Properties

Label 2475.4.a.l.1.2
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2475,4,Mod(1,2475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2475.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.43845 q^{2} -5.93087 q^{4} +31.0540 q^{7} +20.0388 q^{8} +11.0000 q^{11} +45.6155 q^{13} -44.6695 q^{14} +18.6222 q^{16} -40.4536 q^{17} +91.2699 q^{19} -15.8229 q^{22} +32.2462 q^{23} -65.6155 q^{26} -184.177 q^{28} -35.8702 q^{29} +311.702 q^{31} -187.098 q^{32} +58.1904 q^{34} +368.147 q^{37} -131.287 q^{38} +393.602 q^{41} +351.602 q^{43} -65.2396 q^{44} -46.3845 q^{46} -230.155 q^{47} +621.349 q^{49} -270.540 q^{52} +406.902 q^{53} +622.285 q^{56} +51.5975 q^{58} +368.725 q^{59} -322.825 q^{61} -448.366 q^{62} +120.153 q^{64} -442.233 q^{67} +239.925 q^{68} -667.745 q^{71} +84.5701 q^{73} -529.560 q^{74} -541.310 q^{76} +341.594 q^{77} -411.983 q^{79} -566.176 q^{82} -835.619 q^{83} -505.761 q^{86} +220.427 q^{88} +799.853 q^{89} +1416.54 q^{91} -191.248 q^{92} +331.066 q^{94} -768.945 q^{97} -893.778 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 7 q^{2} + 17 q^{4} + 25 q^{7} - 63 q^{8} + 22 q^{11} + 50 q^{13} - 11 q^{14} + 297 q^{16} - 151 q^{17} - 3 q^{19} - 77 q^{22} + 48 q^{23} - 90 q^{26} - 323 q^{28} + 221 q^{29} + 141 q^{31} - 1071 q^{32}+ \cdots + 810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.43845 −0.508568 −0.254284 0.967130i \(-0.581840\pi\)
−0.254284 + 0.967130i \(0.581840\pi\)
\(3\) 0 0
\(4\) −5.93087 −0.741359
\(5\) 0 0
\(6\) 0 0
\(7\) 31.0540 1.67676 0.838379 0.545088i \(-0.183504\pi\)
0.838379 + 0.545088i \(0.183504\pi\)
\(8\) 20.0388 0.885599
\(9\) 0 0
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 45.6155 0.973190 0.486595 0.873628i \(-0.338239\pi\)
0.486595 + 0.873628i \(0.338239\pi\)
\(14\) −44.6695 −0.852745
\(15\) 0 0
\(16\) 18.6222 0.290971
\(17\) −40.4536 −0.577144 −0.288572 0.957458i \(-0.593180\pi\)
−0.288572 + 0.957458i \(0.593180\pi\)
\(18\) 0 0
\(19\) 91.2699 1.10204 0.551020 0.834492i \(-0.314239\pi\)
0.551020 + 0.834492i \(0.314239\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −15.8229 −0.153339
\(23\) 32.2462 0.292339 0.146170 0.989260i \(-0.453305\pi\)
0.146170 + 0.989260i \(0.453305\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −65.6155 −0.494933
\(27\) 0 0
\(28\) −184.177 −1.24308
\(29\) −35.8702 −0.229688 −0.114844 0.993384i \(-0.536637\pi\)
−0.114844 + 0.993384i \(0.536637\pi\)
\(30\) 0 0
\(31\) 311.702 1.80591 0.902956 0.429733i \(-0.141392\pi\)
0.902956 + 0.429733i \(0.141392\pi\)
\(32\) −187.098 −1.03358
\(33\) 0 0
\(34\) 58.1904 0.293517
\(35\) 0 0
\(36\) 0 0
\(37\) 368.147 1.63576 0.817878 0.575392i \(-0.195150\pi\)
0.817878 + 0.575392i \(0.195150\pi\)
\(38\) −131.287 −0.560462
\(39\) 0 0
\(40\) 0 0
\(41\) 393.602 1.49928 0.749638 0.661848i \(-0.230227\pi\)
0.749638 + 0.661848i \(0.230227\pi\)
\(42\) 0 0
\(43\) 351.602 1.24695 0.623475 0.781843i \(-0.285720\pi\)
0.623475 + 0.781843i \(0.285720\pi\)
\(44\) −65.2396 −0.223528
\(45\) 0 0
\(46\) −46.3845 −0.148674
\(47\) −230.155 −0.714289 −0.357145 0.934049i \(-0.616250\pi\)
−0.357145 + 0.934049i \(0.616250\pi\)
\(48\) 0 0
\(49\) 621.349 1.81151
\(50\) 0 0
\(51\) 0 0
\(52\) −270.540 −0.721483
\(53\) 406.902 1.05457 0.527286 0.849688i \(-0.323210\pi\)
0.527286 + 0.849688i \(0.323210\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 622.285 1.48493
\(57\) 0 0
\(58\) 51.5975 0.116812
\(59\) 368.725 0.813626 0.406813 0.913511i \(-0.366640\pi\)
0.406813 + 0.913511i \(0.366640\pi\)
\(60\) 0 0
\(61\) −322.825 −0.677598 −0.338799 0.940859i \(-0.610021\pi\)
−0.338799 + 0.940859i \(0.610021\pi\)
\(62\) −448.366 −0.918429
\(63\) 0 0
\(64\) 120.153 0.234673
\(65\) 0 0
\(66\) 0 0
\(67\) −442.233 −0.806378 −0.403189 0.915117i \(-0.632098\pi\)
−0.403189 + 0.915117i \(0.632098\pi\)
\(68\) 239.925 0.427870
\(69\) 0 0
\(70\) 0 0
\(71\) −667.745 −1.11615 −0.558076 0.829790i \(-0.688460\pi\)
−0.558076 + 0.829790i \(0.688460\pi\)
\(72\) 0 0
\(73\) 84.5701 0.135591 0.0677957 0.997699i \(-0.478403\pi\)
0.0677957 + 0.997699i \(0.478403\pi\)
\(74\) −529.560 −0.831893
\(75\) 0 0
\(76\) −541.310 −0.817006
\(77\) 341.594 0.505561
\(78\) 0 0
\(79\) −411.983 −0.586730 −0.293365 0.956000i \(-0.594775\pi\)
−0.293365 + 0.956000i \(0.594775\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −566.176 −0.762484
