211 0.637790i \(-0.220151\pi\)
−0.167237 + 0.985917i \(0.553484\pi\)
\(54\) −99.8077 172.872i −0.251521 0.435646i
\(55\) −365.974 + 529.726i −0.897236 + 1.29870i
\(56\) 0 0
\(57\) 312.187i 0.725441i
\(58\) −58.2771 + 33.6463i −0.131934 + 0.0761720i
\(59\) −120.421 + 208.576i −0.265721 + 0.460242i −0.967752 0.251904i \(-0.918943\pi\)
0.702031 + 0.712146i \(0.252277\pi\)
\(60\) −130.865 + 62.0285i −0.281577 + 0.133464i
\(61\) −45.2290 78.3389i −0.0949340 0.164431i 0.814647 0.579957i \(-0.196931\pi\)
−0.909581 + 0.415527i \(0.863597\pi\)
\(62\) 83.0194i 0.170056i
\(63\) 0 0
\(64\) −272.683 −0.532583
\(65\) 41.1625 507.216i 0.0785475 0.967884i
\(66\) 120.295 208.358i 0.224353 0.388592i
\(67\) 352.038 + 203.249i 0.641914 + 0.370609i 0.785351 0.619050i \(-0.212482\pi\)
−0.143437 + 0.989659i \(0.545816\pi\)
\(68\) 413.838 238.929i 0.738018 0.426095i
\(69\) 395.283 0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) −397.747 + 229.640i −0.651041 + 0.375879i
\(73\) 473.071 + 273.127i 0.758476 + 0.437906i 0.828748 0.559622i \(-0.189054\pi\)
−0.0702724 + 0.997528i \(0.522387\pi\)
\(74\) −193.739 + 335.565i −0.304347 + 0.527144i
\(75\) −241.313 197.366i −0.371525 0.303865i
\(76\) −650.149 −0.981279
\(77\) 0 0
\(78\) 190.156i 0.276038i
\(79\) −12.6543 21.9179i −0.0180218 0.0312147i 0.856874 0.515526i \(-0.172403\pi\)
−0.874896 + 0.484311i \(0.839070\pi\)
\(80\) 21.6761 + 45.7313i 0.0302933 + 0.0639114i
\(81\) −131.940 + 228.526i −0.180987 + 0.313479i
\(82\) −245.981 + 142.017i −0.331268 + 0.191258i
\(83\) 376.255i 0.497582i −0.968557 0.248791i \(-0.919967\pi\)
0.968557 0.248791i \(-0.0800333\pi\)
\(84\) 0 0
\(85\) 846.314 + 584.697i 1.07995 + 0.746109i
\(86\) −123.483 213.878i −0.154831 0.268175i
\(87\) −86.7623 50.0922i −0.106918 0.0617293i
\(88\) −1102.28 636.399i −1.33526 0.770914i
\(89\) 513.219 + 888.921i 0.611248 + 1.05871i 0.991030 + 0.133637i \(0.0426656\pi\)
−0.379782 + 0.925076i \(0.624001\pi\)
\(90\) −320.203 221.220i −0.375026 0.259096i
\(91\) 0 0
\(92\) 823.203i 0.932878i
\(93\) 107.039 61.7992i 0.119349 0.0689062i
\(94\) 56.1453 97.2466i 0.0616058 0.106704i
\(95\) −599.430 1264.65i −0.647371 1.36580i
\(96\) −229.940 398.267i −0.244460 0.423416i
\(97\) 942.660i 0.986728i −0.869823 0.493364i \(-0.835767\pi\)
0.869823 0.493364i \(-0.164233\pi\)
\(98\) 0 0
\(99\) −1196.69 −1.21487
\(100\) −411.027 + 502.549i −0.411027 + 0.502549i
\(101\) 302.308 523.613i 0.297830 0.515856i −0.677809 0.735238i \(-0.737071\pi\)
0.975639 + 0.219381i \(0.0704039\pi\)
\(102\) −332.881 192.189i −0.323139 0.186564i
\(103\) 260.645 150.484i 0.249341 0.143957i −0.370121 0.928983i \(-0.620684\pi\)
0.619463 + 0.785026i \(0.287351\pi\)
\(104\) 1005.98 0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) 1309.14 755.830i 1.18279 0.682886i 0.226135 0.974096i \(-0.427391\pi\)
0.956659 + 0.291210i \(0.0940577\pi\)
\(108\) −535.989 309.453i −0.477551 0.275714i
\(109\) −883.545 + 1530.34i −0.776406 + 1.34477i 0.157595 + 0.987504i \(0.449626\pi\)
−0.934001 + 0.357270i \(0.883707\pi\)
\(110\) 87.2424 1075.02i 0.0756203 0.931814i
\(111\) −576.871 −0.493281
\(112\) 0 0
\(113\) 1045.27i 0.870182i −0.900387 0.435091i \(-0.856716\pi\)
0.900387 0.435091i \(-0.143284\pi\)
\(114\) 261.482 + 452.900i 0.214825 + 0.372087i
\(115\) 1601.27 758.984i 1.29843 0.615440i
\(116\) −104.320 + 180.688i −0.0834991 + 0.144625i
\(117\) 819.111 472.914i 0.647238 0.373683i
\(118\) 403.451i 0.314751i
\(119\) 0 0
\(120\) 350.297 507.034i 0.266480 0.385714i
\(121\) −992.689 1719.39i −0.745822 1.29180i
\(122\) 131.230 + 75.7658i 0.0973855 + 0.0562255i
\(123\) −366.213 211.433i −0.268458 0.154994i
\(124\) −128.701 222.916i −0.0932070 0.161439i
\(125\) −1356.51 336.174i −0.970638 0.240547i
\(126\) 0 0
\(127\) 260.727i 0.182171i 0.995843 + 0.0910857i \(0.0290337\pi\)
−0.995843 + 0.0910857i \(0.970966\pi\)
\(128\) −881.951 + 509.195i −0.609017 + 0.351616i
\(129\) 183.840 318.419i 0.125474 0.217328i
\(130\) 365.119 + 770.312i 0.246331 + 0.519699i
\(131\) 361.761 + 626.588i 0.241276 + 0.417903i 0.961078 0.276277i \(-0.0891006\pi\)
−0.719802 + 0.694180i \(0.755767\pi\)
\(132\) 745.950i 0.491868i
\(133\) 0 0
\(134\) −680.950 −0.438993
\(135\) 107.765 1327.90i 0.0687029 0.846577i
\(136\) −1016.74 + 1761.04i −0.641064 + 1.11036i
\(137\) −670.038 386.847i −0.417848 0.241245i 0.276308 0.961069i \(-0.410889\pi\)
−0.694156 + 0.719824i \(0.744222\pi\)
\(138\) −573.451 + 331.082i −0.353735 + 0.204229i
\(139\) 2952.97 1.80192 0.900961 0.433899i \(-0.142863\pi\)
0.900961 + 0.433899i \(0.142863\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) −479.876 + 277.057i −0.283594 + 0.163733i
\(143\) 2270.00 + 1310.59i 1.32746 + 0.766411i
\(144\) −47.0312 + 81.4604i −0.0272171 + 0.0471414i
\(145\) −447.652 36.3287i −0.256382 0.0208064i
\(146\) −915.066 −0.518708
\(147\) 0 0
\(148\) 1201.37i 0.667244i
\(149\) 1257.00 + 2177.19i 0.691124 + 1.19706i 0.971470 + 0.237163i \(0.0762177\pi\)
−0.280345 + 0.959899i \(0.590449\pi\)
\(150\) 515.390 + 84.2063i 0.280543 + 0.0458361i
\(151\) −50.5262 + 87.5140i −0.0272302 + 0.0471642i −0.879319 0.476233i \(-0.842002\pi\)
0.852089 + 0.523397i \(0.175335\pi\)
\(152\) 2395.98 1383.32i 1.27855 0.738171i
\(153\) 1911.88i 1.01024i
\(154\) 0 0
\(155\) 314.950 455.872i 0.163209 0.236235i
\(156\) 294.789 + 510.589i 0.151295 + 0.262050i
\(157\) −2025.07 1169.17i −1.02941 0.594333i −0.112597 0.993641i \(-0.535917\pi\)
−0.916817 + 0.399308i \(0.869250\pi\)
\(158\) 36.7161 + 21.1980i 0.0184872 + 0.0106736i
\(159\) −334.997 580.233i −0.167088 0.289405i
\(160\) −1696.19 1171.85i −0.838096 0.579019i
\(161\) 0 0
\(162\) 442.040i 0.214383i
\(163\) 1147.66 662.602i 0.551483 0.318399i −0.198237 0.980154i \(-0.563522\pi\)
0.749720 + 0.661755i \(0.230188\pi\)
\(164\) −440.323 + 762.662i −0.209655 + 0.363133i
\(165\) 1451.00 687.758i 0.684608 0.324496i
\(166\) 315.144 + 545.845i 0.147349 + 0.255216i
\(167\) 2086.20i 0.966675i 0.875434 + 0.483338i \(0.160576\pi\)
−0.875434 + 0.483338i \(0.839424\pi\)
\(168\) 0 0
