Properties

Label 2496.1.eh.a.1949.4
Level $2496$
Weight $1$
Character 2496.1949
Analytic conductor $1.246$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,1,Mod(77,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 15, 8, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.77");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2496.eh (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} - \cdots)\)

Embedding invariants

Embedding label 1949.4
Root \(-0.881921 - 0.471397i\) of defining polynomial
Character \(\chi\) \(=\) 2496.1949
Dual form 2496.1.eh.a.1013.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.773010 + 0.634393i) q^{2} +(-0.980785 - 0.195090i) q^{3} +(0.195090 + 0.980785i) q^{4} +(-0.704900 + 1.05496i) q^{5} +(-0.634393 - 0.773010i) q^{6} +(-0.471397 + 0.881921i) q^{8} +(0.923880 + 0.382683i) q^{9} +(-1.21415 + 0.368309i) q^{10} +(0.344109 + 1.72995i) q^{11} -1.00000i q^{12} +(-0.555570 - 0.831470i) q^{13} +(0.897168 - 0.897168i) q^{15} +(-0.923880 + 0.382683i) q^{16} +(0.471397 + 0.881921i) q^{18} +(-1.17221 - 0.485544i) q^{20} +(-0.831470 + 1.55557i) q^{22} +(0.634393 - 0.773010i) q^{24} +(-0.233368 - 0.563400i) q^{25} +(0.0980171 - 0.995185i) q^{26} +(-0.831470 - 0.555570i) q^{27} +(1.26268 - 0.124363i) q^{30} +(-0.956940 - 0.290285i) q^{32} -1.76384i q^{33} +(-0.195090 + 0.980785i) q^{36} +(0.382683 + 0.923880i) q^{39} +(-0.598102 - 1.11897i) q^{40} +(0.0750191 - 0.181112i) q^{41} +(-1.63099 + 0.324423i) q^{43} +(-1.62958 + 0.674993i) q^{44} +(-1.05496 + 0.704900i) q^{45} +(-0.410525 - 0.410525i) q^{47} +(0.980785 - 0.195090i) q^{48} +(0.707107 - 0.707107i) q^{49} +(0.177021 - 0.583561i) q^{50} +(0.707107 - 0.707107i) q^{52} +(-0.290285 - 0.956940i) q^{54} +(-2.06759 - 0.856422i) q^{55} +(-0.858923 + 1.28547i) q^{59} +(1.05496 + 0.704900i) q^{60} +(0.750661 + 0.149316i) q^{61} +(-0.555570 - 0.831470i) q^{64} +1.26879 q^{65} +(1.11897 - 1.36347i) q^{66} +(-0.871028 + 0.360791i) q^{71} +(-0.773010 + 0.634393i) q^{72} +(0.118970 + 0.598102i) q^{75} +(-0.290285 + 0.956940i) q^{78} +(-1.17588 + 1.17588i) q^{79} +(0.247528 - 1.24441i) q^{80} +(0.707107 + 0.707107i) q^{81} +(0.172887 - 0.0924099i) q^{82} +(1.65493 - 1.10579i) q^{83} +(-1.46658 - 0.783904i) q^{86} +(-1.68789 - 0.512016i) q^{88} +(0.222174 + 0.536376i) q^{89} +(-1.26268 - 0.124363i) q^{90} +(-0.0569057 - 0.577774i) q^{94} +(0.881921 + 0.471397i) q^{96} +(0.995185 - 0.0980171i) q^{98} +(-0.344109 + 1.72995i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{55} - 32 q^{75}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(3\) −0.980785 0.195090i −0.980785 0.195090i
\(4\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(5\) −0.704900 + 1.05496i −0.704900 + 1.05496i 0.290285 + 0.956940i \(0.406250\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(6\) −0.634393 0.773010i −0.634393 0.773010i
\(7\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(8\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(9\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(10\) −1.21415 + 0.368309i −1.21415 + 0.368309i
\(11\) 0.344109 + 1.72995i 0.344109 + 1.72995i 0.634393 + 0.773010i \(0.281250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(12\) 1.00000i 1.00000i
\(13\) −0.555570 0.831470i −0.555570 0.831470i
\(14\) 0 0
\(15\) 0.897168 0.897168i 0.897168 0.897168i
\(16\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(19\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(20\) −1.17221 0.485544i −1.17221 0.485544i
\(21\) 0 0
\(22\) −0.831470 + 1.55557i −0.831470 + 1.55557i
\(23\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(24\) 0.634393 0.773010i 0.634393 0.773010i
\(25\) −0.233368 0.563400i −0.233368 0.563400i
\(26\) 0.0980171 0.995185i 0.0980171 0.995185i
\(27\) −0.831470 0.555570i −0.831470 0.555570i
\(28\) 0 0
\(29\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(30\) 1.26268 0.124363i 1.26268 0.124363i
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −0.956940 0.290285i −0.956940 0.290285i
\(33\) 1.76384i 1.76384i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(37\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(38\) 0 0
\(39\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(40\) −0.598102 1.11897i −0.598102 1.11897i
\(41\) 0.0750191 0.181112i 0.0750191 0.181112i −0.881921 0.471397i \(-0.843750\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(42\) 0 0
\(43\) −1.63099 + 0.324423i −1.63099 + 0.324423i −0.923880 0.382683i \(-0.875000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) −1.62958 + 0.674993i −1.62958 + 0.674993i
\(45\) −1.05496 + 0.704900i −1.05496 + 0.704900i
\(46\) 0 0