\(83\) −835.619 −1.10507 −0.552537 0.833488i \(-0.686340\pi\)
−0.552537 + 0.833488i \(0.686340\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −505.761 −0.634159
\(87\) 0 0
\(88\) 220.427 0.267018
\(89\) 799.853 0.952632 0.476316 0.879274i \(-0.341972\pi\)
0.476316 + 0.879274i \(0.341972\pi\)
\(90\) 0 0
\(91\) 1416.54 1.63180
\(92\) −191.248 −0.216728
\(93\) 0 0
\(94\) 331.066 0.363265
\(95\) 0 0
\(96\) 0 0
\(97\) −768.945 −0.804892 −0.402446 0.915444i \(-0.631840\pi\)
−0.402446 + 0.915444i \(0.631840\pi\)
\(98\) −893.778 −0.921278
\(99\) 0 0
\(100\) 0 0
\(101\) 1412.31 1.39139 0.695696 0.718337i \(-0.255096\pi\)
0.695696 + 0.718337i \(0.255096\pi\)
\(102\) 0 0
\(103\) −24.4185 −0.0233595 −0.0116797 0.999932i \(-0.503718\pi\)
−0.0116797 + 0.999932i \(0.503718\pi\)
\(104\) 914.081 0.861856
\(105\) 0 0
\(106\) −585.308 −0.536322
\(107\) 532.155 0.480798 0.240399 0.970674i \(-0.422722\pi\)
0.240399 + 0.970674i \(0.422722\pi\)
\(108\) 0 0
\(109\) −1234.62 −1.08491 −0.542455 0.840085i \(-0.682505\pi\)
−0.542455 + 0.840085i \(0.682505\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 578.292 0.487888
\(113\) −1304.45 −1.08595 −0.542976 0.839748i \(-0.682703\pi\)
−0.542976 + 0.839748i \(0.682703\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 212.742 0.170281
\(117\) 0 0
\(118\) −530.392 −0.413784
\(119\) −1256.25 −0.967729
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 464.366 0.344605
\(123\) 0 0
\(124\) −1848.66 −1.33883
\(125\) 0 0
\(126\) 0 0
\(127\) −1167.88 −0.816004 −0.408002 0.912981i \(-0.633774\pi\)
−0.408002 + 0.912981i \(0.633774\pi\)
\(128\) 1323.95 0.914231
\(129\) 0 0
\(130\) 0 0
\(131\) −1549.95 −1.03374 −0.516869 0.856065i \(-0.672902\pi\)
−0.516869 + 0.856065i \(0.672902\pi\)
\(132\) 0 0
\(133\) 2834.29 1.84785
\(134\) 636.129 0.410098
\(135\) 0 0
\(136\) −810.642 −0.511118
\(137\) −2440.68 −1.52205 −0.761026 0.648722i \(-0.775304\pi\)
−0.761026 + 0.648722i \(0.775304\pi\)
\(138\) 0 0
\(139\) −1861.43 −1.13586 −0.567930 0.823077i \(-0.692256\pi\)
−0.567930 + 0.823077i \(0.692256\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 960.516 0.567639
\(143\) 501.771 0.293428
\(144\) 0 0
\(145\) 0 0
\(146\) −121.650 −0.0689575
\(147\) 0 0
\(148\) −2183.43 −1.21268
\(149\) −814.376 −0.447760 −0.223880 0.974617i \(-0.571872\pi\)
−0.223880 + 0.974617i \(0.571872\pi\)
\(150\) 0 0
\(151\) 3666.43 1.97596 0.987979 0.154591i \(-0.0494060\pi\)
0.987979 + 0.154591i \(0.0494060\pi\)
\(152\) 1828.94 0.975965
\(153\) 0 0
\(154\) −491.365 −0.257112
\(155\) 0 0
\(156\) 0 0
\(157\) −2671.96 −1.35825 −0.679127 0.734021i \(-0.737641\pi\)
−0.679127 + 0.734021i \(0.737641\pi\)
\(158\) 592.616 0.298392
\(159\) 0 0
\(160\) 0 0
\(161\) 1001.37 0.490182
\(162\) 0 0
\(163\) 1728.53 0.830605 0.415302 0.909683i \(-0.363676\pi\)
0.415302 + 0.909683i \(0.363676\pi\)
\(164\) −2334.40 −1.11150
\(165\) 0 0
\(166\) 1201.99 0.562005
\(167\) −0.0653990 −3.03037e−5 0 −1.51519e−5 1.00000i \(-0.500005\pi\)
−1.51519e−5 1.00000i \(0.500005\pi\)
\(168\) 0 0
\(169\) −116.224 −0.0529010
\(170\) 0 0
\(171\) 0 0
\(172\) −2085.31 −0.924437
\(173\) −1816.75 −0.798411 −0.399205 0.916861i \(-0.630714\pi\)
−0.399205 + 0.916861i \(0.630714\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 204.844 0.0877312
\(177\) 0 0
\(178\) −1150.55 −0.484478
\(179\) −2381.23 −0.994312 −0.497156 0.867661i \(-0.665622\pi\)
−0.497156 + 0.867661i \(0.665622\pi\)
\(180\) 0 0
\(181\) 1275.61 0.523840 0.261920 0.965090i \(-0.415644\pi\)
0.261920 + 0.965090i \(0.415644\pi\)
\(182\) −2037.62 −0.829883
\(183\) 0 0
\(184\) 646.176 0.258895
\(185\) 0 0
\(186\) 0 0
\(187\) −444.990 −0.174015
\(188\) 1365.02 0.529545
\(189\) 0 0
\(190\) 0 0
\(191\) 3699.04 1.40133 0.700663 0.713492i \(-0.252888\pi\)
0.700663 + 0.713492i \(0.252888\pi\)
\(192\) 0 0
\(193\) −1231.22 −0.459196 −0.229598 0.973285i \(-0.573741\pi\)
−0.229598 + 0.973285i \(0.573741\pi\)
\(194\) 1106.09 0.409342
\(195\) 0 0
\(196\) −3685.14 −1.34298
\(197\) 728.087 0.263320 0.131660 0.991295i \(-0.457969\pi\)
0.131660 + 0.991295i \(0.457969\pi\)
\(198\) 0 0
\(199\) −1650.81 −0.588055 −0.294027 0.955797i \(-0.594996\pi\)
−0.294027 + 0.955797i \(0.594996\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2031.54 −0.707617