\(169\) 125.299 0.0570317
\(170\) −1717.51 139.382i −0.774863 0.0628831i
\(171\) 1300.60 2252.70i 0.581634 1.00742i
\(172\) −663.129 382.858i −0.293971 0.169724i
\(173\) −1661.20 + 959.095i −0.730051 + 0.421495i −0.818441 0.574591i \(-0.805161\pi\)
0.0883897 + 0.996086i \(0.471828\pi\)
\(174\) 167.825 0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) 520.180 300.326i 0.220899 0.127536i
\(178\) −1489.09 859.725i −0.627032 0.362017i
\(179\) 314.523 544.770i 0.131333 0.227475i −0.792858 0.609407i \(-0.791408\pi\)
0.924191 + 0.381932i \(0.124741\pi\)
\(180\) −1202.72 97.6057i −0.498032 0.0404172i
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) 0 0
\(183\) 225.599i 0.0911296i
\(184\) 1751.53 + 3033.73i 0.701762 + 1.21549i
\(185\) −2336.88 + 1107.65i −0.928705 + 0.440195i
\(186\) −103.524 + 179.308i −0.0408103 + 0.0706856i
\(187\) −4588.54 + 2649.19i −1.79437 + 1.03598i
\(188\) 348.157i 0.135063i
\(189\) 0 0
\(190\) 1928.86 + 1332.60i 0.736497 + 0.508827i
\(191\) −370.127 641.080i −0.140217 0.242863i 0.787361 0.616492i \(-0.211447\pi\)
−0.927578 + 0.373629i \(0.878113\pi\)
\(192\) 588.949 + 340.030i 0.221374 + 0.127810i
\(193\) 3535.61 + 2041.29i 1.31865 + 0.761321i 0.983511 0.180849i \(-0.0578844\pi\)
0.335136 + 0.942170i \(0.391218\pi\)
\(194\) 789.554 + 1367.55i 0.292199 + 0.506104i
\(195\) −721.393 + 1044.17i −0.264923 + 0.383461i
\(196\) 0 0
\(197\) 3414.89i 1.23503i 0.786559 + 0.617515i \(0.211860\pi\)
−0.786559 + 0.617515i \(0.788140\pi\)
\(198\) 1736.07 1002.32i 0.623118 0.359758i
\(199\) −1696.22 + 2937.94i −0.604231 + 1.04656i 0.387941 + 0.921684i \(0.373186\pi\)
−0.992173 + 0.124875i \(0.960147\pi\)
\(200\) 445.478 2726.57i 0.157500 0.963989i
\(201\) −506.895 877.968i −0.177879 0.308095i
\(202\) 1012.83i 0.352785i
\(203\) 0 0
\(204\) −1191.76 −0.409020
\(205\) −1889.48 153.339i −0.643743 0.0522422i
\(206\) −252.084 + 436.623i −0.0852600 + 0.147675i
\(207\) 2852.32 + 1646.79i 0.957729 + 0.552945i
\(208\) 178.427 103.015i 0.0594794 0.0343404i
\(209\) 7208.70 2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) −1208.37 + 697.653i −0.391468 + 0.226014i
\(213\) −714.434 412.479i −0.229823 0.132688i
\(214\) −1266.14 + 2193.02i −0.404446 + 0.700521i
\(215\) 133.327 1642.89i 0.0422922 0.521136i
\(216\) 2633.69 0.829630
\(217\) 0 0
\(218\) 2960.16i 0.919667i
\(219\) −681.169 1179.82i −0.210179 0.364040i
\(220\) −1432.30 3021.80i −0.438935 0.926045i
\(221\) 2093.85 3626.65i 0.637319 1.10387i
\(222\) 836.886 483.176i 0.253010 0.146075i
\(223\) 182.611i 0.0548365i −0.999624 0.0274183i \(-0.991271\pi\)
0.999624 0.0274183i \(-0.00872860\pi\)
\(224\) 0 0
\(225\) −919.040 2429.50i −0.272308 0.719852i
\(226\) 875.496 + 1516.40i 0.257687 + 0.446326i
\(227\) 2730.00 + 1576.17i 0.798222 + 0.460854i 0.842849 0.538150i \(-0.180877\pi\)
−0.0446271 + 0.999004i \(0.514210\pi\)
\(228\) 1404.21 + 810.723i 0.407878 + 0.235489i
\(229\) 3006.18 + 5206.85i 0.867483 + 1.50253i 0.864560 + 0.502529i \(0.167597\pi\)
0.00292326 + 0.999996i \(0.499069\pi\)
\(230\) −1687.31 + 2442.28i −0.483730 + 0.700170i
\(231\) 0 0
\(232\) 887.848i 0.251250i
\(233\) 814.635 470.330i 0.229050 0.132242i −0.381084 0.924540i \(-0.624449\pi\)
0.610133 + 0.792299i \(0.291116\pi\)
\(234\) −792.208 + 1372.14i −0.221317 + 0.383333i
\(235\) 677.225 320.997i 0.187989 0.0891043i
\(236\) −625.448 1083.31i −0.172514 0.298802i
\(237\) 63.1188i 0.0172996i
\(238\) 0 0
\(239\) −5158.82 −1.39622 −0.698109 0.715991i \(-0.745975\pi\)
−0.698109 + 0.715991i \(0.745975\pi\)
\(240\) 10.2093 125.802i 0.00274586 0.0338353i
\(241\) 231.918 401.694i 0.0619882 0.107367i −0.833366 0.552722i \(-0.813589\pi\)
0.895354 + 0.445355i \(0.146923\pi\)
\(242\) 2880.25 + 1662.92i 0.765081 + 0.441720i
\(243\) 3356.26 1937.74i 0.886025 0.511547i
\(244\) 469.823 0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) −4934.23 + 2848.78i −1.27108 + 0.733860i
\(248\) 948.596 + 547.672i 0.242887 + 0.140231i
\(249\) −469.183 + 812.648i −0.119411 + 0.206825i
\(250\) 2249.50 648.486i 0.569084 0.164055i
\(251\) 2290.25 0.575934 0.287967 0.957640i \(-0.407021\pi\)
0.287967 + 0.957640i \(0.407021\pi\)
\(252\) 0 0
\(253\) 9127.48i 2.26814i
\(254\) −218.380 378.245i −0.0539463 0.0934378i
\(255\) −1098.79 2318.18i −0.269839 0.569295i
\(256\) 1943.71 3366.61i 0.474540 0.821927i
\(257\) −694.727 + 401.101i −0.168622 + 0.0973541i −0.581936 0.813235i \(-0.697705\pi\)
0.413314 + 0.910589i \(0.364371\pi\)
\(258\) 615.922i 0.148627i
\(259\) 0 0
\(260\) 2174.56 + 1502.35i 0.518694 + 0.358352i
\(261\) −417.378 722.920i −0.0989849 0.171447i
\(262\) −1049.64 606.008i −0.247507 0.142898i
\(263\) −248.530 143.489i −0.0582701 0.0336423i 0.470582 0.882356i \(-0.344044\pi\)
−0.528852 + 0.848714i \(0.677377\pi\)
\(264\) 1587.16 + 2749.03i 0.370010 + 0.640876i
\(265\) −2471.16 1707.26i −0.572839 0.395760i
\(266\) 0 0
\(267\) 2559.90i 0.586753i
\(268\) −1828.42 + 1055.64i −0.416749 + 0.240610i
\(269\) 1780.61 3084.11i 0.403590 0.699039i −0.590566 0.806989i \(-0.701095\pi\)
0.994156 + 0.107951i \(0.0344288\pi\)
\(270\) 955.890 + 2016.70i 0.215458 + 0.454564i
\(271\) −964.403 1670.39i −0.216175 0.374425i 0.737461 0.675390i \(-0.236025\pi\)
−0.953635 + 0.300965i \(0.902691\pi\)
\(272\) 416.466i 0.0928380i
\(273\) 0 0
\(274\) 1296.06 0.285759
\(275\) 4557.37 5572.14i 0.999345 1.22187i
\(276\) −1026.52 + 1777.98i −0.223874 + 0.387760i
\(277\) −5705.97 3294.34i −1.23768 0.714578i −0.269064 0.963122i \(-0.586714\pi\)
−0.968620 + 0.248545i \(0.920048\pi\)
\(278\) −4283.96 + 2473.35i −0.924227 + 0.533603i
\(279\) 1029.84 0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) −242.529 + 140.024i −0.0512142 + 0.0295685i
\(283\) −5640.85 3256.75i −1.18485 0.684076i −0.227722 0.973726i \(-0.573128\pi\)
−0.957132 + 0.289651i \(0.906461\pi\)
\(284\) −859.013 + 1487.85i −0.179483 + 0.310873i
\(285\) −282.327 + 3478.92i −0.0586794 + 0.723064i
\(286\) −4390.89 −0.907828
\(287\) 0 0
\(288\) 3831.80i 0.783997i
\(289\) 1775.97 + 3076.07i 0.361483 + 0.626108i