\(47\) −0.410525 0.410525i −0.410525 0.410525i 0.471397 0.881921i \(-0.343750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(48\) 0.980785 0.195090i 0.980785 0.195090i
\(49\) 0.707107 0.707107i 0.707107 0.707107i
\(50\) 0.177021 0.583561i 0.177021 0.583561i
\(51\) 0 0
\(52\) 0.707107 0.707107i 0.707107 0.707107i
\(53\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(54\) −0.290285 0.956940i −0.290285 0.956940i
\(55\) −2.06759 0.856422i −2.06759 0.856422i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.858923 + 1.28547i −0.858923 + 1.28547i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(60\) 1.05496 + 0.704900i 1.05496 + 0.704900i
\(61\) 0.750661 + 0.149316i 0.750661 + 0.149316i 0.555570 0.831470i \(-0.312500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.555570 0.831470i −0.555570 0.831470i
\(65\) 1.26879 1.26879
\(66\) 1.11897 1.36347i 1.11897 1.36347i
\(67\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.871028 + 0.360791i −0.871028 + 0.360791i −0.773010 0.634393i \(-0.781250\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(72\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(73\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(74\) 0 0
\(75\) 0.118970 + 0.598102i 0.118970 + 0.598102i
\(76\) 0 0
\(77\) 0 0
\(78\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(79\) −1.17588 + 1.17588i −1.17588 + 1.17588i −0.195090 + 0.980785i \(0.562500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(80\) 0.247528 1.24441i 0.247528 1.24441i
\(81\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(82\) 0.172887 0.0924099i 0.172887 0.0924099i
\(83\) 1.65493 1.10579i 1.65493 1.10579i 0.773010 0.634393i \(-0.218750\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.46658 0.783904i −1.46658 0.783904i
\(87\) 0 0
\(88\) −1.68789 0.512016i −1.68789 0.512016i
\(89\) 0.222174 + 0.536376i 0.222174 + 0.536376i 0.995185 0.0980171i \(-0.0312500\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(90\) −1.26268 0.124363i −1.26268 0.124363i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.0569057 0.577774i −0.0569057 0.577774i
\(95\) 0 0
\(96\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0.995185 0.0980171i 0.995185 0.0980171i
\(99\) −0.344109 + 1.72995i −0.344109 + 1.72995i
\(100\) 0.507046 0.338797i 0.507046 0.338797i
\(101\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(102\) 0 0
\(103\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(104\) 0.995185 0.0980171i 0.995185 0.0980171i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(108\) 0.382683 0.923880i 0.382683 0.923880i
\(109\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(110\) −1.05496 1.97369i −1.05496 1.97369i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.195090 0.980785i −0.195090 0.980785i
\(118\) −1.47945 + 0.448786i −1.47945 + 0.448786i
\(119\) 0 0
\(120\) 0.368309 + 1.21415i 0.368309 + 1.21415i
\(121\) −1.95044 + 0.807898i −1.95044 + 0.807898i
\(122\) 0.485544 + 0.591637i 0.485544 + 0.591637i
\(123\) −0.108911 + 0.162997i −0.108911 + 0.162997i
\(124\) 0 0
\(125\) −0.485544 0.0965806i −0.485544 0.0965806i
\(126\) 0 0
\(127\) 1.11114 1.11114 0.555570 0.831470i \(-0.312500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(128\) 0.0980171 0.995185i 0.0980171 0.995185i
\(129\) 1.66294 1.66294
\(130\) 0.980785 + 0.804910i 0.980785 + 0.804910i
\(131\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(132\) 1.72995 0.344109i 1.72995 0.344109i
\(133\) 0 0
\(134\) 0 0
\(135\) 1.17221 0.485544i 1.17221 0.485544i
\(136\) 0 0
\(137\) 1.76820 + 0.732410i 1.76820 + 0.732410i 0.995185 + 0.0980171i \(0.0312500\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(138\) 0 0
\(139\) 0.382683 + 1.92388i 0.382683 + 1.92388i 0.382683 + 0.923880i \(0.375000\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0.322547 + 0.482726i 0.322547 + 0.482726i
\(142\) −0.902197 0.273678i −0.902197 0.273678i
\(143\) 1.24723 1.24723i 1.24723 1.24723i
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(148\) 0 0
\(149\) 1.87711 0.373380i 1.87711 0.373380i 0.881921 0.471397i \(-0.156250\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(150\) −0.287467 + 0.537813i −0.287467 + 0.537813i
\(151\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(157\) −0.216773 + 1.08979i −0.216773 + 1.08979i 0.707107 + 0.707107i \(0.250000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(158\) −1.65493 + 0.162997i −1.65493 + 0.162997i
\(159\) 0 0
\(160\) 0.980785 0.804910i 0.980785 0.804910i
\(161\) 0 0
\(162\) 0.0980171 + 0.995185i 0.0980171 + 0.995185i
\(163\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(164\) 0.192268 + 0.0382444i 0.192268 + 0.0382444i
\(165\) 1.86078 + 1.24333i 1.86078 + 1.24333i
