Properties

Label 2496.1.eh.a.77.2
Level $2496$
Weight $1$
Character 2496.77
Analytic conductor $1.246$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,1,Mod(77,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 15, 8, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.77");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2496.eh (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} - \cdots)\)

Embedding invariants

Embedding label 77.2
Root \(-0.0980171 + 0.995185i\) of defining polynomial
Character \(\chi\) \(=\) 2496.77
Dual form 2496.1.eh.a.389.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.471397 - 0.881921i) q^{2} +(-0.831470 + 0.555570i) q^{3} +(-0.555570 + 0.831470i) q^{4} +(-1.72995 + 0.344109i) q^{5} +(0.881921 + 0.471397i) q^{6} +(0.995185 + 0.0980171i) q^{8} +(0.382683 - 0.923880i) q^{9} +(1.11897 + 1.36347i) q^{10} +(-0.108911 + 0.162997i) q^{11} -1.00000i q^{12} +(0.980785 + 0.195090i) q^{13} +(1.24723 - 1.24723i) q^{15} +(-0.382683 - 0.923880i) q^{16} +(-0.995185 + 0.0980171i) q^{18} +(0.674993 - 1.62958i) q^{20} +(0.195090 + 0.0192147i) q^{22} +(-0.881921 + 0.471397i) q^{24} +(1.95044 - 0.807898i) q^{25} +(-0.290285 - 0.956940i) q^{26} +(0.195090 + 0.980785i) q^{27} +(-1.68789 - 0.512016i) q^{30} +(-0.634393 + 0.773010i) q^{32} -0.196034i q^{33} +(0.555570 + 0.831470i) q^{36} +(-0.923880 + 0.382683i) q^{39} +(-1.75535 + 0.172887i) q^{40} +(0.536376 + 0.222174i) q^{41} +(0.324423 + 0.216773i) q^{43} +(-0.0750191 - 0.181112i) q^{44} +(-0.344109 + 1.72995i) q^{45} +(-1.09320 - 1.09320i) q^{47} +(0.831470 + 0.555570i) q^{48} +(-0.707107 + 0.707107i) q^{49} +(-1.63193 - 1.33929i) q^{50} +(-0.707107 + 0.707107i) q^{52} +(0.773010 - 0.634393i) q^{54} +(0.132322 - 0.319453i) q^{55} +(-0.924678 + 0.183930i) q^{59} +(0.344109 + 1.72995i) q^{60} +(-1.53636 + 1.02656i) q^{61} +(0.980785 + 0.195090i) q^{64} -1.76384 q^{65} +(-0.172887 + 0.0924099i) q^{66} +(0.761681 + 1.83886i) q^{71} +(0.471397 - 0.881921i) q^{72} +(-1.17289 + 1.75535i) q^{75} +(0.773010 + 0.634393i) q^{78} +(-0.275899 + 0.275899i) q^{79} +(0.979938 + 1.46658i) q^{80} +(-0.707107 - 0.707107i) q^{81} +(-0.0569057 - 0.577774i) q^{82} +(-0.373380 + 1.87711i) q^{83} +(0.0382444 - 0.388302i) q^{86} +(-0.124363 + 0.151537i) q^{88} +(1.42834 - 0.591637i) q^{89} +(1.68789 - 0.512016i) q^{90} +(-0.448786 + 1.47945i) q^{94} +(0.0980171 - 0.995185i) q^{96} +(0.956940 + 0.290285i) q^{98} +(0.108911 + 0.162997i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{55} - 32 q^{75}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.471397 0.881921i −0.471397 0.881921i
\(3\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(4\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(5\) −1.72995 + 0.344109i −1.72995 + 0.344109i −0.956940 0.290285i \(-0.906250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(6\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(7\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(8\) 0.995185 + 0.0980171i 0.995185 + 0.0980171i
\(9\) 0.382683 0.923880i 0.382683 0.923880i
\(10\) 1.11897 + 1.36347i 1.11897 + 1.36347i
\(11\) −0.108911 + 0.162997i −0.108911 + 0.162997i −0.881921 0.471397i \(-0.843750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(12\) 1.00000i 1.00000i
\(13\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(14\) 0 0
\(15\) 1.24723 1.24723i 1.24723 1.24723i
\(16\) −0.382683 0.923880i −0.382683 0.923880i
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) −0.995185 + 0.0980171i −0.995185 + 0.0980171i
\(19\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(20\) 0.674993 1.62958i 0.674993 1.62958i
\(21\) 0 0
\(22\) 0.195090 + 0.0192147i 0.195090 + 0.0192147i