\(290\) 679.851 322.241i 0.137663 0.0652506i
\(291\) −1175.48 + 2035.99i −0.236796 + 0.410143i
\(292\) −2457.05 + 1418.58i −0.492425 + 0.284301i
\(293\) 435.520i 0.0868373i −0.999057 0.0434186i \(-0.986175\pi\)
0.999057 0.0434186i \(-0.0138249\pi\)
\(294\) 0 0
\(295\) 1530.57 2215.40i 0.302078 0.437240i
\(296\) −2556.15 4427.39i −0.501937 0.869381i
\(297\) 5942.92 + 3431.15i 1.16109 + 0.670355i
\(298\) −3647.15 2105.68i −0.708971 0.409325i
\(299\) −3607.05 6247.60i −0.697663 1.20839i
\(300\) 1514.42 572.879i 0.291450 0.110251i
\(301\) 0 0
\(302\) 169.279i 0.0322547i
\(303\) −1305.87 + 753.945i −0.247592 + 0.142947i
\(304\) 283.310 490.707i 0.0534505 0.0925789i
\(305\) 433.172 + 913.888i 0.0813225 + 0.171571i
\(306\) −1601.35 2773.63i −0.299161 0.518163i
\(307\) 4915.99i 0.913910i −0.889490 0.456955i \(-0.848940\pi\)
0.889490 0.456955i \(-0.151060\pi\)
\(308\) 0 0
\(309\) −750.601 −0.138188
\(310\) −75.0790 + 925.144i −0.0137555 + 0.169499i
\(311\) 915.556 1585.79i 0.166934 0.289138i −0.770407 0.637553i \(-0.779947\pi\)
0.937340 + 0.348415i \(0.113280\pi\)
\(312\) −2172.76 1254.44i −0.394257 0.227625i
\(313\) 2115.66 1221.48i 0.382059 0.220582i −0.296655 0.954985i \(-0.595871\pi\)
0.678714 + 0.734403i \(0.262538\pi\)
\(314\) 3917.11 0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) 1442.97 833.096i 0.255662 0.147607i −0.366692 0.930342i \(-0.619510\pi\)
0.622354 + 0.782736i \(0.286176\pi\)
\(318\) 971.983 + 561.175i 0.171403 + 0.0989595i
\(319\) 1156.68 2003.43i 0.203014 0.351631i
\(320\) 3038.70 + 246.602i 0.530838 + 0.0430796i
\(321\) −3770.02 −0.655521
\(322\) 0 0
\(323\) 11516.9i 1.98396i
\(324\) −685.272 1186.93i −0.117502 0.203520i
\(325\) −917.406 + 5615.04i −0.156580 + 0.958358i
\(326\) −1109.97 + 1922.52i −0.188575 + 0.326621i
\(327\) 3816.62 2203.53i 0.645442 0.372646i
\(328\) 3747.50i 0.630856i
\(329\) 0 0
\(330\) −1528.96 + 2213.09i −0.255051 + 0.369171i
\(331\) 2733.19 + 4734.02i 0.453866 + 0.786119i 0.998622 0.0524753i \(-0.0167111\pi\)
−0.544756 + 0.838595i \(0.683378\pi\)
\(332\) 1692.39 + 977.102i 0.279765 + 0.161522i
\(333\) −4162.64 2403.30i −0.685018 0.395496i
\(334\) −1747.36 3026.51i −0.286261 0.495819i
\(335\) −3739.19 2583.31i −0.609833 0.421318i
\(336\) 0 0
\(337\) 10650.5i 1.72157i 0.508970 + 0.860784i \(0.330027\pi\)
−0.508970 + 0.860784i \(0.669973\pi\)
\(338\) −181.775 + 104.948i −0.0292522 + 0.0168888i
\(339\) −1303.43 + 2257.60i −0.208828 + 0.361700i
\(340\) −4827.77 + 2288.30i −0.770066 + 0.365002i
\(341\) 1427.00 + 2471.64i 0.226617 + 0.392513i
\(342\) 4357.43i 0.688956i
\(343\) 0 0
\(344\) 3258.42 0.510704
\(345\) −4404.92 357.476i −0.687400 0.0557851i
\(346\) 1606.64 2782.78i 0.249634 0.432380i
\(347\) −3480.67 2009.57i −0.538479 0.310891i 0.205983 0.978556i \(-0.433961\pi\)
−0.744462 + 0.667664i \(0.767294\pi\)
\(348\) 450.629 260.171i 0.0694145 0.0400765i
\(349\) −10544.9 −1.61735 −0.808674 0.588256i \(-0.799815\pi\)
−0.808674 + 0.588256i \(0.799815\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) 9196.38 5309.53i 1.39252 0.803974i
\(353\) 2563.42 + 1479.99i 0.386507 + 0.223150i 0.680646 0.732613i \(-0.261699\pi\)
−0.294138 + 0.955763i \(0.595033\pi\)
\(354\) −503.095 + 871.386i −0.0755345 + 0.130830i
\(355\) −3686.14 299.144i −0.551098 0.0447237i
\(356\) −5331.14 −0.793680
\(357\) 0 0
\(358\) 1053.75i 0.155566i
\(359\) 1085.08 + 1879.42i 0.159523 + 0.276301i 0.934697 0.355447i \(-0.115671\pi\)
−0.775174 + 0.631748i \(0.782338\pi\)
\(360\) 4640.05 2199.33i 0.679312 0.321986i
\(361\) −4405.15 + 7629.94i −0.642244 + 1.11240i
\(362\) 4063.29 2345.94i 0.589949 0.340607i
\(363\) 4951.46i 0.715934i
\(364\) 0 0
\(365\) −5024.76 3471.48i −0.720569 0.497823i
\(366\) −188.957 327.283i −0.0269862 0.0467414i
\(367\) 1084.44 + 626.101i 0.154243 + 0.0890523i 0.575135 0.818058i \(-0.304950\pi\)
−0.420892 + 0.907111i \(0.638283\pi\)
\(368\) 621.322 + 358.720i 0.0880126 + 0.0508141i
\(369\) −1761.70 3051.36i −0.248538 0.430480i
\(370\) 2462.43 3564.23i 0.345989 0.500798i
\(371\) 0 0
\(372\) 641.949i 0.0894718i
\(373\) −4023.57 + 2323.01i −0.558533 + 0.322469i −0.752556 0.658528i \(-0.771179\pi\)
0.194024 + 0.980997i \(0.437846\pi\)
\(374\) 4437.83 7686.55i 0.613569 1.06273i
\(375\) 2510.63 + 2417.62i 0.345729 + 0.332921i
\(376\) 740.772 + 1283.05i 0.101602 + 0.175980i
\(377\) 1828.41i 0.249783i
\(378\) 0 0
\(379\) −1434.84 −0.194466 −0.0972331 0.995262i \(-0.530999\pi\)
−0.0972331 + 0.995262i \(0.530999\pi\)
\(380\) 7245.06 + 587.965i 0.978063 + 0.0793736i
\(381\) 325.121 563.126i 0.0437178 0.0757214i
\(382\) 1073.91 + 620.023i 0.143838 + 0.0830449i
\(383\) 11446.0 6608.36i 1.52706 0.881649i 0.527578 0.849507i \(-0.323100\pi\)
0.999483 0.0321425i \(-0.0102330\pi\)
\(384\) 2539.82 0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) 2653.13 1531.79i 0.348492 0.201202i
\(388\) 4240.07 + 2448.01i 0.554787 + 0.320306i
\(389\) −3877.50 + 6716.03i −0.505391 + 0.875363i 0.494589 + 0.869127i \(0.335319\pi\)
−0.999981 + 0.00623657i \(0.998015\pi\)
\(390\) 171.968 2119.04i 0.0223281 0.275133i
\(391\) 14582.5 1.88610
\(392\) 0 0
\(393\) 1804.44i 0.231607i
\(394\) −2860.25 4954.09i −0.365729 0.633461i
\(395\) 121.194 + 255.691i 0.0154379 + 0.0325702i
\(396\) 3107.70 5382.69i 0.394363 0.683056i
\(397\) −3083.77 + 1780.41i −0.389848 + 0.225079i −0.682094 0.731264i \(-0.738931\pi\)
0.292246 + 0.956343i \(0.405597\pi\)
\(398\) 5682.89i 0.715723i
\(399\) 0 0
\(400\) −200.195 529.219i −0.0250243 0.0661524i
\(401\) 2715.30 + 4703.04i 0.338144 + 0.585683i 0.984084 0.177706i \(-0.0568675\pi\)
−0.645940 + 0.763389i \(0.723534\pi\)
\(402\) 1470.74 + 849.132i 0.182472 + 0.105350i
\(403\) −1953.52 1127.86i −0.241468 0.139412i
\(404\) 1570.14 + 2719.56i 0.193360 + 0.334909i
\(405\) 1676.96 2427.31i 0.205751 0.297812i
\(406\) 0 0
\(407\) 13320.5i 1.62229i
\(408\) 4391.98 2535.71i 0.532929 0.307687i
\(409\) −4849.39 + 8399.40i −0.586277 + 1.01546i 0.408438 + 0.912786i \(0.366073\pi\)
−0.994715 + 0.102675i \(0.967260\pi\)
\(410\) 2869.57 1360.14i 0.345653 0.163836i