\(166\) 1.98079 + 0.195090i 1.98079 + 0.195090i
\(167\) 0.761681 + 1.83886i 0.761681 + 1.83886i 0.471397 + 0.881921i \(0.343750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(168\) 0 0
\(169\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.636379 1.53636i −0.636379 1.53636i
\(173\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.979938 1.46658i −0.979938 1.46658i
\(177\) 1.09320 1.09320i 1.09320 1.09320i
\(178\) −0.168530 + 0.555570i −0.168530 + 0.555570i
\(179\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(180\) −0.897168 0.897168i −0.897168 0.897168i
\(181\) −0.382683 1.92388i −0.382683 1.92388i −0.382683 0.923880i \(-0.625000\pi\)
1.00000i \(-0.5\pi\)
\(182\) 0 0
\(183\) −0.707107 0.292893i −0.707107 0.292893i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.322547 0.482726i 0.322547 0.482726i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) −1.24441 0.247528i −1.24441 0.247528i
\(196\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(197\) −0.523788 + 0.783904i −0.523788 + 0.783904i −0.995185 0.0980171i \(-0.968750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(198\) −1.36347 + 1.11897i −1.36347 + 1.11897i
\(199\) 1.81225 0.750661i 1.81225 0.750661i 0.831470 0.555570i \(-0.187500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(200\) 0.606883 + 0.0597727i 0.606883 + 0.0597727i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.138185 + 0.206808i 0.138185 + 0.206808i
\(206\) 0.410525 1.35332i 0.410525 1.35332i
\(207\) 0 0
\(208\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(209\) 0 0
\(210\) 0 0
\(211\) 0.636379 0.425215i 0.636379 0.425215i −0.195090 0.980785i \(-0.562500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(212\) 0 0
\(213\) 0.924678 0.183930i 0.924678 0.183930i
\(214\) 0 0
\(215\) 0.807429 1.94931i 0.807429 1.94931i
\(216\) 0.881921 0.471397i 0.881921 0.471397i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0.436600 2.19494i 0.436600 2.19494i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0.609819i 0.609819i
\(226\) 0 0
\(227\) −0.373380 + 1.87711i −0.373380 + 1.87711i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(228\) 0 0
\(229\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(234\) 0.471397 0.881921i 0.471397 0.881921i
\(235\) 0.722465 0.143707i 0.722465 0.143707i
\(236\) −1.42834 0.591637i −1.42834 0.591637i
\(237\) 1.38268 0.923880i 1.38268 0.923880i
\(238\) 0 0
\(239\) −0.138617 0.138617i −0.138617 0.138617i 0.634393 0.773010i \(-0.281250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(240\) −0.485544 + 1.17221i −0.485544 + 1.17221i
\(241\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(242\) −2.02024 0.612832i −2.02024 0.612832i
\(243\) −0.555570 0.831470i −0.555570 0.831470i
\(244\) 0.765367i 0.765367i
\(245\) 0.247528 + 1.24441i 0.247528 + 1.24441i
\(246\) −0.187593 + 0.0569057i −0.187593 + 0.0569057i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.83886 + 0.761681i −1.83886 + 0.761681i
\(250\) −0.314060 0.382683i −0.314060 0.382683i
\(251\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.858923 + 0.704900i 0.858923 + 0.704900i
\(255\) 0 0
\(256\) 0.707107 0.707107i 0.707107 0.707107i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 1.28547 + 1.05496i 1.28547 + 1.05496i
\(259\) 0 0
\(260\) 0.247528 + 1.24441i 0.247528 + 1.24441i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(264\) 1.55557 + 0.831470i 1.55557 + 0.831470i
\(265\) 0 0
\(266\) 0 0
\(267\) −0.113263 0.569414i −0.113263 0.569414i
\(268\) 0 0
\(269\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(270\) 1.21415 + 0.368309i 1.21415 + 0.368309i
\(271\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.902197 + 1.68789i 0.902197 + 1.68789i
\(275\) 0.894350 0.597585i 0.894350 0.597585i
\(276\) 0 0
\(277\) 1.92388 0.382683i 1.92388 0.382683i 0.923880 0.382683i \(-0.125000\pi\)
1.00000 \(0\)
\(278\) −0.924678 + 1.72995i −0.924678 + 1.72995i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.591637 + 1.42834i 0.591637 + 1.42834i 0.881921 + 0.471397i \(0.156250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(282\) −0.0569057 + 0.577774i −0.0569057 + 0.577774i
\(283\) 1.53636 + 1.02656i 1.53636 + 1.02656i 0.980785 + 0.195090i \(0.0625000\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(284\) −0.523788 0.783904i −0.523788 0.783904i
\(285\) 0 0
\(286\) 1.75535 0.172887i 1.75535 0.172887i
\(287\) 0 0
\(288\) −0.773010 0.634393i −0.773010 0.634393i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.59133 1.06330i −1.59133 1.06330i −0.956940 0.290285i \(-0.906250\pi\)
−0.634393 0.773010i \(-0.718750\pi\)
\(294\) −0.995185 0.0980171i −0.995185 0.0980171i