\(203\) −1113.91 −0.385130
\(204\) 0 0
\(205\) 0 0
\(206\) 35.1247 0.0118799
\(207\) 0 0
\(208\) 849.460 0.283171
\(209\) 1003.97 0.332277
\(210\) 0 0
\(211\) 1587.01 0.517792 0.258896 0.965905i \(-0.416641\pi\)
0.258896 + 0.965905i \(0.416641\pi\)
\(212\) −2413.29 −0.781817
\(213\) 0 0
\(214\) −765.477 −0.244518
\(215\) 0 0
\(216\) 0 0
\(217\) 9679.58 3.02808
\(218\) 1775.94 0.551751
\(219\) 0 0
\(220\) 0 0
\(221\) −1845.31 −0.561670
\(222\) 0 0
\(223\) 1998.59 0.600160 0.300080 0.953914i \(-0.402987\pi\)
0.300080 + 0.953914i \(0.402987\pi\)
\(224\) −5810.12 −1.73306
\(225\) 0 0
\(226\) 1876.39 0.552280
\(227\) 4212.00 1.23154 0.615771 0.787925i \(-0.288845\pi\)
0.615771 + 0.787925i \(0.288845\pi\)
\(228\) 0 0
\(229\) 1371.82 0.395863 0.197931 0.980216i \(-0.436578\pi\)
0.197931 + 0.980216i \(0.436578\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −718.797 −0.203411
\(233\) −1718.37 −0.483152 −0.241576 0.970382i \(-0.577664\pi\)
−0.241576 + 0.970382i \(0.577664\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2186.86 −0.603189
\(237\) 0 0
\(238\) 1807.04 0.492156
\(239\) 1794.77 0.485749 0.242875 0.970058i \(-0.421910\pi\)
0.242875 + 0.970058i \(0.421910\pi\)
\(240\) 0 0
\(241\) 5185.02 1.38588 0.692939 0.720996i \(-0.256315\pi\)
0.692939 + 0.720996i \(0.256315\pi\)
\(242\) −174.052 −0.0462334
\(243\) 0 0
\(244\) 1914.63 0.502343
\(245\) 0 0
\(246\) 0 0
\(247\) 4163.32 1.07249
\(248\) 6246.13 1.59931
\(249\) 0 0
\(250\) 0 0
\(251\) 3827.69 0.962556 0.481278 0.876568i \(-0.340173\pi\)
0.481278 + 0.876568i \(0.340173\pi\)
\(252\) 0 0
\(253\) 354.708 0.0881436
\(254\) 1679.93 0.414993
\(255\) 0 0
\(256\) −2865.65 −0.699621
\(257\) −2671.37 −0.648387 −0.324193 0.945991i \(-0.605093\pi\)
−0.324193 + 0.945991i \(0.605093\pi\)
\(258\) 0 0
\(259\) 11432.4 2.74276
\(260\) 0 0
\(261\) 0 0
\(262\) 2229.52 0.525726
\(263\) 6659.10 1.56128 0.780642 0.624979i \(-0.214892\pi\)
0.780642 + 0.624979i \(0.214892\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4076.98 −0.939758
\(267\) 0 0
\(268\) 2622.83 0.597816
\(269\) −8473.05 −1.92049 −0.960244 0.279162i \(-0.909943\pi\)
−0.960244 + 0.279162i \(0.909943\pi\)
\(270\) 0 0
\(271\) −2643.21 −0.592486 −0.296243 0.955113i \(-0.595734\pi\)
−0.296243 + 0.955113i \(0.595734\pi\)
\(272\) −753.334 −0.167932
\(273\) 0 0
\(274\) 3510.78 0.774066
\(275\) 0 0
\(276\) 0 0
\(277\) 386.962 0.0839361 0.0419680 0.999119i \(-0.486637\pi\)
0.0419680 + 0.999119i \(0.486637\pi\)
\(278\) 2677.57 0.577662
\(279\) 0 0
\(280\) 0 0
\(281\) 1106.42 0.234887 0.117444 0.993080i \(-0.462530\pi\)
0.117444 + 0.993080i \(0.462530\pi\)
\(282\) 0 0
\(283\) −1165.71 −0.244855 −0.122428 0.992477i \(-0.539068\pi\)
−0.122428 + 0.992477i \(0.539068\pi\)
\(284\) 3960.31 0.827469
\(285\) 0 0
\(286\) −721.771 −0.149228
\(287\) 12222.9 2.51392
\(288\) 0 0
\(289\) −3276.51 −0.666905
\(290\) 0 0
\(291\) 0 0
\(292\) −501.574 −0.100522
\(293\) −3646.82 −0.727131 −0.363566 0.931569i \(-0.618441\pi\)
−0.363566 + 0.931569i \(0.618441\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7377.23 1.44862
\(297\) 0 0
\(298\) 1171.44 0.227716
\(299\) 1470.93 0.284502
\(300\) 0 0
\(301\) 10918.6 2.09083
\(302\) −5273.96 −1.00491
\(303\) 0 0
\(304\) 1699.64 0.320662
\(305\) 0 0
\(306\) 0 0
\(307\) 816.066 0.151711 0.0758556 0.997119i \(-0.475831\pi\)
0.0758556 + 0.997119i \(0.475831\pi\)
\(308\) −2025.95 −0.374802
\(309\) 0 0
\(310\) 0 0
\(311\) −3146.99 −0.573793 −0.286896 0.957962i \(-0.592624\pi\)
−0.286896 + 0.957962i \(0.592624\pi\)
\(312\) 0 0
\(313\) 5085.49 0.918367 0.459184 0.888341i \(-0.348142\pi\)
0.459184 + 0.888341i \(0.348142\pi\)
\(314\) 3843.48 0.690764
\(315\) 0 0
\(316\) 2443.42 0.434978
\(317\) −4801.89 −0.850791 −0.425396 0.905007i \(-0.639865\pi\)
−0.425396 + 0.905007i \(0.639865\pi\)
\(318\) 0 0
\(319\) −394.573 −0.0692534
\(320\) 0 0
\(321\) 0 0
\(322\) −1440.42 −0.249291
\(323\) −3692.20 −0.636035
\(324\) 0 0
\(325\) 0 0
\(326\) −2486.39 −0.422419
\(327\) 0 0
\(328\) 7887.32 1.32776
\(329\) −7147.24 −1.19769
\(330\) 0 0
\(331\) −2597.31 −0.431302 −0.215651 0.976470i \(-0.569187\pi\)
−0.215651 + 0.976470i \(0.569187\pi\)
\(332\) 4955.95 0.819256
\(333\) 0 0
\(334\) 0.0940730 1.54115e−5 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2695.45 −0.435698 −0.217849 0.975982i \(-0.569904\pi\)