\(411\) 964.780 + 1671.05i 0.115789 + 0.200552i
\(412\) 1563.17i 0.186922i
\(413\) 0 0
\(414\) −5517.27 −0.654974
\(415\) −340.268 + 4192.87i −0.0402484 + 0.495952i
\(416\) −4196.51 + 7268.56i −0.494593 + 0.856660i
\(417\) −6377.91 3682.29i −0.748988 0.432428i
\(418\) −10457.9 + 6037.87i −1.22371 + 0.706511i
\(419\) −13830.9 −1.61261 −0.806307 0.591498i \(-0.798537\pi\)
−0.806307 + 0.591498i \(0.798537\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) −4929.64 + 2846.13i −0.568652 + 0.328311i
\(423\) 1206.33 + 696.475i 0.138661 + 0.0800562i
\(424\) 2968.79 5142.10i 0.340041 0.588968i
\(425\) −8902.30 7281.05i −1.01606 0.831019i
\(426\) 1381.94 0.157172
\(427\) 0 0
\(428\) 7851.31i 0.886699i
\(429\) −3268.55 5661.30i −0.367849 0.637133i
\(430\) 1182.63 + 2495.07i 0.132632 + 0.279821i
\(431\) −4087.04 + 7078.95i −0.456765 + 0.791140i −0.998788 0.0492238i \(-0.984325\pi\)
0.542023 + 0.840364i \(0.317659\pi\)
\(432\) 467.127 269.696i 0.0520247 0.0300365i
\(433\) 14222.8i 1.57853i −0.614051 0.789267i \(-0.710461\pi\)
0.614051 0.789267i \(-0.289539\pi\)
\(434\) 0 0
\(435\) 921.552 + 636.677i 0.101575 + 0.0701755i
\(436\) −4588.98 7948.35i −0.504065 0.873066i
\(437\) −17182.0 9920.05i −1.88084 1.08590i
\(438\) 1976.39 + 1141.07i 0.215606 + 0.124480i
\(439\) 2768.69 + 4795.52i 0.301008 + 0.521361i 0.976365 0.216130i \(-0.0693436\pi\)
−0.675357 + 0.737491i \(0.736010\pi\)
\(440\) 11707.9 + 8088.70i 1.26853 + 0.876394i
\(441\) 0 0
\(442\) 7015.07i 0.754916i
\(443\) −3441.66 + 1987.04i −0.369116 + 0.213109i −0.673072 0.739577i \(-0.735026\pi\)
0.303956 + 0.952686i \(0.401692\pi\)
\(444\) 1498.09 2594.76i 0.160126 0.277347i
\(445\) −4915.26 10370.0i −0.523608 1.10469i
\(446\) 152.952 + 264.920i 0.0162387 + 0.0281263i
\(447\) 6269.82i 0.663428i
\(448\) 0 0
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 3368.18 + 2754.79i 0.352839 + 0.288582i
\(451\) 4882.20 8456.22i 0.509742 0.882900i
\(452\) 4701.60 + 2714.47i 0.489259 + 0.282474i
\(453\) 218.257 126.010i 0.0226371 0.0130695i
\(454\) −5280.67 −0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) −9326.11 + 5384.43i −0.954611 + 0.551145i −0.894510 0.447048i \(-0.852475\pi\)
−0.0601005 + 0.998192i \(0.519142\pi\)
\(458\) −8722.32 5035.83i −0.889884 0.513775i
\(459\) 5481.75 9494.67i 0.557443 0.965519i
\(460\) −744.467 + 9173.53i −0.0754586 + 0.929822i
\(461\) −332.605 −0.0336029 −0.0168015 0.999859i \(-0.505348\pi\)
−0.0168015 + 0.999859i \(0.505348\pi\)
\(462\) 0 0
\(463\) 8205.35i 0.823618i 0.911270 + 0.411809i \(0.135103\pi\)
−0.911270 + 0.411809i \(0.864897\pi\)
\(464\) −90.9176 157.474i −0.00909643 0.0157555i
\(465\) −1248.70 + 591.870i −0.124532 + 0.0590265i
\(466\) −787.879 + 1364.65i −0.0783214 + 0.135657i
\(467\) −145.170 + 83.8138i −0.0143847 + 0.00830501i −0.507175 0.861843i \(-0.669310\pi\)
0.492790 + 0.870148i \(0.335977\pi\)
\(468\) 4912.47i 0.485212i
\(469\) 0 0
\(470\) −713.612 + 1032.91i −0.0700351 + 0.101372i
\(471\) 2915.87 + 5050.44i 0.285258 + 0.494081i
\(472\) 4609.90 + 2661.53i 0.449551 + 0.259548i
\(473\) 7352.62 + 4245.04i 0.714744 + 0.412657i
\(474\) −52.8671 91.5685i −0.00512293 0.00887317i
\(475\) 5536.18 + 14635.0i 0.534773 + 1.41368i
\(476\) 0 0
\(477\) 5582.52i 0.535862i
\(478\) 7484.07 4320.93i 0.716137 0.413462i
\(479\) 3314.29 5740.52i 0.316146 0.547581i −0.663535 0.748146i \(-0.730944\pi\)
0.979680 + 0.200565i \(0.0642778\pi\)
\(480\) 2202.21 + 4646.12i 0.209409 + 0.441803i
\(481\) 5264.08 + 9117.66i 0.499005 + 0.864302i
\(482\) 777.001i 0.0734262i
\(483\) 0 0
\(484\) 10311.7 0.968419
\(485\) −852.498 + 10504.7i −0.0798143 + 0.983494i
\(486\) −3246.02 + 5622.28i −0.302968 + 0.524757i
\(487\) 17876.1 + 10320.8i 1.66334 + 0.960327i 0.971105 + 0.238651i \(0.0767052\pi\)
0.692231 + 0.721676i \(0.256628\pi\)
\(488\) −1731.43 + 999.642i −0.160611 + 0.0927288i
\(489\) −3305.01 −0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) 1902.05 1098.15i 0.174291 0.100627i
\(493\) −3200.76 1847.96i −0.292404 0.168819i
\(494\) 4772.16 8265.63i 0.434635 0.752810i
\(495\) 13335.5 + 1082.23i 1.21088 + 0.0982679i
\(496\) 224.331 0.0203080
\(497\) 0 0
\(498\) 1571.91i 0.141444i
\(499\) −6864.35 11889.4i −0.615812 1.06662i −0.990241 0.139363i \(-0.955495\pi\)
0.374429 0.927256i \(-0.377839\pi\)
\(500\) 5034.84 5228.54i 0.450330 0.467655i
\(501\) 2601.45 4505.84i 0.231984 0.401809i
\(502\) −3322.54 + 1918.27i −0.295403 + 0.170551i
\(503\) 19523.7i 1.73065i 0.501209 + 0.865326i \(0.332889\pi\)
−0.501209 + 0.865326i \(0.667111\pi\)
\(504\) 0 0
\(505\) −3842.37 + 5561.60i −0.338580 + 0.490075i
\(506\) −7645.00 13241.5i −0.671664 1.16336i
\(507\) −270.624 156.245i −0.0237058 0.0136866i
\(508\) −1172.75 677.086i −0.102426 0.0591355i
\(509\) −4344.08 7524.17i −0.378287 0.655212i 0.612526 0.790450i \(-0.290153\pi\)
−0.990813 + 0.135238i \(0.956820\pi\)
\(510\) 3535.72 + 2442.74i 0.306989 + 0.212091i
\(511\) 0 0
\(512\) 1635.04i 0.141131i
\(513\) −12917.9 + 7458.17i −1.11177 + 0.641883i
\(514\) 671.909 1163.78i 0.0576588 0.0998680i
\(515\) −3040.64 + 1441.23i −0.260169 + 0.123317i
\(516\) 954.832 + 1653.82i 0.0814615 + 0.141095i
\(517\) 3860.28i 0.328385i
\(518\) 0 0
\(519\) 4783.89 0.404604
\(520\) −11210.4 909.766i −0.945401 0.0767229i
\(521\) −3385.68 + 5864.17i −0.284701 + 0.493117i −0.972537 0.232750i \(-0.925228\pi\)
0.687835 + 0.725867i \(0.258561\pi\)
\(522\) 1211.01 + 699.176i 0.101541 + 0.0586247i
\(523\) 1182.90 682.947i 0.0988998 0.0570998i −0.449734 0.893162i \(-0.648481\pi\)
0.548634 + 0.836063i \(0.315148\pi\)
\(524\) −3757.85 −0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) 3948.80 2279.84i 0.326400 0.188447i
\(528\) 563.014 + 325.057i 0.0464054 + 0.0267922i
\(529\) 6477.02 11218.5i 0.532344 0.922046i
\(530\) 5014.97 + 406.984i 0.411012 + 0.0333552i
\(531\) 5004.75 0.409016
\(532\) 0 0
\(533\) 7717.51i 0.627171i
\(534\) 2144.12 + 3713.72i 0.173755 + 0.300952i
\(535\) −15272.2 + 7238.82i −1.23416 + 0.584975i
\(536\) 4492.17 7780.67i 0.362000 0.627003i