\(295\) −0.750661 1.81225i −0.750661 1.81225i
\(296\) 0 0
\(297\) 0.674993 1.62958i 0.674993 1.62958i
\(298\) 1.68789 + 0.902197i 1.68789 + 0.902197i
\(299\) 0 0
\(300\) −0.563400 + 0.233368i −0.563400 + 0.233368i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.686662 + 0.686662i −0.686662 + 0.686662i
\(306\) 0 0
\(307\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(308\) 0 0
\(309\) 0.275899 + 1.38704i 0.275899 + 1.38704i
\(310\) 0 0
\(311\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(312\) −0.995185 0.0980171i −0.995185 0.0980171i
\(313\) −1.53636 + 0.636379i −1.53636 + 0.636379i −0.980785 0.195090i \(-0.937500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(314\) −0.858923 + 0.704900i −0.858923 + 0.704900i
\(315\) 0 0
\(316\) −1.38268 0.923880i −1.38268 0.923880i
\(317\) 0.569414 + 0.113263i 0.569414 + 0.113263i 0.471397 0.881921i \(-0.343750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.26879 1.26879
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(325\) −0.338797 + 0.507046i −0.338797 + 0.507046i
\(326\) 0 0
\(327\) 0 0
\(328\) 0.124363 + 0.151537i 0.124363 + 0.151537i
\(329\) 0 0
\(330\) 0.649640 + 2.14157i 0.649640 + 2.14157i
\(331\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(332\) 1.40740 + 1.40740i 1.40740 + 1.40740i
\(333\) 0 0
\(334\) −0.577774 + 1.90466i −0.577774 + 1.90466i
\(335\) 0 0
\(336\) 0 0
\(337\) −0.785695 0.785695i −0.785695 0.785695i 0.195090 0.980785i \(-0.437500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(338\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0.482726 1.59133i 0.482726 1.59133i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(348\) 0 0
\(349\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(350\) 0 0
\(351\) 1.00000i 1.00000i
\(352\) 0.172887 1.75535i 0.172887 1.75535i
\(353\) 1.99037i 1.99037i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(354\) 1.53858 0.151537i 1.53858 0.151537i
\(355\) 0.233368 1.17322i 0.233368 1.17322i
\(356\) −0.482726 + 0.322547i −0.482726 + 0.322547i
\(357\) 0 0
\(358\) 0 0
\(359\) −0.732410 1.76820i −0.732410 1.76820i −0.634393 0.773010i \(-0.718750\pi\)
−0.0980171 0.995185i \(-0.531250\pi\)
\(360\) −0.124363 1.26268i −0.124363 1.26268i
\(361\) 0.382683 0.923880i 0.382683 0.923880i
\(362\) 0.924678 1.72995i 0.924678 1.72995i
\(363\) 2.07058 0.411863i 2.07058 0.411863i
\(364\) 0 0
\(365\) 0 0
\(366\) −0.360791 0.674993i −0.360791 0.674993i
\(367\) 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(368\) 0 0
\(369\) 0.138617 0.138617i 0.138617 0.138617i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.360480 + 1.81225i 0.360480 + 1.81225i 0.555570 + 0.831470i \(0.312500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(374\) 0 0
\(375\) 0.457372 + 0.189450i 0.457372 + 0.189450i
\(376\) 0.555570 0.168530i 0.555570 0.168530i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(380\) 0 0
\(381\) −1.08979 0.216773i −1.08979 0.216773i
\(382\) 0 0
\(383\) −1.99037 −1.99037 −0.995185 0.0980171i \(-0.968750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(384\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(385\) 0 0
\(386\) 0 0
\(387\) −1.63099 0.324423i −1.63099 0.324423i
\(388\) 0 0
\(389\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(390\) −0.804910 0.980785i −0.804910 0.980785i
\(391\) 0 0
\(392\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(393\) 0 0
\(394\) −0.902197 + 0.273678i −0.902197 + 0.273678i
\(395\) −0.411624 2.06937i −0.411624 2.06937i
\(396\) −1.76384 −1.76384
\(397\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(398\) 1.87711 + 0.569414i 1.87711 + 0.569414i
\(399\) 0 0
\(400\) 0.431207 + 0.431207i 0.431207 + 0.431207i
\(401\) 0.666656 + 0.666656i 0.666656 + 0.666656i 0.956940 0.290285i \(-0.0937500\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.24441 + 0.247528i −1.24441 + 0.247528i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(410\) −0.0243794 + 0.247528i −0.0243794 + 0.247528i
\(411\) −1.59133 1.06330i −1.59133 1.06330i
\(412\) 1.17588 0.785695i 1.17588 0.785695i
\(413\) 0 0
\(414\) 0 0
\(415\) 2.52535i 2.52535i
\(416\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(417\) 1.96157i 1.96157i
\(418\) 0 0
\(419\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(420\) 0 0
\(421\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(422\) 0.761681 + 0.0750191i 0.761681 + 0.0750191i
\(423\) −0.222174 0.536376i −0.222174 0.536376i
\(424\) 0 0
\(425\) 0 0
\(426\) 0.831470 + 0.444430i 0.831470 + 0.444430i
\(427\) 0 0
\(428\) 0 0
\(429\) −1.46658 + 0.979938i −1.46658 + 0.979938i
\(430\) 1.86078 0.994607i 1.86078 0.994607i
\(431\) −1.40740 1.40740i −1.40740 1.40740i −0.773010 0.634393i \(-0.781250\pi\)