−0.217849 + 0.975982i \(0.569904\pi\)
\(338\) 167.182 0.0269038
\(339\) 0 0
\(340\) 0 0
\(341\) 3428.72 0.544503
\(342\) 0 0
\(343\) 8643.85 1.36071
\(344\) 7045.69 1.10430
\(345\) 0 0
\(346\) 2613.30 0.406046
\(347\) −9239.79 −1.42945 −0.714723 0.699407i \(-0.753447\pi\)
−0.714723 + 0.699407i \(0.753447\pi\)
\(348\) 0 0
\(349\) 3857.67 0.591680 0.295840 0.955237i \(-0.404400\pi\)
0.295840 + 0.955237i \(0.404400\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2058.07 −0.311635
\(353\) −3378.21 −0.509360 −0.254680 0.967025i \(-0.581970\pi\)
−0.254680 + 0.967025i \(0.581970\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4743.83 −0.706242
\(357\) 0 0
\(358\) 3425.28 0.505675
\(359\) 9892.96 1.45440 0.727201 0.686425i \(-0.240821\pi\)
0.727201 + 0.686425i \(0.240821\pi\)
\(360\) 0 0
\(361\) 1471.19 0.214491
\(362\) −1834.89 −0.266408
\(363\) 0 0
\(364\) −8401.33 −1.20975
\(365\) 0 0
\(366\) 0 0
\(367\) −5295.58 −0.753208 −0.376604 0.926374i \(-0.622908\pi\)
−0.376604 + 0.926374i \(0.622908\pi\)
\(368\) 600.495 0.0850623
\(369\) 0 0
\(370\) 0 0
\(371\) 12635.9 1.76826
\(372\) 0 0
\(373\) −7786.10 −1.08083 −0.540414 0.841399i \(-0.681732\pi\)
−0.540414 + 0.841399i \(0.681732\pi\)
\(374\) 640.094 0.0884986
\(375\) 0 0
\(376\) −4612.04 −0.632574
\(377\) −1636.24 −0.223530
\(378\) 0 0
\(379\) −1940.17 −0.262955 −0.131477 0.991319i \(-0.541972\pi\)
−0.131477 + 0.991319i \(0.541972\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5320.88 −0.712669
\(383\) 10805.6 1.44161 0.720807 0.693136i \(-0.243772\pi\)
0.720807 + 0.693136i \(0.243772\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1771.04 0.233533
\(387\) 0 0
\(388\) 4560.51 0.596714
\(389\) 9225.11 1.20239 0.601197 0.799101i \(-0.294691\pi\)
0.601197 + 0.799101i \(0.294691\pi\)
\(390\) 0 0
\(391\) −1304.48 −0.168722
\(392\) 12451.1 1.60428
\(393\) 0 0
\(394\) −1047.31 −0.133916
\(395\) 0 0
\(396\) 0 0
\(397\) −13364.3 −1.68951 −0.844753 0.535156i \(-0.820253\pi\)
−0.844753 + 0.535156i \(0.820253\pi\)
\(398\) 2374.61 0.299066
\(399\) 0 0
\(400\) 0 0
\(401\) 6030.88 0.751042 0.375521 0.926814i \(-0.377464\pi\)
0.375521 + 0.926814i \(0.377464\pi\)
\(402\) 0 0
\(403\) 14218.4 1.75750
\(404\) −8376.25 −1.03152
\(405\) 0 0
\(406\) 1602.31 0.195865
\(407\) 4049.61 0.493199
\(408\) 0 0
\(409\) 931.381 0.112601 0.0563005 0.998414i \(-0.482069\pi\)
0.0563005 + 0.998414i \(0.482069\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 144.823 0.0173178
\(413\) 11450.4 1.36425
\(414\) 0 0
\(415\) 0 0
\(416\) −8534.55 −1.00587
\(417\) 0 0
\(418\) −1444.16 −0.168986
\(419\) 13161.8 1.53460 0.767300 0.641289i \(-0.221600\pi\)
0.767300 + 0.641289i \(0.221600\pi\)
\(420\) 0 0
\(421\) −1127.05 −0.130473 −0.0652365 0.997870i \(-0.520780\pi\)
−0.0652365 + 0.997870i \(0.520780\pi\)
\(422\) −2282.83 −0.263332
\(423\) 0 0
\(424\) 8153.84 0.933929
\(425\) 0 0
\(426\) 0 0
\(427\) −10025.0 −1.13617
\(428\) −3156.14 −0.356444
\(429\) 0 0
\(430\) 0 0
\(431\) 4386.13 0.490191 0.245096 0.969499i \(-0.421181\pi\)
0.245096 + 0.969499i \(0.421181\pi\)
\(432\) 0 0
\(433\) −10905.5 −1.21035 −0.605177 0.796091i \(-0.706898\pi\)
−0.605177 + 0.796091i \(0.706898\pi\)
\(434\) −13923.6 −1.53998
\(435\) 0 0
\(436\) 7322.38 0.804308
\(437\) 2943.11 0.322169
\(438\) 0 0
\(439\) −3900.94 −0.424104 −0.212052 0.977258i \(-0.568015\pi\)
−0.212052 + 0.977258i \(0.568015\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2654.38 0.285647
\(443\) −15537.5 −1.66638 −0.833192 0.552985i \(-0.813489\pi\)
−0.833192 + 0.552985i \(0.813489\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2874.87 −0.305222
\(447\) 0 0
\(448\) 3731.22 0.393490
\(449\) 3464.47 0.364139 0.182070 0.983286i \(-0.441720\pi\)
0.182070 + 0.983286i \(0.441720\pi\)
\(450\) 0 0
\(451\) 4329.62 0.452049
\(452\) 7736.54 0.805080
\(453\) 0 0
\(454\) −6058.74 −0.626323
\(455\) 0 0
\(456\) 0 0
\(457\) 14410.6 1.47506 0.737528 0.675317i \(-0.235993\pi\)
0.737528 + 0.675317i \(0.235993\pi\)
\(458\) −1973.29 −0.201323
\(459\) 0 0
\(460\) 0 0
\(461\) 3219.12 0.325226 0.162613 0.986690i \(-0.448008\pi\)
0.162613 + 0.986690i \(0.448008\pi\)
\(462\) 0 0
\(463\) 1338.77 0.134380 0.0671899 0.997740i \(-0.478597\pi\)
0.0671899 + 0.997740i \(0.478597\pi\)