\(537\) −1358.63 + 784.408i −0.109180 + 0.0630348i
\(538\) 5965.62i 0.478060i
\(539\) 0 0
\(540\) 5693.05 + 3933.18i 0.453685 + 0.313439i
\(541\) 11625.0 + 20135.2i 0.923844 + 1.60014i 0.793410 + 0.608687i \(0.208303\pi\)
0.130433 + 0.991457i \(0.458363\pi\)
\(542\) 2798.18 + 1615.53i 0.221757 + 0.128031i
\(543\) 6049.37 + 3492.61i 0.478091 + 0.276026i
\(544\) −8482.74 14692.5i −0.668556 1.15797i
\(545\) 11229.9 16254.7i 0.882638 1.27757i
\(546\) 0 0
\(547\) 11552.7i 0.903033i −0.892263 0.451516i \(-0.850883\pi\)
0.892263 0.451516i \(-0.149117\pi\)
\(548\) 3480.06 2009.22i 0.271279 0.156623i
\(549\) −939.865 + 1627.89i −0.0730646 + 0.126552i
\(550\) −1944.41 + 11900.9i −0.150745 + 0.922644i
\(551\) 2514.23 + 4354.78i 0.194392 + 0.336697i
\(552\) 8736.48i 0.673640i
\(553\) 0 0
\(554\) 11037.1 0.846430
\(555\) 6428.48 + 521.696i 0.491665 + 0.0399005i
\(556\) −7668.60 + 13282.4i −0.584930 + 1.01313i
\(557\) 14208.2 + 8203.08i 1.08082 + 0.624014i 0.931119 0.364717i \(-0.118834\pi\)
0.149706 + 0.988731i \(0.452167\pi\)
\(558\) −1494.03 + 862.578i −0.113346 + 0.0654406i
\(559\) −6710.31 −0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) −1183.15 + 683.091i −0.0888044 + 0.0512712i
\(563\) 11805.6 + 6815.95i 0.883740 + 0.510227i 0.871890 0.489702i \(-0.162895\pi\)
0.0118502 + 0.999930i \(0.496228\pi\)
\(564\) −434.145 + 751.961i −0.0324127 + 0.0561405i
\(565\) −945.292 + 11648.2i −0.0703872 + 0.867330i
\(566\) 10911.2 0.810300
\(567\) 0 0
\(568\) 7310.88i 0.540067i
\(569\) −1543.41 2673.27i −0.113714 0.196958i 0.803551 0.595236i \(-0.202941\pi\)
−0.917265 + 0.398278i \(0.869608\pi\)
\(570\) −2504.29 5283.45i −0.184023 0.388245i
\(571\) 1629.03 2821.57i 0.119392 0.206793i −0.800135 0.599820i \(-0.795239\pi\)
0.919527 + 0.393027i \(0.128572\pi\)
\(572\) −11790.0 + 6806.96i −0.861827 + 0.497576i
\(573\) 1846.17i 0.134598i
\(574\) 0 0
\(575\) −18530.5 + 7009.78i −1.34396 + 0.508396i
\(576\) 2833.19 + 4907.24i 0.204948 + 0.354980i
\(577\) −20575.4 11879.2i −1.48451 0.857083i −0.484667 0.874699i \(-0.661059\pi\)
−0.999845 + 0.0176156i \(0.994392\pi\)
\(578\) −5152.91 2975.03i −0.370818 0.214092i
\(579\) −5090.89 8817.68i −0.365406 0.632902i
\(580\) 1325.92 1919.19i 0.0949238 0.137397i
\(581\) 0 0
\(582\) 3938.23i 0.280490i
\(583\) 13398.1 7735.42i 0.951791 0.549517i
\(584\) 6036.61 10455.7i 0.427734 0.740857i
\(585\) −9555.62 + 4529.25i −0.675344 + 0.320105i
\(586\) 364.783 + 631.823i 0.0257151 + 0.0445398i
\(587\) 596.893i 0.0419701i 0.999780 + 0.0209850i \(0.00668023\pi\)
−0.999780 + 0.0209850i \(0.993320\pi\)
\(588\) 0 0
\(589\) −6203.66 −0.433985
\(590\) −364.862 + 4495.93i −0.0254596 + 0.313720i
\(591\) 4258.30 7375.59i 0.296384 0.513353i
\(592\) −906.749 523.512i −0.0629513 0.0363449i
\(593\) −16884.3 + 9748.16i −1.16923 + 0.675058i −0.953500 0.301394i \(-0.902548\pi\)
−0.215734 + 0.976452i \(0.569215\pi\)
\(594\) −11495.5 −0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) 7327.11 4230.31i 0.502310 0.290009i
\(598\) 10465.7 + 6042.40i 0.715679 + 0.413197i
\(599\) 1898.51 3288.31i 0.129501 0.224302i −0.793983 0.607941i \(-0.791996\pi\)
0.923483 + 0.383639i \(0.125329\pi\)
\(600\) −4362.14 + 5333.44i −0.296806 + 0.362895i
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) 0 0
\(603\) 8447.09i 0.570468i
\(604\) −262.425 454.533i −0.0176787 0.0306203i
\(605\) 9507.30 + 20058.1i 0.638887 + 1.34790i
\(606\) 1262.98 2187.55i 0.0846618 0.146639i
\(607\) 16053.0 9268.21i 1.07343 0.619745i 0.144313 0.989532i \(-0.453903\pi\)
0.929116 + 0.369787i \(0.120569\pi\)
\(608\) 23082.3i 1.53966i
\(609\) 0 0
\(610\) −1393.87 962.991i −0.0925184 0.0639186i
\(611\) −1525.53 2642.29i −0.101009 0.174952i
\(612\) −8599.62 4964.99i −0.568005 0.327938i
\(613\) 1873.62 + 1081.74i 0.123450 + 0.0712738i 0.560453 0.828186i \(-0.310627\pi\)
−0.437003 + 0.899460i \(0.643960\pi\)
\(614\) 4117.54 + 7131.79i 0.270636 + 0.468755i
\(615\) 3889.76 + 2687.34i 0.255041 + 0.176201i
\(616\) 0 0
\(617\) 22964.9i 1.49843i 0.662327 + 0.749215i \(0.269569\pi\)
−0.662327 + 0.749215i \(0.730431\pi\)
\(618\) 1088.92 628.689i 0.0708784 0.0409216i
\(619\) −693.333 + 1200.89i −0.0450200 + 0.0779770i −0.887657 0.460505i \(-0.847668\pi\)
0.842637 + 0.538482i \(0.181002\pi\)
\(620\) 1232.61 + 2600.50i 0.0798431 + 0.168450i
\(621\) −9443.35 16356.4i −0.610223 1.05694i
\(622\) 3067.41i 0.197736i
\(623\) 0 0
\(624\) −513.831 −0.0329643
\(625\) 14812.5 + 4972.99i 0.948000 + 0.318271i
\(626\) −2046.17 + 3544.08i −0.130642 + 0.226278i
\(627\) −15569.6 8989.11i −0.991690 0.572552i
\(628\) 10517.9 6072.49i 0.668326 0.385858i
\(629\) −21281.4 −1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) −484.426 + 279.683i −0.0304896 + 0.0176032i
\(633\) −7339.19 4237.28i −0.460832 0.266062i
\(634\) −1395.57 + 2417.20i −0.0874215 + 0.151418i
\(635\) 235.789 2905.46i 0.0147355 0.181574i
\(636\) 3479.84 0.216957
\(637\) 0 0
\(638\) 3875.25i 0.240474i
\(639\) −3436.85 5952.80i −0.212770 0.368528i
\(640\) 10288.7 4876.72i 0.635463 0.301202i
\(641\) −15183.6 + 26298.7i −0.935592 + 1.62049i −0.162016 + 0.986788i \(0.551800\pi\)
−0.773576 + 0.633704i \(0.781534\pi\)
\(642\) 5469.29 3157.70i 0.336224 0.194119i
\(643\) 28592.2i 1.75360i −0.480851 0.876802i \(-0.659672\pi\)
0.480851 0.876802i \(-0.340328\pi\)
\(644\) 0 0
\(645\) −2336.62 + 3382.12i −0.142642 + 0.206466i
\(646\) 9646.36 + 16708.0i 0.587509 + 1.01760i
\(647\) 12564.3 + 7253.97i 0.763449 + 0.440778i 0.830533 0.556970i \(-0.188036\pi\)
−0.0670835 + 0.997747i \(0.521369\pi\)
\(648\) 5050.84 + 2916.10i 0.306197 + 0.176783i
\(649\) 6934.83 + 12011.5i 0.419439 + 0.726489i
\(650\) −3372.14 8914.33i −0.203487 0.537921i
\(651\) 0 0
\(652\) 6882.89i 0.413428i
\(653\) −6062.05 + 3499.93i −0.363287 + 0.209744i −0.670522 0.741890i \(-0.733930\pi\)
0.307235 + 0.951634i \(0.400596\pi\)
\(654\) −3691.26 + 6393.46i −0.220703 + 0.382269i
\(655\) −3464.70 7309.68i −0.206682 0.436050i
\(656\) −383.752 664.678i −0.0228399 0.0395599i
\(657\) 11351.3i 0.674056i