−0.634393 0.773010i \(-0.718750\pi\)
\(432\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(433\) 1.38704 1.38704i 1.38704 1.38704i 0.555570 0.831470i \(-0.312500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(440\) 1.72995 1.41973i 1.72995 1.41973i
\(441\) 0.923880 0.382683i 0.923880 0.382683i
\(442\) 0 0
\(443\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(444\) 0 0
\(445\) −0.722465 0.143707i −0.722465 0.143707i
\(446\) 0 0
\(447\) −1.91388 −1.91388
\(448\) 0 0
\(449\) 0.580569 0.580569 0.290285 0.956940i \(-0.406250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(450\) 0.386865 0.471397i 0.386865 0.471397i
\(451\) 0.339130 + 0.0674571i 0.339130 + 0.0674571i
\(452\) 0 0
\(453\) 0 0
\(454\) −1.47945 + 1.21415i −1.47945 + 1.21415i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.979938 1.46658i −0.979938 1.46658i −0.881921 0.471397i \(-0.843750\pi\)
−0.0980171 0.995185i \(-0.531250\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(468\) 0.923880 0.382683i 0.923880 0.382683i
\(469\) 0 0
\(470\) 0.649640 + 0.347240i 0.649640 + 0.347240i
\(471\) 0.425215 1.02656i 0.425215 1.02656i
\(472\) −0.728789 1.36347i −0.728789 1.36347i
\(473\) −1.12247 2.70989i −1.12247 2.70989i
\(474\) 1.65493 + 0.162997i 1.65493 + 0.162997i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −0.0192147 0.195090i −0.0192147 0.195090i
\(479\) 1.76384i 1.76384i 0.471397 + 0.881921i \(0.343750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(480\) −1.11897 + 0.598102i −1.11897 + 0.598102i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.17289 1.75535i −1.17289 1.75535i
\(485\) 0 0
\(486\) 0.0980171 0.995185i 0.0980171 0.995185i
\(487\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(488\) −0.485544 + 0.591637i −0.485544 + 0.591637i
\(489\) 0 0
\(490\) −0.598102 + 1.11897i −0.598102 + 1.11897i
\(491\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(492\) −0.181112 0.0750191i −0.181112 0.0750191i
\(493\) 0 0
\(494\) 0 0
\(495\) −1.58246 1.58246i −1.58246 1.58246i
\(496\) 0 0
\(497\) 0 0
\(498\) −1.90466 0.577774i −1.90466 0.577774i
\(499\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(500\) 0.495056i 0.495056i
\(501\) −0.388302 1.95213i −0.388302 1.95213i
\(502\) 0 0
\(503\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.555570 0.831470i 0.555570 0.831470i
\(508\) 0.216773 + 1.08979i 0.216773 + 1.08979i
\(509\) −0.192268 0.0382444i −0.192268 0.0382444i 0.0980171 0.995185i \(-0.468750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.995185 0.0980171i 0.995185 0.0980171i
\(513\) 0 0
\(514\) 0 0
\(515\) 1.75986 + 0.350057i 1.75986 + 0.350057i
\(516\) 0.324423 + 1.63099i 0.324423 + 1.63099i
\(517\) 0.568922 0.851452i 0.568922 0.851452i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.598102 + 1.11897i −0.598102 + 1.11897i
\(521\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(522\) 0 0
\(523\) −0.382683 1.92388i −0.382683 1.92388i −0.382683 0.923880i \(-0.625000\pi\)
1.00000i \(-0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.674993 + 1.62958i 0.674993 + 1.62958i
\(529\) −0.707107 0.707107i −0.707107 0.707107i
\(530\) 0 0
\(531\) −1.28547 + 0.858923i −1.28547 + 0.858923i
\(532\) 0 0
\(533\) −0.192268 + 0.0382444i −0.192268 + 0.0382444i
\(534\) 0.273678 0.512016i 0.273678 0.512016i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.46658 + 0.979938i 1.46658 + 0.979938i
\(540\) 0.704900 + 1.05496i 0.704900 + 1.05496i
\(541\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(542\) 0 0
\(543\) 1.96157i 1.96157i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i 0.923880 + 0.382683i \(0.125000\pi\)
−1.00000 \(\pi\)
\(548\) −0.373380 + 1.87711i −0.373380 + 1.87711i
\(549\) 0.636379 + 0.425215i 0.636379 + 0.425215i
\(550\) 1.07045 + 0.105430i 1.07045 + 0.105430i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.72995 + 0.924678i 1.72995 + 0.924678i
\(555\) 0 0
\(556\) −1.81225 + 0.750661i −1.81225 + 0.750661i
\(557\) −1.65493 + 1.10579i −1.65493 + 1.10579i −0.773010 + 0.634393i \(0.781250\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(558\) 0 0
\(559\) 1.17588 + 1.17588i 1.17588 + 1.17588i
\(560\) 0 0
\(561\) 0 0
\(562\) −0.448786 + 1.47945i −0.448786 + 1.47945i
\(563\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(564\) −0.410525 + 0.410525i −0.410525 + 0.410525i
\(565\) 0 0
\(566\) 0.536376 + 1.76820i 0.536376 + 1.76820i
\(567\) 0 0
\(568\) 0.0924099 0.938254i 0.0924099 0.938254i
\(569\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(570\) 0 0