\(464\) −667.982 −0.0668325
\(465\) 0 0
\(466\) 2471.79 0.245716
\(467\) −12221.6 −1.21102 −0.605512 0.795836i \(-0.707032\pi\)
−0.605512 + 0.795836i \(0.707032\pi\)
\(468\) 0 0
\(469\) −13733.1 −1.35210
\(470\) 0 0
\(471\) 0 0
\(472\) 7388.82 0.720547
\(473\) 3867.62 0.375969
\(474\) 0 0
\(475\) 0 0
\(476\) 7450.63 0.717435
\(477\) 0 0
\(478\) −2581.68 −0.247036
\(479\) 20290.0 1.93544 0.967718 0.252036i \(-0.0811001\pi\)
0.967718 + 0.252036i \(0.0811001\pi\)
\(480\) 0 0
\(481\) 16793.2 1.59190
\(482\) −7458.38 −0.704813
\(483\) 0 0
\(484\) −717.635 −0.0673962
\(485\) 0 0
\(486\) 0 0
\(487\) −17360.7 −1.61538 −0.807688 0.589610i \(-0.799282\pi\)
−0.807688 + 0.589610i \(0.799282\pi\)
\(488\) −6469.03 −0.600080
\(489\) 0 0
\(490\) 0 0
\(491\) −5129.01 −0.471424 −0.235712 0.971823i \(-0.575742\pi\)
−0.235712 + 0.971823i \(0.575742\pi\)
\(492\) 0 0
\(493\) 1451.08 0.132563
\(494\) −5988.72 −0.545436
\(495\) 0 0
\(496\) 5804.56 0.525469
\(497\) −20736.1 −1.87152
\(498\) 0 0
\(499\) 13009.6 1.16712 0.583558 0.812072i \(-0.301660\pi\)
0.583558 + 0.812072i \(0.301660\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −5505.93 −0.489525
\(503\) 3972.02 0.352095 0.176047 0.984382i \(-0.443669\pi\)
0.176047 + 0.984382i \(0.443669\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −510.229 −0.0448270
\(507\) 0 0
\(508\) 6926.54 0.604952
\(509\) −11174.1 −0.973048 −0.486524 0.873667i \(-0.661735\pi\)
−0.486524 + 0.873667i \(0.661735\pi\)
\(510\) 0 0
\(511\) 2626.24 0.227354
\(512\) −6469.49 −0.558426
\(513\) 0 0
\(514\) 3842.62 0.329749
\(515\) 0 0
\(516\) 0 0
\(517\) −2531.71 −0.215366
\(518\) −16444.9 −1.39488
\(519\) 0 0
\(520\) 0 0
\(521\) 18614.6 1.56530 0.782648 0.622464i \(-0.213868\pi\)
0.782648 + 0.622464i \(0.213868\pi\)
\(522\) 0 0
\(523\) −3792.30 −0.317066 −0.158533 0.987354i \(-0.550676\pi\)
−0.158533 + 0.987354i \(0.550676\pi\)
\(524\) 9192.54 0.766370
\(525\) 0 0
\(526\) −9578.76 −0.794019
\(527\) −12609.5 −1.04227
\(528\) 0 0
\(529\) −11127.2 −0.914538
\(530\) 0 0
\(531\) 0 0
\(532\) −16809.8 −1.36992
\(533\) 17954.4 1.45908
\(534\) 0 0
\(535\) 0 0
\(536\) −8861.83 −0.714128
\(537\) 0 0
\(538\) 12188.0 0.976698
\(539\) 6834.84 0.546192
\(540\) 0 0
\(541\) 5187.61 0.412260 0.206130 0.978525i \(-0.433913\pi\)
0.206130 + 0.978525i \(0.433913\pi\)
\(542\) 3802.12 0.301319
\(543\) 0 0
\(544\) 7568.77 0.596523
\(545\) 0 0
\(546\) 0 0
\(547\) 15642.1 1.22268 0.611342 0.791366i \(-0.290630\pi\)
0.611342 + 0.791366i \(0.290630\pi\)
\(548\) 14475.3 1.12839
\(549\) 0 0
\(550\) 0 0
\(551\) −3273.87 −0.253125
\(552\) 0 0
\(553\) −12793.7 −0.983804
\(554\) −556.624 −0.0426872
\(555\) 0 0
\(556\) 11039.9 0.842080
\(557\) 15798.8 1.20182 0.600912 0.799315i \(-0.294804\pi\)
0.600912 + 0.799315i \(0.294804\pi\)
\(558\) 0 0
\(559\) 16038.5 1.21352
\(560\) 0 0
\(561\) 0 0
\(562\) −1591.52 −0.119456
\(563\) 5028.68 0.376436 0.188218 0.982127i \(-0.439729\pi\)
0.188218 + 0.982127i \(0.439729\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1676.81 0.124526
\(567\) 0 0
\(568\) −13380.8 −0.988463
\(569\) −24194.1 −1.78255 −0.891273 0.453467i \(-0.850187\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(570\) 0 0
\(571\) −8184.61 −0.599852 −0.299926 0.953963i \(-0.596962\pi\)
−0.299926 + 0.953963i \(0.596962\pi\)
\(572\) −2975.94 −0.217535
\(573\) 0 0
\(574\) −17582.0 −1.27850
\(575\) 0 0
\(576\) 0 0
\(577\) −550.908 −0.0397480 −0.0198740 0.999802i \(-0.506327\pi\)
−0.0198740 + 0.999802i \(0.506327\pi\)
\(578\) 4713.08 0.339167
\(579\) 0 0
\(580\) 0 0
\(581\) −25949.3 −1.85294
\(582\) 0 0
\(583\) 4475.93 0.317966
\(584\) 1694.68 0.120080
\(585\) 0 0
\(586\) 5245.76 0.369796
\(587\) 3080.03 0.216570 0.108285 0.994120i \(-0.465464\pi\)
0.108285 + 0.994120i \(0.465464\pi\)
\(588\) 0 0
\(589\) 28449.0 1.99019
\(590\) 0 0
\(591\) 0 0
\(592\) 6855.69 0.475958
\(593\) 5257.89 0.364108 0.182054 0.983289i \(-0.441726\pi\)
0.182054 + 0.983289i \(0.441726\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4829.96 0.331951
\(597\) 0 0
\(598\) −2115.85 −0.144688
\(599\) 1181.80 0.0806125 0.0403062 0.999187i \(-0.487167\pi\)
0.0403062 + 0.999187i \(0.487167\pi\)
\(600\) 0 0
\(601\) −27879.8 −1.89225 −0.946123 0.323807i \(-0.895037\pi\)
−0.946123 + 0.323807i \(0.895037\pi\)
\(602\) −15705.9 −1.06333