\(658\) 0 0
\(659\) −7308.92 −0.432041 −0.216020 0.976389i \(-0.569308\pi\)
−0.216020 + 0.976389i \(0.569308\pi\)
\(660\) −674.603 + 8312.64i −0.0397862 + 0.490256i
\(661\) 15048.6 26065.0i 0.885512 1.53375i 0.0403854 0.999184i \(-0.487141\pi\)
0.845126 0.534567i \(-0.179525\pi\)
\(662\) −7930.26 4578.54i −0.465586 0.268806i
\(663\) −9044.73 + 5221.98i −0.529816 + 0.305890i
\(664\) −8315.91 −0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) −5513.92 + 3183.46i −0.320090 + 0.184804i
\(668\) −9383.70 5417.68i −0.543512 0.313797i
\(669\) −227.713 + 394.410i −0.0131598 + 0.0227934i
\(670\) 7588.31 + 615.820i 0.437555 + 0.0355093i
\(671\) −5209.29 −0.299706
\(672\) 0 0
\(673\) 5400.26i 0.309309i 0.987969 + 0.154654i \(0.0494264\pi\)
−0.987969 + 0.154654i \(0.950574\pi\)
\(674\) −8920.64 15451.0i −0.509808 0.883013i
\(675\) −2401.79 + 14700.3i −0.136956 + 0.838245i
\(676\) −325.390 + 563.593i −0.0185133 + 0.0320660i
\(677\) 5569.49 3215.55i 0.316178 0.182546i −0.333509 0.942747i \(-0.608233\pi\)
0.649688 + 0.760201i \(0.274900\pi\)
\(678\) 4366.91i 0.247360i
\(679\) 0 0
\(680\) 12922.9 18705.1i 0.728778 1.05486i
\(681\) −3930.90 6808.51i −0.221193 0.383117i
\(682\) −4140.40 2390.46i −0.232469 0.134216i
\(683\) −18070.3 10432.9i −1.01236 0.584486i −0.100477 0.994939i \(-0.532037\pi\)
−0.911881 + 0.410454i \(0.865370\pi\)
\(684\) 6755.10 + 11700.2i 0.377613 + 0.654046i
\(685\) 7116.86 + 4916.86i 0.396965 + 0.274253i
\(686\) 0 0
\(687\) 14994.6i 0.832720i
\(688\) 577.933 333.669i 0.0320254 0.0184899i
\(689\) −6113.86 + 10589.5i −0.338054 + 0.585527i
\(690\) 6689.78 3170.88i 0.369095 0.174947i
\(691\) −9225.13 15978.4i −0.507873 0.879662i −0.999958 0.00911505i \(-0.997099\pi\)
0.492085 0.870547i \(-0.336235\pi\)
\(692\) 9962.76i 0.547294i
\(693\) 0 0
\(694\) 6732.70 0.368256
\(695\) −32907.0 2670.53i −1.79602 0.145754i
\(696\) −1107.13 + 1917.60i −0.0602954 + 0.104435i
\(697\) −13510.0 7800.01i −0.734187 0.423883i
\(698\) 15297.8 8832.20i 0.829557 0.478945i
\(699\) −2345.97 −0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) 7868.43 4542.84i 0.423041 0.244243i
\(703\) 25075.2 + 14477.2i 1.34528 + 0.776696i
\(704\) −7851.63 + 13599.4i −0.420340 + 0.728050i
\(705\) −1862.97 151.187i −0.0995228 0.00807665i
\(706\) −4958.45 −0.264325
\(707\) 0 0
\(708\) 3119.69i 0.165600i
\(709\) −11563.4 20028.4i −0.612514 1.06091i −0.990815 0.135223i \(-0.956825\pi\)
0.378301 0.925683i \(-0.376508\pi\)
\(710\) 5598.16 2653.46i 0.295909 0.140257i
\(711\) −262.959 + 455.458i −0.0138702 + 0.0240239i
\(712\) 19646.8 11343.1i 1.03412 0.597050i
\(713\) 7854.92i 0.412579i
\(714\) 0 0
\(715\) −24111.0 16657.7i −1.26112 0.871275i
\(716\) 1633.58 + 2829.44i 0.0852650 + 0.147683i
\(717\) 11142.2 + 6432.95i 0.580353 + 0.335067i
\(718\) −3148.34 1817.69i −0.163642 0.0944787i
\(719\) −12046.6 20865.2i −0.624841 1.08226i −0.988572 0.150752i \(-0.951831\pi\)
0.363731 0.931504i \(-0.381503\pi\)
\(720\) 597.771 865.238i 0.0309411 0.0447854i
\(721\) 0 0
\(722\) 14758.7i 0.760750i
\(723\) −1001.81 + 578.395i −0.0515321 + 0.0297521i
\(724\) 7273.58 12598.2i 0.373371 0.646697i
\(725\) 4955.64 + 809.671i 0.253859 + 0.0414765i
\(726\) −4147.25 7183.24i −0.212009 0.367211i
\(727\) 35983.4i 1.83570i 0.396931 + 0.917849i \(0.370075\pi\)
−0.396931 + 0.917849i \(0.629925\pi\)
\(728\) 0 0
\(729\) −2540.55 −0.129073
\(730\) 10197.2 + 827.543i 0.517008 + 0.0419572i
\(731\) 6782.05 11746.9i 0.343151 0.594355i
\(732\) −1014.74 585.861i −0.0512375 0.0295820i
\(733\) 1257.04 725.752i 0.0633422 0.0365706i −0.467994 0.883731i \(-0.655023\pi\)
0.531337 + 0.847161i \(0.321690\pi\)
\(734\) −2097.64 −0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) 20273.1 11704.7i 1.01326 0.585005i
\(738\) 5111.52 + 2951.14i 0.254956 + 0.147199i
\(739\) −2945.83 + 5102.33i −0.146636 + 0.253982i −0.929982 0.367604i \(-0.880178\pi\)
0.783346 + 0.621586i \(0.213511\pi\)
\(740\) 1086.46 13387.7i 0.0539719 0.665057i
\(741\) 14209.5 0.704451
\(742\) 0 0
\(743\) 7438.65i 0.367292i −0.982992 0.183646i \(-0.941210\pi\)
0.982992 0.183646i \(-0.0587900\pi\)
\(744\) −1365.87 2365.76i −0.0673056 0.116577i
\(745\) −12038.7 25398.7i −0.592032 1.24904i
\(746\) 3891.42 6740.13i 0.190985 0.330796i
\(747\) −6771.14 + 3909.32i −0.331651 + 0.191479i
\(748\) 27518.9i 1.34518i
\(749\) 0 0
\(750\) −5667.20 1404.47i −0.275916 0.0683784i
\(751\) −10136.2 17556.4i −0.492509 0.853051i 0.507454 0.861679i \(-0.330587\pi\)
−0.999963 + 0.00862831i \(0.997253\pi\)
\(752\) 262.775 + 151.713i 0.0127426 + 0.00735694i
\(753\) −4946.56 2855.90i −0.239393 0.138213i
\(754\) −1531.44 2652.54i −0.0739680 0.128116i
\(755\) 642.193 929.537i 0.0309560 0.0448070i
\(756\) 0 0
\(757\) 10193.8i 0.489432i −0.969595 0.244716i \(-0.921305\pi\)
0.969595 0.244716i \(-0.0786947\pi\)
\(758\) 2081.57 1201.79i 0.0997439 0.0575872i
\(759\) 11381.8 19713.8i 0.544312 0.942776i
\(760\) −27951.1 + 13248.5i −1.33407 + 0.632333i
\(761\) 20558.8 + 35608.9i 0.979311 + 1.69622i 0.664906 + 0.746927i \(0.268472\pi\)
0.314405 + 0.949289i \(0.398195\pi\)
\(762\) 1089.26i 0.0517845i
\(763\) 0 0
\(764\) 3844.76 0.182066
\(765\) 1729.02 21305.4i 0.0817160 1.00693i
\(766\) −11070.1 + 19173.9i −0.522165 + 0.904416i
\(767\) −9493.53 5481.09i −0.446925 0.258032i
\(768\) −8396.20 + 4847.55i −0.394495 + 0.227762i
\(769\) −11486.6 −0.538642 −0.269321 0.963050i \(-0.586799\pi\)
−0.269321 + 0.963050i \(0.586799\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) −18363.4 + 10602.1i −0.856104 + 0.494272i
\(773\) −18878.7 10899.6i −0.878420 0.507156i −0.00828254 0.999966i \(-0.502636\pi\)
−0.870137 + 0.492810i \(0.835970\pi\)
\(774\) −2565.99 + 4444.42i −0.119164 + 0.206397i
\(775\) −3921.98 + 4795.27i −0.181783 + 0.222260i
\(776\) −20834.5 −0.963807
\(777\) 0 0
\(778\) 12990.9i 0.598645i
\(779\) 10612.3 + 18381.0i 0.488092 + 0.845401i
\(780\) −2823.29 5956.45i −0.129602 0.273430i
\(781\) 9524.54 16497.0i 0.436383 0.755837i
\(782\) −21155.3 + 12214.0i −0.967404 + 0.558531i
\(783\) 4786.83i 0.218477i