\(571\) 1.02656 1.53636i 1.02656 1.53636i 0.195090 0.980785i \(-0.437500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(572\) 1.46658 + 0.979938i 1.46658 + 0.979938i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.195090 0.980785i −0.195090 0.980785i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.17221 + 0.485544i 1.17221 + 0.485544i
\(586\) −0.555570 1.83147i −0.555570 1.83147i
\(587\) 0.247528 + 1.24441i 0.247528 + 1.24441i 0.881921 + 0.471397i \(0.156250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(588\) −0.707107 0.707107i −0.707107 0.707107i
\(589\) 0 0
\(590\) 0.569414 1.87711i 0.569414 1.87711i
\(591\) 0.666656 0.666656i 0.666656 0.666656i
\(592\) 0 0
\(593\) −1.09320 1.09320i −1.09320 1.09320i −0.995185 0.0980171i \(-0.968750\pi\)
−0.0980171 0.995185i \(-0.531250\pi\)
\(594\) 1.55557 0.831470i 1.55557 0.831470i
\(595\) 0 0
\(596\) 0.732410 + 1.76820i 0.732410 + 1.76820i
\(597\) −1.92388 + 0.382683i −1.92388 + 0.382683i
\(598\) 0 0
\(599\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(600\) −0.583561 0.177021i −0.583561 0.177021i
\(601\) 0.750661 + 1.81225i 0.750661 + 1.81225i 0.555570 + 0.831470i \(0.312500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.522566 2.62712i 0.522566 2.62712i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −0.966411 + 0.0951832i −0.966411 + 0.0951832i
\(611\) −0.113263 + 0.569414i −0.113263 + 0.569414i
\(612\) 0 0
\(613\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(614\) 0 0
\(615\) −0.0951832 0.229793i −0.0951832 0.229793i
\(616\) 0 0
\(617\) 0.485544 1.17221i 0.485544 1.17221i −0.471397 0.881921i \(-0.656250\pi\)
0.956940 0.290285i \(-0.0937500\pi\)
\(618\) −0.666656 + 1.24723i −0.666656 + 1.24723i
\(619\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −0.707107 0.707107i −0.707107 0.707107i
\(625\) 0.875356 0.875356i 0.875356 0.875356i
\(626\) −1.59133 0.482726i −1.59133 0.482726i
\(627\) 0 0
\(628\) −1.11114 −1.11114
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(632\) −0.482726 1.59133i −0.482726 1.59133i
\(633\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(634\) 0.368309 + 0.448786i 0.368309 + 0.448786i
\(635\) −0.783243 + 1.17221i −0.783243 + 1.17221i
\(636\) 0 0
\(637\) −0.980785 0.195090i −0.980785 0.195090i
\(638\) 0 0
\(639\) −0.942793 −0.942793
\(640\) 0.980785 + 0.804910i 0.980785 + 0.804910i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(644\) 0 0
\(645\) −1.17221 + 1.75433i −1.17221 + 1.75433i
\(646\) 0 0
\(647\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(648\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(649\) −2.51936 1.04355i −2.51936 1.04355i
\(650\) −0.583561 + 0.177021i −0.583561 + 0.177021i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.196034i 0.196034i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(660\) −0.856422 + 2.06759i −0.856422 + 2.06759i
\(661\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.195090 + 1.98079i 0.195090 + 1.98079i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.65493 + 1.10579i −1.65493 + 1.10579i
\(669\) 0 0
\(670\) 0 0
\(671\) 1.34999i 1.34999i
\(672\) 0 0
\(673\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(674\) −0.108911 1.10579i −0.108911 1.10579i
\(675\) −0.118970 + 0.598102i −0.118970 + 0.598102i
\(676\) −0.980785 0.195090i −0.980785 0.195090i
\(677\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.732410 1.76820i 0.732410 1.76820i
\(682\) 0 0
\(683\) 1.51631 0.301614i 1.51631 0.301614i 0.634393 0.773010i \(-0.281250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(684\) 0 0
\(685\) −2.01906 + 1.34909i −2.01906 + 1.34909i
\(686\) 0 0
\(687\) 0 0
\(688\) 1.38268 0.923880i 1.38268 0.923880i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.29936 0.952428i −2.29936 0.952428i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(702\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(703\) 0 0
\(704\) 1.24723 1.24723i 1.24723 1.24723i
\(705\) −0.736619 −0.736619
\(706\) −1.26268 + 1.53858i −1.26268 + 1.53858i
\(707\) 0 0
\(708\) 1.28547 + 0.858923i 1.28547 + 0.858923i
\(709\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(710\) 0.924678 0.758864i 0.924678 0.758864i
\(711\) −1.53636 + 0.636379i −1.53636 + 0.636379i
\(712\) −0.577774 0.0569057i −0.577774 0.0569057i
\(713\) 0 0
\(714\) 0 0
\(715\) 0.436600 + 2.19494i 0.436600 + 2.19494i
\(716\) 0 0
\(717\) 0.108911 + 0.162997i 0.108911 + 0.162997i
\(718\) 0.555570 1.83147i 0.555570 1.83147i
\(719\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(720\) 0.704900 1.05496i 0.704900 1.05496i
\(721\) 0 0
\(722\) 0.881921 0.471397i 0.881921 0.471397i
\(723\) 0 0
\(724\) 1.81225 0.750661i 1.81225 0.750661i
\(725\) 0 0
\(726\) 1.86186 + 0.995185i 1.86186 + 0.995185i
\(727\) 0.149316 0.360480i 0.149316 0.360480i −0.831470 0.555570i \(-0.812500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(728\) 0 0