\(603\) 0 0
\(604\) −21745.1 −1.46489
\(605\) 0 0
\(606\) 0 0
\(607\) 4500.25 0.300922 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(608\) −17076.4 −1.13904
\(609\) 0 0
\(610\) 0 0
\(611\) −10498.7 −0.695139
\(612\) 0 0
\(613\) −8963.16 −0.590569 −0.295284 0.955409i \(-0.595414\pi\)
−0.295284 + 0.955409i \(0.595414\pi\)
\(614\) −1173.87 −0.0771555
\(615\) 0 0
\(616\) 6845.14 0.447725
\(617\) −9394.42 −0.612974 −0.306487 0.951875i \(-0.599154\pi\)
−0.306487 + 0.951875i \(0.599154\pi\)
\(618\) 0 0
\(619\) 4816.38 0.312741 0.156371 0.987698i \(-0.450021\pi\)
0.156371 + 0.987698i \(0.450021\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4526.78 0.291813
\(623\) 24838.6 1.59733
\(624\) 0 0
\(625\) 0 0
\(626\) −7315.21 −0.467052
\(627\) 0 0
\(628\) 15847.1 1.00695
\(629\) −14892.9 −0.944066
\(630\) 0 0
\(631\) −24847.7 −1.56763 −0.783814 0.620996i \(-0.786728\pi\)
−0.783814 + 0.620996i \(0.786728\pi\)
\(632\) −8255.65 −0.519608
\(633\) 0 0
\(634\) 6907.26 0.432685
\(635\) 0 0
\(636\) 0 0
\(637\) 28343.2 1.76295
\(638\) 567.572 0.0352201
\(639\) 0 0
\(640\) 0 0
\(641\) 30497.0 1.87919 0.939594 0.342290i \(-0.111202\pi\)
0.939594 + 0.342290i \(0.111202\pi\)
\(642\) 0 0
\(643\) −5407.75 −0.331665 −0.165833 0.986154i \(-0.553031\pi\)
−0.165833 + 0.986154i \(0.553031\pi\)
\(644\) −5939.01 −0.363400
\(645\) 0 0
\(646\) 5311.03 0.323467
\(647\) 22118.8 1.34402 0.672011 0.740542i \(-0.265431\pi\)
0.672011 + 0.740542i \(0.265431\pi\)
\(648\) 0 0
\(649\) 4055.98 0.245318
\(650\) 0 0
\(651\) 0 0
\(652\) −10251.7 −0.615776
\(653\) −12862.4 −0.770817 −0.385409 0.922746i \(-0.625940\pi\)
−0.385409 + 0.922746i \(0.625940\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7329.73 0.436247
\(657\) 0 0
\(658\) 10280.9 0.609106
\(659\) −13216.0 −0.781218 −0.390609 0.920557i \(-0.627736\pi\)
−0.390609 + 0.920557i \(0.627736\pi\)
\(660\) 0 0
\(661\) 32098.3 1.88878 0.944388 0.328833i \(-0.106655\pi\)
0.944388 + 0.328833i \(0.106655\pi\)
\(662\) 3736.09 0.219347
\(663\) 0 0
\(664\) −16744.8 −0.978652
\(665\) 0 0
\(666\) 0 0
\(667\) −1156.68 −0.0671466
\(668\) 0.387873 2.24659e−5 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3551.07 −0.204303
\(672\) 0 0
\(673\) 19956.4 1.14304 0.571518 0.820590i \(-0.306355\pi\)
0.571518 + 0.820590i \(0.306355\pi\)
\(674\) 3877.26 0.221582
\(675\) 0 0
\(676\) 689.307 0.0392186
\(677\) −1483.58 −0.0842223 −0.0421111 0.999113i \(-0.513408\pi\)
−0.0421111 + 0.999113i \(0.513408\pi\)
\(678\) 0 0
\(679\) −23878.8 −1.34961
\(680\) 0 0
\(681\) 0 0
\(682\) −4932.03 −0.276917
\(683\) 23228.2 1.30132 0.650659 0.759370i \(-0.274493\pi\)
0.650659 + 0.759370i \(0.274493\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −12433.7 −0.692015
\(687\) 0 0
\(688\) 6547.60 0.362827
\(689\) 18561.1 1.02630
\(690\) 0 0
\(691\) −7333.20 −0.403717 −0.201858 0.979415i \(-0.564698\pi\)
−0.201858 + 0.979415i \(0.564698\pi\)
\(692\) 10774.9 0.591909
\(693\) 0 0
\(694\) 13290.9 0.726971
\(695\) 0 0
\(696\) 0 0
\(697\) −15922.6 −0.865298
\(698\) −5549.06 −0.300909
\(699\) 0 0
\(700\) 0 0
\(701\) 19481.6 1.04966 0.524829 0.851208i \(-0.324129\pi\)
0.524829 + 0.851208i \(0.324129\pi\)
\(702\) 0 0
\(703\) 33600.7 1.80267
\(704\) 1321.68 0.0707566
\(705\) 0 0
\(706\) 4859.38 0.259044
\(707\) 43858.0 2.33303
\(708\) 0 0
\(709\) 14807.5 0.784353 0.392177 0.919890i \(-0.371722\pi\)
0.392177 + 0.919890i \(0.371722\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 16028.1 0.843650
\(713\) 10051.2 0.527939
\(714\) 0 0
\(715\) 0 0
\(716\) 14122.8 0.737142
\(717\) 0 0
\(718\) −14230.5 −0.739662
\(719\) −22891.1 −1.18734 −0.593669 0.804709i \(-0.702321\pi\)
−0.593669 + 0.804709i \(0.702321\pi\)
\(720\) 0 0
\(721\) −758.292 −0.0391682
\(722\) −2116.23 −0.109083
\(723\) 0 0
\(724\) −7565.45 −0.388353
\(725\) 0 0
\(726\) 0 0
\(727\) −24318.7 −1.24062 −0.620309 0.784357i \(-0.712993\pi\)
−0.620309 + 0.784357i \(0.712993\pi\)
\(728\) 28385.9 1.44512
\(729\) 0 0
\(730\) 0 0
\(731\) −14223.6 −0.719669
\(732\) 0 0
\(733\) 34939.0 1.76057 0.880287 0.474441i \(-0.157350\pi\)
0.880287 + 0.474441i \(0.157350\pi\)
\(734\) 7617.42 0.383057
\(735\) 0 0
\(736\) −6033.19 −0.302155
\(737\) −4864.56 −0.243132
\(738\) 0 0
\(739\) −12663.1 −0.630337 −0.315168 0.949036i \(-0.602061\pi\)