\(23\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(24\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(25\) 1.95044 0.807898i 1.95044 0.807898i
\(26\) −0.290285 0.956940i −0.290285 0.956940i
\(27\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(28\) 0 0
\(29\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(30\) −1.68789 0.512016i −1.68789 0.512016i
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(33\) 0.196034i 0.196034i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(37\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(38\) 0 0
\(39\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(40\) −1.75535 + 0.172887i −1.75535 + 0.172887i
\(41\) 0.536376 + 0.222174i 0.536376 + 0.222174i 0.634393 0.773010i \(-0.281250\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(42\) 0 0
\(43\) 0.324423 + 0.216773i 0.324423 + 0.216773i 0.707107 0.707107i \(-0.250000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(44\) −0.0750191 0.181112i −0.0750191 0.181112i
\(45\) −0.344109 + 1.72995i −0.344109 + 1.72995i
\(46\) 0 0
\(47\) −1.09320 1.09320i −1.09320 1.09320i −0.995185 0.0980171i \(-0.968750\pi\)
−0.0980171 0.995185i \(-0.531250\pi\)
\(48\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(49\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(50\) −1.63193 1.33929i −1.63193 1.33929i
\(51\) 0 0
\(52\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(53\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(54\) 0.773010 0.634393i 0.773010 0.634393i
\(55\) 0.132322 0.319453i 0.132322 0.319453i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.924678 + 0.183930i −0.924678 + 0.183930i −0.634393 0.773010i \(-0.718750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(60\) 0.344109 + 1.72995i 0.344109 + 1.72995i
\(61\) −1.53636 + 1.02656i −1.53636 + 1.02656i −0.555570 + 0.831470i \(0.687500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(65\) −1.76384 −1.76384
\(66\) −0.172887 + 0.0924099i −0.172887 + 0.0924099i
\(67\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.761681 + 1.83886i 0.761681 + 1.83886i 0.471397 + 0.881921i \(0.343750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(72\) 0.471397 0.881921i 0.471397 0.881921i
\(73\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(74\) 0 0
\(75\) −1.17289 + 1.75535i −1.17289 + 1.75535i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(79\) −0.275899 + 0.275899i −0.275899 + 0.275899i −0.831470 0.555570i \(-0.812500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(80\) 0.979938 + 1.46658i 0.979938 + 1.46658i
\(81\) −0.707107 0.707107i −0.707107 0.707107i
\(82\) −0.0569057 0.577774i −0.0569057 0.577774i
\(83\) −0.373380 + 1.87711i −0.373380 + 1.87711i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.0382444 0.388302i 0.0382444 0.388302i
\(87\) 0 0
\(88\) −0.124363 + 0.151537i −0.124363 + 0.151537i
\(89\) 1.42834 0.591637i 1.42834 0.591637i 0.471397 0.881921i \(-0.343750\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(90\) 1.68789 0.512016i 1.68789 0.512016i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.448786 + 1.47945i −0.448786 + 1.47945i
\(95\) 0 0
\(96\) 0.0980171 0.995185i 0.0980171 0.995185i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(99\) 0.108911 + 0.162997i 0.108911 + 0.162997i
\(100\) −0.411863 + 2.07058i −0.411863 + 2.07058i
\(101\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(102\) 0 0
\(103\) −1.30656 + 0.541196i −1.30656 + 0.541196i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(104\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(108\) −0.923880 0.382683i −0.923880 0.382683i
\(109\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(110\) −0.344109 + 0.0338917i −0.344109 + 0.0338917i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.555570 0.831470i 0.555570 0.831470i