\(729\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.149316 0.750661i 0.149316 0.750661i
\(733\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(734\) 0.0750191 + 0.761681i 0.0750191 + 0.761681i
\(735\) 1.26879i 1.26879i
\(736\) 0 0
\(737\) 0 0
\(738\) 0.195090 0.0192147i 0.195090 0.0192147i
\(739\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.0750191 + 0.181112i 0.0750191 + 0.181112i 0.956940 0.290285i \(-0.0937500\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(744\) 0 0
\(745\) −0.929273 + 2.24346i −0.929273 + 2.24346i
\(746\) −0.871028 + 1.62958i −0.871028 + 1.62958i
\(747\) 1.95213 0.388302i 1.95213 0.388302i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.233368 + 0.436600i 0.233368 + 0.436600i
\(751\) 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(752\) 0.536376 + 0.222174i 0.536376 + 0.222174i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.149316 + 0.750661i 0.149316 + 0.750661i 0.980785 + 0.195090i \(0.0625000\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.871028 + 0.360791i −0.871028 + 0.360791i −0.773010 0.634393i \(-0.781250\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(762\) −0.704900 0.858923i −0.704900 0.858923i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −1.53858 1.26268i −1.53858 1.26268i
\(767\) 1.54602 1.54602
\(768\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.10579 1.65493i 1.10579 1.65493i 0.471397 0.881921i \(-0.343750\pi\)
0.634393 0.773010i \(-0.281250\pi\)
\(774\) −1.05496 1.28547i −1.05496 1.28547i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 1.26879i 1.26879i
\(781\) −0.923880 1.38268i −0.923880 1.38268i
\(782\) 0 0
\(783\) 0 0
\(784\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(785\) −0.996879 0.996879i −0.996879 0.996879i
\(786\) 0 0
\(787\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(788\) −0.871028 0.360791i −0.871028 0.360791i
\(789\) 0 0
\(790\) 0.994607 1.86078i 0.994607 1.86078i
\(791\) 0 0
\(792\) −1.36347 1.11897i −1.36347 1.11897i
\(793\) −0.292893 0.707107i −0.292893 0.707107i
\(794\) 0 0
\(795\) 0 0
\(796\) 1.08979 + 1.63099i 1.08979 + 1.63099i
\(797\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.0597727 + 0.606883i 0.0597727 + 0.606883i
\(801\) 0.580569i 0.580569i
\(802\) 0.0924099 + 0.938254i 0.0924099 + 0.938254i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(810\) −1.11897 0.598102i −1.11897 0.598102i
\(811\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −0.175876 + 0.175876i −0.175876 + 0.175876i
\(821\) −0.183930 0.924678i −0.183930 0.924678i −0.956940 0.290285i \(-0.906250\pi\)
0.773010 0.634393i \(-0.218750\pi\)
\(822\) −0.555570 1.83147i −0.555570 1.83147i
\(823\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 1.40740 + 0.138617i 1.40740 + 0.138617i
\(825\) −0.993748 + 0.411624i −0.993748 + 0.411624i
\(826\) 0 0
\(827\) 0.704900 1.05496i 0.704900 1.05496i −0.290285 0.956940i \(-0.593750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(828\) 0 0
\(829\) −1.38704 0.275899i −1.38704 0.275899i −0.555570 0.831470i \(-0.687500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(830\) −1.60207 + 1.95213i −1.60207 + 1.95213i
\(831\) −1.96157 −1.96157
\(832\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(833\) 0 0
\(834\) 1.24441 1.51631i 1.24441 1.51631i
\(835\) −2.47683 0.492672i −2.47683 0.492672i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.42834 + 0.591637i −1.42834 + 0.591637i −0.956940 0.290285i \(-0.906250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(840\) 0 0
\(841\) −0.923880 0.382683i −0.923880 0.382683i
\(842\) 0 0
\(843\) −0.301614 1.51631i −0.301614 1.51631i
\(844\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(845\) −0.704900 1.05496i −0.704900 1.05496i
\(846\) 0.168530 0.555570i 0.168530 0.555570i
\(847\) 0 0
\(848\) 0 0
\(849\) −1.30656 1.30656i −1.30656 1.30656i
\(850\) 0 0
\(851\) 0 0
\(852\) 0.360791 + 0.871028i 0.360791 + 0.871028i
\(853\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(858\) −1.75535 0.172887i −1.75535 0.172887i
\(859\) 1.17588 + 0.785695i 1.17588 + 0.785695i 0.980785 0.195090i \(-0.0625000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(860\) 2.06937 + 0.411624i 2.06937 + 0.411624i
\(861\) 0 0
\(862\) −0.195090 1.98079i −0.195090 1.98079i
\(863\) 0.580569i 0.580569i 0.956940 + 0.290285i \(0.0937500\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(864\) 0.634393 + 0.773010i 0.634393 + 0.773010i
\(865\) 0 0
\(866\) 1.95213 0.192268i 1.95213 0.192268i
\(867\) 0.195090 0.980785i 0.195090 0.980785i
\(868\) 0 0