−0.315168 + 0.949036i \(0.602061\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −18176.1 −0.899281
\(743\) −1711.32 −0.0844985 −0.0422492 0.999107i \(-0.513452\pi\)
−0.0422492 + 0.999107i \(0.513452\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 11199.9 0.549675
\(747\) 0 0
\(748\) 2639.18 0.129008
\(749\) 16525.5 0.806182
\(750\) 0 0
\(751\) −5165.32 −0.250979 −0.125489 0.992095i \(-0.540050\pi\)
−0.125489 + 0.992095i \(0.540050\pi\)
\(752\) −4285.99 −0.207838
\(753\) 0 0
\(754\) 2353.65 0.113680
\(755\) 0 0
\(756\) 0 0
\(757\) 40684.0 1.95335 0.976675 0.214722i \(-0.0688847\pi\)
0.976675 + 0.214722i \(0.0688847\pi\)
\(758\) 2790.83 0.133730
\(759\) 0 0
\(760\) 0 0
\(761\) −26564.1 −1.26537 −0.632687 0.774408i \(-0.718048\pi\)
−0.632687 + 0.774408i \(0.718048\pi\)
\(762\) 0 0
\(763\) −38339.9 −1.81913
\(764\) −21938.5 −1.03889
\(765\) 0 0
\(766\) −15543.2 −0.733158
\(767\) 16819.6 0.791813
\(768\) 0 0
\(769\) 24381.9 1.14335 0.571674 0.820481i \(-0.306294\pi\)
0.571674 + 0.820481i \(0.306294\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7302.19 0.340429
\(773\) −18945.0 −0.881508 −0.440754 0.897628i \(-0.645289\pi\)
−0.440754 + 0.897628i \(0.645289\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −15408.8 −0.712812
\(777\) 0 0
\(778\) −13269.8 −0.611499
\(779\) 35924.0 1.65226
\(780\) 0 0
\(781\) −7345.20 −0.336532
\(782\) 1876.42 0.0858064
\(783\) 0 0
\(784\) 11570.9 0.527099
\(785\) 0 0
\(786\) 0 0
\(787\) 7610.70 0.344717 0.172359 0.985034i \(-0.444861\pi\)
0.172359 + 0.985034i \(0.444861\pi\)
\(788\) −4318.19 −0.195215
\(789\) 0 0
\(790\) 0 0
\(791\) −40508.4 −1.82088
\(792\) 0 0
\(793\) −14725.8 −0.659432
\(794\) 19223.8 0.859229
\(795\) 0 0
\(796\) 9790.75 0.435960
\(797\) 3732.50 0.165887 0.0829435 0.996554i \(-0.473568\pi\)
0.0829435 + 0.996554i \(0.473568\pi\)
\(798\) 0 0
\(799\) 9310.61 0.412247
\(800\) 0 0
\(801\) 0 0
\(802\) −8675.11 −0.381956
\(803\) 930.271 0.0408824
\(804\) 0 0
\(805\) 0 0
\(806\) −20452.5 −0.893806
\(807\) 0 0
\(808\) 28301.1 1.23221
\(809\) 27621.8 1.20041 0.600204 0.799847i \(-0.295086\pi\)
0.600204 + 0.799847i \(0.295086\pi\)
\(810\) 0 0
\(811\) −29996.0 −1.29877 −0.649384 0.760461i \(-0.724973\pi\)
−0.649384 + 0.760461i \(0.724973\pi\)
\(812\) 6606.48 0.285520
\(813\) 0 0
\(814\) −5825.16 −0.250825
\(815\) 0 0
\(816\) 0 0
\(817\) 32090.7 1.37419
\(818\) −1339.74 −0.0572653
\(819\) 0 0
\(820\) 0 0
\(821\) −18075.1 −0.768362 −0.384181 0.923258i \(-0.625516\pi\)
−0.384181 + 0.923258i \(0.625516\pi\)
\(822\) 0 0
\(823\) 26723.7 1.13187 0.565935 0.824450i \(-0.308515\pi\)
0.565935 + 0.824450i \(0.308515\pi\)
\(824\) −489.318 −0.0206871
\(825\) 0 0
\(826\) −16470.8 −0.693816
\(827\) 36788.1 1.54685 0.773427 0.633885i \(-0.218541\pi\)
0.773427 + 0.633885i \(0.218541\pi\)
\(828\) 0 0
\(829\) −1260.15 −0.0527948 −0.0263974 0.999652i \(-0.508404\pi\)
−0.0263974 + 0.999652i \(0.508404\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5480.82 0.228381
\(833\) −25135.8 −1.04550
\(834\) 0 0
\(835\) 0 0
\(836\) −5954.41 −0.246337
\(837\) 0 0
\(838\) −18932.6 −0.780448
\(839\) 4023.16 0.165548 0.0827742 0.996568i \(-0.473622\pi\)
0.0827742 + 0.996568i \(0.473622\pi\)
\(840\) 0 0
\(841\) −23102.3 −0.947244
\(842\) 1621.20 0.0663543
\(843\) 0 0
\(844\) −9412.34 −0.383870
\(845\) 0 0
\(846\) 0 0
\(847\) 3757.53 0.152432
\(848\) 7577.41 0.306851
\(849\) 0 0
\(850\) 0 0
\(851\) 11871.3 0.478195
\(852\) 0 0
\(853\) −40707.7 −1.63400 −0.817001 0.576636i \(-0.804365\pi\)
−0.817001 + 0.576636i \(0.804365\pi\)
\(854\) 14420.4 0.577818
\(855\) 0 0
\(856\) 10663.8 0.425794
\(857\) 24321.4 0.969431 0.484715 0.874672i \(-0.338923\pi\)
0.484715 + 0.874672i \(0.338923\pi\)
\(858\) 0 0
\(859\) 16912.7 0.671776 0.335888 0.941902i \(-0.390964\pi\)
0.335888 + 0.941902i \(0.390964\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −6309.22 −0.249295
\(863\) −25793.8 −1.01742 −0.508708 0.860939i \(-0.669877\pi\)
−0.508708 + 0.860939i \(0.669877\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 15686.9 0.615547
\(867\) 0 0
\(868\) −57408.3 −2.24489
\(869\) −4531.81 −0.176906
\(870\) 0 0
\(871\) −20172.7 −0.784759
\(872\) −24740.4 −0.960796
\(873\) 0 0
\(874\) −4233.51 −0.163845
\(875\) 0 0
\(876\) 0 0
\(877\) −20143.8 −0.775607 −0.387803 0.921742i \(-0.626766\pi\)