\(784\) 0 0
\(785\) 21509.4 + 14860.3i 0.977967 + 0.675652i
\(786\) 1511.36 + 2617.75i 0.0685858 + 0.118794i
\(787\) 20854.1 + 12040.1i 0.944560 + 0.545342i 0.891387 0.453243i \(-0.149733\pi\)
0.0531734 + 0.998585i \(0.483066\pi\)
\(788\) −15360.1 8868.18i −0.694394 0.400908i
\(789\) 357.856 + 619.825i 0.0161470 + 0.0279675i
\(790\) −389.983 269.429i −0.0175632 0.0121340i
\(791\) 0 0
\(792\) 26449.0i 1.18665i
\(793\) 3565.67 2058.64i 0.159673 0.0921872i
\(794\) 2982.48 5165.81i 0.133305 0.230891i
\(795\) 3208.38 + 6768.90i 0.143131 + 0.301972i
\(796\) −8809.89 15259.2i −0.392284 0.679456i
\(797\) 17194.3i 0.764184i −0.924124 0.382092i \(-0.875204\pi\)
0.924124 0.382092i \(-0.124796\pi\)
\(798\) 0 0
\(799\) 6167.35 0.273073
\(800\) 17842.0 + 14592.7i 0.788514 + 0.644914i
\(801\) 10664.8 18471.9i 0.470438 0.814823i
\(802\) −7878.36 4548.57i −0.346876 0.200269i
\(803\) 27243.2 15728.9i 1.19725 0.691232i
\(804\) 5265.46 0.230968
\(805\) 0 0
\(806\) 3778.71 0.165136
\(807\) −7691.65 + 4440.78i −0.335513 + 0.193708i
\(808\) −11572.8 6681.56i −0.503873 0.290911i
\(809\) 16674.6 28881.2i 0.724656 1.25514i −0.234460 0.972126i \(-0.575332\pi\)
0.959115 0.283015i \(-0.0913346\pi\)
\(810\) −399.761 + 4925.97i −0.0173410 + 0.213680i
\(811\) 4577.87 0.198213 0.0991066 0.995077i \(-0.468402\pi\)
0.0991066 + 0.995077i \(0.468402\pi\)
\(812\) 0 0
\(813\) 4810.37i 0.207512i
\(814\) 11157.0 + 19324.5i 0.480409 + 0.832093i
\(815\) −13388.4 + 6345.95i −0.575431 + 0.272747i
\(816\) 519.324 899.496i 0.0222794 0.0385891i
\(817\) −15982.1 + 9227.29i −0.684387 + 0.395131i
\(818\) 16247.0i 0.694455i
\(819\) 0 0
\(820\) 5596.55 8100.67i 0.238341 0.344985i
\(821\) 2916.26 + 5051.11i 0.123969 + 0.214720i 0.921329 0.388783i \(-0.127104\pi\)
−0.797361 + 0.603503i \(0.793771\pi\)
\(822\) −2799.28 1616.16i −0.118779 0.0685769i
\(823\) 32886.7 + 18987.1i 1.39290 + 0.804192i 0.993636 0.112642i \(-0.0359314\pi\)
0.399267 + 0.916835i \(0.369265\pi\)
\(824\) −3325.96 5760.73i −0.140613 0.243549i
\(825\) −16791.5 + 6351.95i −0.708613 + 0.268056i
\(826\) 0 0
\(827\) 15796.2i 0.664193i 0.943245 + 0.332096i \(0.107756\pi\)
−0.943245 + 0.332096i \(0.892244\pi\)
\(828\) −14814.5 + 8553.14i −0.621786 + 0.358988i
\(829\) −6357.07 + 11010.8i −0.266333 + 0.461302i −0.967912 0.251289i \(-0.919145\pi\)
0.701579 + 0.712592i \(0.252479\pi\)
\(830\) −3018.23 6367.74i −0.126222 0.266298i
\(831\) 8215.97 + 14230.5i 0.342971 + 0.594043i
\(832\) 12411.4i 0.517173i
\(833\) 0 0
\(834\) 12336.9 0.512219
\(835\) 1886.66 23248.0i 0.0781923 0.963508i
\(836\) −18720.4 + 32424.7i −0.774471 + 1.34142i
\(837\) −5114.36 2952.77i −0.211204 0.121939i
\(838\) 20065.0 11584.5i 0.827128 0.477543i
\(839\) 42924.2 1.76628 0.883140 0.469109i \(-0.155425\pi\)
0.883140 + 0.469109i \(0.155425\pi\)
\(840\) 0 0
\(841\) −22775.3 −0.933835
\(842\) −24231.6 + 13990.1i −0.991776 + 0.572602i
\(843\) −1761.46 1016.98i −0.0719665 0.0415499i
\(844\) −8824.41 + 15284.3i −0.359892 + 0.623351i
\(845\) −1396.29 113.314i −0.0568449 0.00461318i
\(846\) −2333.42 −0.0948281
\(847\) 0 0
\(848\) 1216.04i 0.0492442i
\(849\) 8122.20 + 14068.1i 0.328331 + 0.568686i
\(850\) 19013.3 + 3106.47i 0.767237 + 0.125354i
\(851\) −18330.7 + 31749.6i −0.738386 + 1.27892i
\(852\) 3710.65 2142.35i 0.149208 0.0861450i
\(853\) 36172.5i 1.45196i 0.687716 + 0.725980i \(0.258613\pi\)
−0.687716 + 0.725980i \(0.741387\pi\)
\(854\) 0 0
\(855\) −16530.7 + 23927.3i −0.661216 + 0.957071i
\(856\) −16705.2 28934.3i −0.667024 1.15532i
\(857\) 27747.4 + 16020.0i 1.10599 + 0.638544i 0.937788 0.347209i \(-0.112871\pi\)
0.168202 + 0.985753i \(0.446204\pi\)
\(858\) 9483.59 + 5475.35i 0.377348 + 0.217862i
\(859\) −3399.03 5887.30i −0.135010 0.233844i 0.790591 0.612344i \(-0.209773\pi\)
−0.925601 + 0.378500i \(0.876440\pi\)
\(860\) 7043.47 + 4866.15i 0.279280 + 0.192947i
\(861\) 0 0
\(862\) 13692.9i 0.541046i
\(863\) 26136.0 15089.7i 1.03092 0.595200i 0.113670 0.993519i \(-0.463739\pi\)
0.917247 + 0.398318i \(0.130406\pi\)
\(864\) −10986.6 + 19029.3i −0.432604 + 0.749293i
\(865\) 19379.3 9185.56i 0.761753 0.361062i
\(866\) 11912.8 + 20633.5i 0.467450 + 0.809648i
\(867\) 8858.39i 0.346997i
\(868\) 0 0
\(869\) −1457.47 −0.0568946
\(870\) −1870.19 151.773i −0.0728799 0.00591448i
\(871\) −9251.07 + 16023.3i −0.359886 + 0.623341i
\(872\) 33823.4 + 19527.9i 1.31354 + 0.758371i
\(873\) −16964.2 + 9794.31i −0.657678 + 0.379710i
\(874\) 33235.4 1.28627
\(875\) 0 0
\(876\) 7075.76 0.272908
\(877\) −1472.69 + 850.256i −0.0567037 + 0.0327379i −0.528084 0.849192i \(-0.677089\pi\)
0.471380 + 0.881930i \(0.343756\pi\)
\(878\) −8033.27 4638.01i −0.308781 0.178275i
\(879\) −543.084 + 940.650i −0.0208393 + 0.0360948i
\(880\) 2904.88 + 235.742i 0.111277 + 0.00903054i
\(881\) 1678.46 0.0641869 0.0320935 0.999485i \(-0.489783\pi\)
0.0320935 + 0.999485i \(0.489783\pi\)
\(882\) 0 0
\(883\) 10285.8i 0.392009i −0.980603 0.196005i \(-0.937203\pi\)
0.980603 0.196005i \(-0.0627968\pi\)
\(884\) 10875.1 + 18836.2i 0.413766 + 0.716664i
\(885\) −6068.34 + 2876.32i −0.230491 + 0.109250i
\(886\) 3328.62 5765.34i 0.126216 0.218612i
\(887\) −10537.4 + 6083.77i −0.398885 + 0.230296i −0.686003 0.727599i \(-0.740636\pi\)
0.287118 + 0.957895i \(0.407303\pi\)
\(888\) 12749.9i 0.481823i
\(889\) 0 0
\(890\) 15816.4 + 10927.2i 0.595695 + 0.411550i
\(891\) 7598.14 + 13160.4i 0.285687 + 0.494824i
\(892\) 821.383 + 474.226i 0.0308318 + 0.0178007i
\(893\) −7266.78 4195.48i −0.272311 0.157219i
\(894\) 5251.49 + 9095.84i 0.196461 + 0.340280i
\(895\) −3997.62 + 5786.31i −0.149302 + 0.216106i
\(896\) 0 0
\(897\) 17991.7i 0.669705i
\(898\) −22113.7 + 12767.4i −0.821765 + 0.474446i
\(899\) −995.414 + 1724.11i −0.0369287 + 0.0639624i
\(900\) 13314.5 + 2175.38i 0.493131 + 0.0805696i
\(901\) −12358.4 21405.4i −0.456958 0.791475i
\(902\) 16356.9i 0.603799i
\(903\) 0 0
\(904\) −23102.3 −0.849968
\(905\) 31211.9 + 2532.96i 1.14643 + 0.0930370i
\(906\) −211.088 + 365.615i −0.00774054 + 0.0134070i