\(869\) −2.43884 1.62958i −2.43884 1.62958i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(878\) 0.360791 + 0.674993i 0.360791 + 0.674993i
\(879\) 1.35332 + 1.35332i 1.35332 + 1.35332i
\(880\) 2.23794 2.23794
\(881\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(882\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(883\) −0.425215 0.636379i −0.425215 0.636379i 0.555570 0.831470i \(-0.312500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(884\) 0 0
\(885\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(886\) 0 0
\(887\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.467306 0.569414i −0.467306 0.569414i
\(891\) −0.979938 + 1.46658i −0.979938 + 1.46658i
\(892\) 0 0
\(893\) 0 0
\(894\) −1.47945 1.21415i −1.47945 1.21415i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0.448786 + 0.368309i 0.448786 + 0.368309i
\(899\) 0 0
\(900\) 0.598102 0.118970i 0.598102 0.118970i
\(901\) 0 0
\(902\) 0.219356 + 0.267287i 0.219356 + 0.267287i
\(903\) 0 0
\(904\) 0 0
\(905\) 2.29936 + 0.952428i 2.29936 + 0.952428i
\(906\) 0 0
\(907\) −0.275899 1.38704i −0.275899 1.38704i −0.831470 0.555570i \(-0.812500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(908\) −1.91388 −1.91388
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) 2.48244 + 2.48244i 2.48244 + 2.48244i
\(914\) 0 0
\(915\) 0.807429 0.539507i 0.807429 0.539507i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −0.149316 + 0.360480i −0.149316 + 0.360480i −0.980785 0.195090i \(-0.937500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.172887 1.75535i 0.172887 1.75535i
\(923\) 0.783904 + 0.523788i 0.783904 + 0.523788i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.41421i 1.41421i
\(928\) 0 0
\(929\) 1.26879i 1.26879i 0.773010 + 0.634393i \(0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(937\) 0.425215 1.02656i 0.425215 1.02656i −0.555570 0.831470i \(-0.687500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(938\) 0 0
\(939\) 1.63099 0.324423i 1.63099 0.324423i
\(940\) 0.281892 + 0.680547i 0.281892 + 0.680547i
\(941\) 0.162997 0.108911i 0.162997 0.108911i −0.471397 0.881921i \(-0.656250\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(942\) 0.979938 0.523788i 0.979938 0.523788i
\(943\) 0 0
\(944\) 0.301614 1.51631i 0.301614 1.51631i
\(945\) 0 0
\(946\) 0.851452 2.80686i 0.851452 2.80686i
\(947\) −1.06330 1.59133i −1.06330 1.59133i −0.773010 0.634393i \(-0.781250\pi\)
−0.290285 0.956940i \(-0.593750\pi\)
\(948\) 1.17588 + 1.17588i 1.17588 + 1.17588i
\(949\) 0 0
\(950\) 0 0
\(951\) −0.536376 0.222174i −0.536376 0.222174i
\(952\) 0 0
\(953\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.108911 0.162997i 0.108911 0.162997i
\(957\) 0 0
\(958\) −1.11897 + 1.36347i −1.11897 + 1.36347i
\(959\) 0 0
\(960\) −1.24441 0.247528i −1.24441 0.247528i
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(968\) 0.206928 2.10097i 0.206928 2.10097i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(972\) 0.707107 0.707107i 0.707107 0.707107i
\(973\) 0 0
\(974\) 0 0
\(975\) 0.431207 0.431207i 0.431207 0.431207i
\(976\) −0.750661 + 0.149316i −0.750661 + 0.149316i
\(977\) 0.138617 + 0.138617i 0.138617 + 0.138617i 0.773010 0.634393i \(-0.218750\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(978\) 0 0
\(979\) −0.851452 + 0.568922i −0.851452 + 0.568922i
\(980\) −1.17221 + 0.485544i −1.17221 + 0.485544i
\(981\) 0 0
\(982\) 0 0
\(983\) 0.591637 1.42834i 0.591637 1.42834i −0.290285 0.956940i \(-0.593750\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(984\) −0.0924099 0.172887i −0.0924099 0.172887i
\(985\) −0.457767 1.10515i −0.457767 1.10515i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.219356 2.22716i −0.219356 2.22716i
\(991\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.485544 + 2.44099i −0.485544 + 2.44099i
\(996\) −1.10579 1.65493i −1.10579 1.65493i
\(997\) −0.324423 0.216773i −0.324423 0.216773i 0.382683 0.923880i \(-0.375000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.1.eh.a.1949.4 yes 32
3.2 odd 2 inner 2496.1.eh.a.1949.1 yes 32
13.12 even 2 inner 2496.1.eh.a.1949.1 yes 32
39.38 odd 2 CM 2496.1.eh.a.1949.4 yes 32
64.53 even 16 inner 2496.1.eh.a.1013.4 yes 32
192.53 odd 16 inner 2496.1.eh.a.1013.1 32
832.181 even 16 inner 2496.1.eh.a.1013.1 32
2496.1013 odd 16 inner 2496.1.eh.a.1013.4 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2496.1.eh.a.1013.1 32 192.53 odd 16 inner
2496.1.eh.a.1013.1 32 832.181 even 16 inner
2496.1.eh.a.1013.4 yes 32 64.53 even 16 inner
2496.1.eh.a.1013.4 yes 32 2496.1013 odd 16 inner
2496.1.eh.a.1949.1 yes 32 3.2 odd 2 inner
2496.1.eh.a.1949.1 yes 32 13.12 even 2 inner
2496.1.eh.a.1949.4 yes 32 1.1 even 1 trivial
2496.1.eh.a.1949.4 yes 32 39.38 odd 2 CM