−0.387803 + 0.921742i \(0.626766\pi\)
\(878\) 5611.30 0.215686
\(879\) 0 0
\(880\) 0 0
\(881\) 18231.3 0.697196 0.348598 0.937272i \(-0.386658\pi\)
0.348598 + 0.937272i \(0.386658\pi\)
\(882\) 0 0
\(883\) 34487.5 1.31438 0.657189 0.753725i \(-0.271745\pi\)
0.657189 + 0.753725i \(0.271745\pi\)
\(884\) 10944.3 0.416399
\(885\) 0 0
\(886\) 22349.8 0.847469
\(887\) −16039.9 −0.607180 −0.303590 0.952803i \(-0.598185\pi\)
−0.303590 + 0.952803i \(0.598185\pi\)
\(888\) 0 0
\(889\) −36267.3 −1.36824
\(890\) 0 0
\(891\) 0 0
\(892\) −11853.4 −0.444934
\(893\) −21006.2 −0.787175
\(894\) 0 0
\(895\) 0 0
\(896\) 41113.8 1.53294
\(897\) 0 0
\(898\) −4983.46 −0.185189
\(899\) −11180.8 −0.414795
\(900\) 0 0
\(901\) −16460.7 −0.608640
\(902\) −6227.94 −0.229898
\(903\) 0 0
\(904\) −26139.7 −0.961718
\(905\) 0 0
\(906\) 0 0
\(907\) 23029.2 0.843077 0.421539 0.906810i \(-0.361490\pi\)
0.421539 + 0.906810i \(0.361490\pi\)
\(908\) −24980.8 −0.913015
\(909\) 0 0
\(910\) 0 0
\(911\) 9206.00 0.334806 0.167403 0.985889i \(-0.446462\pi\)
0.167403 + 0.985889i \(0.446462\pi\)
\(912\) 0 0
\(913\) −9191.81 −0.333192
\(914\) −20728.9 −0.750166
\(915\) 0 0
\(916\) −8136.10 −0.293476
\(917\) −48132.0 −1.73333
\(918\) 0 0
\(919\) 13329.5 0.478456 0.239228 0.970963i \(-0.423106\pi\)
0.239228 + 0.970963i \(0.423106\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −4630.53 −0.165400
\(923\) −30459.6 −1.08623
\(924\) 0 0
\(925\) 0 0
\(926\) −1925.75 −0.0683412
\(927\) 0 0
\(928\) 6711.24 0.237400
\(929\) −1819.10 −0.0642442 −0.0321221 0.999484i \(-0.510227\pi\)
−0.0321221 + 0.999484i \(0.510227\pi\)
\(930\) 0 0
\(931\) 56710.5 1.99636
\(932\) 10191.5 0.358189
\(933\) 0 0
\(934\) 17580.1 0.615888
\(935\) 0 0
\(936\) 0 0
\(937\) −4012.08 −0.139882 −0.0699408 0.997551i \(-0.522281\pi\)
−0.0699408 + 0.997551i \(0.522281\pi\)
\(938\) 19754.3 0.687635
\(939\) 0 0
\(940\) 0 0
\(941\) −8444.53 −0.292544 −0.146272 0.989244i \(-0.546727\pi\)
−0.146272 + 0.989244i \(0.546727\pi\)
\(942\) 0 0
\(943\) 12692.2 0.438297
\(944\) 6866.47 0.236742
\(945\) 0 0
\(946\) −5563.37 −0.191206
\(947\) 45316.0 1.55499 0.777493 0.628892i \(-0.216491\pi\)
0.777493 + 0.628892i \(0.216491\pi\)
\(948\) 0 0
\(949\) 3857.71 0.131956
\(950\) 0 0
\(951\) 0 0
\(952\) −25173.7 −0.857020
\(953\) 96.7143 0.00328739 0.00164370 0.999999i \(-0.499477\pi\)
0.00164370 + 0.999999i \(0.499477\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −10644.6 −0.360114
\(957\) 0 0
\(958\) −29186.1 −0.984300
\(959\) −75792.7 −2.55211
\(960\) 0 0
\(961\) 67366.9 2.26132
\(962\) −24156.1 −0.809590
\(963\) 0 0
\(964\) −30751.7 −1.02743
\(965\) 0 0
\(966\) 0 0
\(967\) −7666.63 −0.254956 −0.127478 0.991841i \(-0.540688\pi\)
−0.127478 + 0.991841i \(0.540688\pi\)
\(968\) 2424.70 0.0805090
\(969\) 0 0
\(970\) 0 0
\(971\) 5221.18 0.172560 0.0862799 0.996271i \(-0.472502\pi\)
0.0862799 + 0.996271i \(0.472502\pi\)
\(972\) 0 0
\(973\) −57804.9 −1.90456
\(974\) 24972.4 0.821529
\(975\) 0 0
\(976\) −6011.70 −0.197162
\(977\) −45769.9 −1.49878 −0.749390 0.662129i \(-0.769653\pi\)
−0.749390 + 0.662129i \(0.769653\pi\)
\(978\) 0 0
\(979\) 8798.39 0.287229
\(980\) 0 0
\(981\) 0 0
\(982\) 7377.81 0.239751
\(983\) −14777.8 −0.479488 −0.239744 0.970836i \(-0.577064\pi\)
−0.239744 + 0.970836i \(0.577064\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2087.30 −0.0674171
\(987\) 0 0
\(988\) −24692.1 −0.795103
\(989\) 11337.8 0.364532
\(990\) 0 0
\(991\) −16783.9 −0.538001 −0.269001 0.963140i \(-0.586693\pi\)
−0.269001 + 0.963140i \(0.586693\pi\)
\(992\) −58318.6 −1.86655
\(993\) 0 0
\(994\) 29827.9 0.951793
\(995\) 0 0
\(996\) 0 0
\(997\) 8720.36 0.277008 0.138504 0.990362i \(-0.455771\pi\)
0.138504 + 0.990362i \(0.455771\pi\)
\(998\) −18713.7 −0.593557
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.l.1.2 2
3.2 odd 2 275.4.a.c.1.1 2
5.4 even 2 495.4.a.e.1.1 2
15.2 even 4 275.4.b.b.199.3 4
15.8 even 4 275.4.b.b.199.2 4
15.14 odd 2 55.4.a.b.1.2 2
60.59 even 2 880.4.a.r.1.1 2
165.164 even 2 605.4.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.a.b.1.2 2 15.14 odd 2
275.4.a.c.1.1 2 3.2 odd 2
275.4.b.b.199.2 4 15.8 even 4
275.4.b.b.199.3 4 15.2 even 4
495.4.a.e.1.1 2 5.4 even 2
605.4.a.g.1.1 2 165.164 even 2
880.4.a.r.1.1 2 60.59 even 2
2475.4.a.l.1.2 2 1.1 even 1 trivial