\(907\) 43964.7 + 25383.0i 1.60951 + 0.929250i 0.989480 + 0.144670i \(0.0462120\pi\)
0.620028 + 0.784580i \(0.287121\pi\)
\(908\) −14179.2 + 8186.34i −0.518229 + 0.299200i
\(909\) −12564.0 −0.458441
\(910\) 0 0
\(911\) 18451.1 0.671033 0.335517 0.942034i \(-0.391089\pi\)
0.335517 + 0.942034i \(0.391089\pi\)
\(912\) −1223.81 + 706.564i −0.0444345 + 0.0256543i
\(913\) −18764.8 10833.9i −0.680203 0.392715i
\(914\) 9019.80 15622.7i 0.326421 0.565377i
\(915\) 204.021 2514.00i 0.00737129 0.0908310i
\(916\) −31227.1 −1.12639
\(917\) 0 0
\(918\) 18365.6i 0.660301i
\(919\) 196.930 + 341.093i 0.00706870 + 0.0122433i 0.869538 0.493866i \(-0.164417\pi\)
−0.862469 + 0.506109i \(0.831083\pi\)
\(920\) −16774.9 35391.0i −0.601144 1.26827i
\(921\) −6130.15 + 10617.7i −0.219322 + 0.379876i
\(922\) 482.520 278.583i 0.0172353 0.00995081i
\(923\) 15055.9i 0.536912i
\(924\) 0 0
\(925\) 27043.2 10230.0i 0.961269 0.363632i
\(926\) −6872.64 11903.8i −0.243898 0.422443i
\(927\) −5416.25 3127.07i −0.191902 0.110795i
\(928\) 6414.98 + 3703.69i 0.226920 + 0.131013i
\(929\) 13726.2 + 23774.4i 0.484759 + 0.839627i 0.999847 0.0175107i \(-0.00557410\pi\)
−0.515088 + 0.857137i \(0.672241\pi\)
\(930\) 1315.79 1904.54i 0.0463942 0.0671529i
\(931\) 0 0
\(932\) 4885.63i 0.171710i
\(933\) −3954.90 + 2283.36i −0.138775 + 0.0801221i
\(934\) 140.402 243.183i 0.00491872 0.00851947i
\(935\) 53529.1 25372.2i 1.87229 0.887443i
\(936\) −10452.3 18103.8i −0.365003 0.632204i
\(937\) 21608.3i 0.753375i 0.926340 + 0.376688i \(0.122937\pi\)
−0.926340 + 0.376688i \(0.877063\pi\)
\(938\) 0 0
\(939\) −6092.64 −0.211742
\(940\) −314.857 + 3879.75i −0.0109250 + 0.134621i
\(941\) 8354.24 14470.0i 0.289416 0.501283i −0.684255 0.729243i \(-0.739872\pi\)
0.973670 + 0.227960i \(0.0732056\pi\)
\(942\) −8460.31 4884.56i −0.292624 0.168947i
\(943\) −23273.6 + 13437.0i −0.803703 + 0.464018i
\(944\) 1090.19 0.0375874
\(945\) 0 0
\(946\) −14222.2 −0.488800
\(947\) 12100.8 6986.39i 0.415230 0.239733i −0.277805 0.960638i \(-0.589607\pi\)
0.693034 + 0.720905i \(0.256273\pi\)
\(948\) −283.908 163.914i −0.00972668 0.00561570i
\(949\) −12431.7 + 21532.3i −0.425236 + 0.736530i
\(950\) −20289.5 16594.5i −0.692925 0.566733i
\(951\) −4155.42 −0.141692
\(952\) 0 0
\(953\) 11155.9i 0.379197i 0.981862 + 0.189598i \(0.0607186\pi\)
−0.981862 + 0.189598i \(0.939281\pi\)
\(954\) 4675.82 + 8098.75i 0.158685 + 0.274850i
\(955\) 3544.83 + 7478.73i 0.120113 + 0.253409i
\(956\) 13397.0 23204.3i 0.453233 0.785022i
\(957\) −4996.47 + 2884.71i −0.168770 + 0.0974394i
\(958\) 11104.0i 0.374481i
\(959\) 0 0
\(960\) −6255.57 4321.81i −0.210310 0.145298i
\(961\) 13667.5 + 23672.7i 0.458778 + 0.794627i
\(962\) −15273.6 8818.19i −0.511891 0.295540i
\(963\) −27204.1 15706.3i −0.910320 0.525574i
\(964\) 1204.54 + 2086.33i 0.0402445 + 0.0697056i
\(965\) −37553.8 25944.9i −1.25274 0.865489i
\(966\) 0 0
\(967\) 1212.55i 0.0403238i −0.999797 0.0201619i \(-0.993582\pi\)
0.999797 0.0201619i \(-0.00641816\pi\)
\(968\) −38001.6 + 21940.2i −1.26179 + 0.728497i
\(969\) −14361.4 + 24874.7i −0.476114 + 0.824653i
\(970\) −7561.81 15953.6i −0.250304 0.528081i
\(971\) 24416.1 + 42290.0i 0.806952 + 1.39768i 0.914965 + 0.403533i \(0.132218\pi\)
−0.108013 + 0.994149i \(0.534449\pi\)
\(972\) 20128.6i 0.664222i
\(973\) 0 0
\(974\) −34578.0 −1.13753
\(975\) 8983.29 10983.6i 0.295072 0.360775i
\(976\) −204.731 + 354.605i −0.00671443 + 0.0116297i
\(977\) −5143.49 2969.60i −0.168429 0.0972424i 0.413416 0.910542i \(-0.364336\pi\)
−0.581845 + 0.813300i \(0.697669\pi\)
\(978\) 4794.69 2768.21i 0.156766 0.0905089i
\(979\) 59110.5 1.92970
\(980\) 0 0
\(981\) 36720.4 1.19510
\(982\) 24242.9 13996.7i 0.787803 0.454838i
\(983\) −18934.4 10931.8i −0.614357 0.354699i 0.160312 0.987066i \(-0.448750\pi\)
−0.774669 + 0.632367i \(0.782083\pi\)
\(984\) −4673.06 + 8093.97i −0.151394 + 0.262222i
\(985\) 3088.27 38054.5i 0.0998989 1.23098i
\(986\) 6191.26 0.199970
\(987\) 0 0
\(988\) 29592.1i 0.952886i
\(989\) −11683.4 20236.2i −0.375642 0.650630i
\(990\) −20252.8 + 9599.56i −0.650177 + 0.308176i
\(991\) 22309.2 38640.7i 0.715113 1.23861i −0.247804 0.968810i \(-0.579709\pi\)
0.962916 0.269801i \(-0.0869579\pi\)
\(992\) −7914.21 + 4569.27i −0.253303 + 0.146245i
\(993\) 13632.9i 0.435678i
\(994\) 0 0
\(995\) 21559.1 31205.6i 0.686905 0.994255i
\(996\) −2436.86 4220.76i −0.0775248 0.134277i
\(997\) 32843.1 + 18961.9i 1.04328 + 0.602338i 0.920761 0.390128i \(-0.127569\pi\)
0.122519 + 0.992466i \(0.460903\pi\)
\(998\) 19916.7 + 11498.9i 0.631714 + 0.364720i
\(999\) 13781.5 + 23870.3i 0.436464 + 0.755977i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.4.j.e.214.4 20
5.4 even 2 inner 245.4.j.e.214.7 20
7.2 even 3 inner 245.4.j.e.79.7 20
7.3 odd 6 245.4.b.d.99.4 10
7.4 even 3 35.4.b.a.29.4 10
7.5 odd 6 245.4.j.f.79.7 20
7.6 odd 2 245.4.j.f.214.4 20
21.11 odd 6 315.4.d.c.64.7 10
28.11 odd 6 560.4.g.f.449.4 10
35.3 even 12 1225.4.a.bh.1.2 5
35.4 even 6 35.4.b.a.29.7 yes 10
35.9 even 6 inner 245.4.j.e.79.4 20
35.17 even 12 1225.4.a.be.1.4 5
35.18 odd 12 175.4.a.j.1.2 5
35.19 odd 6 245.4.j.f.79.4 20
35.24 odd 6 245.4.b.d.99.7 10
35.32 odd 12 175.4.a.i.1.4 5
35.34 odd 2 245.4.j.f.214.7 20
105.32 even 12 1575.4.a.bq.1.2 5
105.53 even 12 1575.4.a.bn.1.4 5
105.74 odd 6 315.4.d.c.64.4 10
140.39 odd 6 560.4.g.f.449.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.4 10 7.4 even 3
35.4.b.a.29.7 yes 10 35.4 even 6
175.4.a.i.1.4 5 35.32 odd 12
175.4.a.j.1.2 5 35.18 odd 12
245.4.b.d.99.4 10 7.3 odd 6
245.4.b.d.99.7 10 35.24 odd 6
245.4.j.e.79.4 20 35.9 even 6 inner
245.4.j.e.79.7 20 7.2 even 3 inner
245.4.j.e.214.4 20 1.1 even 1 trivial
245.4.j.e.214.7 20 5.4 even 2 inner
245.4.j.f.79.4 20 35.19 odd 6
245.4.j.f.79.7 20 7.5 odd 6
245.4.j.f.214.4 20 7.6 odd 2
245.4.j.f.214.7 20 35.34 odd 2
315.4.d.c.64.4 10 105.74 odd 6
315.4.d.c.64.7 10 21.11 odd 6
560.4.g.f.449.4 10 28.11 odd 6
560.4.g.f.449.7 10 140.39 odd 6
1225.4.a.be.1.4 5 35.17 even 12
1225.4.a.bh.1.2 5 35.3 even 12
1575.4.a.bn.1.4 5 105.53 even 12
1575.4.a.bq.1.2 5 105.32 even 12