\(118\) 0.598102 + 0.728789i 0.598102 + 0.728789i
\(119\) 0 0
\(120\) 1.36347 1.11897i 1.36347 1.11897i
\(121\) 0.367977 + 0.888375i 0.367977 + 0.888375i
\(122\) 1.62958 + 0.871028i 1.62958 + 0.871028i
\(123\) −0.569414 + 0.113263i −0.569414 + 0.113263i
\(124\) 0 0
\(125\) −1.62958 + 1.08885i −1.62958 + 1.08885i
\(126\) 0 0
\(127\) −1.96157 −1.96157 −0.980785 0.195090i \(-0.937500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(128\) −0.290285 0.956940i −0.290285 0.956940i
\(129\) −0.390181 −0.390181
\(130\) 0.831470 + 1.55557i 0.831470 + 1.55557i
\(131\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(132\) 0.162997 + 0.108911i 0.162997 + 0.108911i
\(133\) 0 0
\(134\) 0 0
\(135\) −0.674993 1.62958i −0.674993 1.62958i
\(136\) 0 0
\(137\) 0.485544 1.17221i 0.485544 1.17221i −0.471397 0.881921i \(-0.656250\pi\)
0.956940 0.290285i \(-0.0937500\pi\)
\(138\) 0 0
\(139\) −0.923880 + 1.38268i −0.923880 + 1.38268i 1.00000i \(0.5\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(140\) 0 0
\(141\) 1.51631 + 0.301614i 1.51631 + 0.301614i
\(142\) 1.26268 1.53858i 1.26268 1.53858i
\(143\) −0.138617 + 0.138617i −0.138617 + 0.138617i
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0.195090 0.980785i 0.195090 0.980785i
\(148\) 0 0
\(149\) 1.05496 + 0.704900i 1.05496 + 0.704900i 0.956940 0.290285i \(-0.0937500\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(150\) 2.10097 + 0.206928i 2.10097 + 0.206928i
\(151\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.195090 0.980785i 0.195090 0.980785i
\(157\) −1.08979 1.63099i −1.08979 1.63099i −0.707107 0.707107i \(-0.750000\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(158\) 0.373380 + 0.113263i 0.373380 + 0.113263i
\(159\) 0 0
\(160\) 0.831470 1.55557i 0.831470 1.55557i
\(161\) 0 0
\(162\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(163\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(164\) −0.482726 + 0.322547i −0.482726 + 0.322547i
\(165\) 0.0674571 + 0.339130i 0.0674571 + 0.339130i
\(166\) 1.83147 0.555570i 1.83147 0.555570i
\(167\) −1.76820 + 0.732410i −1.76820 + 0.732410i −0.773010 + 0.634393i \(0.781250\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(168\) 0 0
\(169\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.360480 + 0.149316i −0.360480 + 0.149316i
\(173\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.192268 + 0.0382444i 0.192268 + 0.0382444i
\(177\) 0.666656 0.666656i 0.666656 0.666656i
\(178\) −1.19509 0.980785i −1.19509 0.980785i
\(179\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(180\) −1.24723 1.24723i −1.24723 1.24723i
\(181\) 0.923880 1.38268i 0.923880 1.38268i 1.00000i \(-0.5\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(182\) 0 0
\(183\) 0.707107 1.70711i 0.707107 1.70711i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.51631 0.301614i 1.51631 0.301614i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 1.46658 0.979938i 1.46658 0.979938i
\(196\) −0.195090 0.980785i −0.195090 0.980785i
\(197\) −1.95213 + 0.388302i −1.95213 + 0.388302i −0.956940 + 0.290285i \(0.906250\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(198\) 0.0924099 0.172887i 0.0924099 0.172887i
\(199\) 0.636379 + 1.53636i 0.636379 + 1.53636i 0.831470 + 0.555570i \(0.187500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(200\) 2.02024 0.612832i 2.02024 0.612832i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00436 0.199779i −1.00436 0.199779i
\(206\) 1.09320 + 0.897168i 1.09320 + 0.897168i
\(207\) 0 0
\(208\) −0.195090 0.980785i −0.195090 0.980785i
\(209\) 0 0
\(210\) 0 0
\(211\) 0.360480 1.81225i 0.360480 1.81225i −0.195090 0.980785i \(-0.562500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(212\) 0 0
\(213\) −1.65493 1.10579i −1.65493 1.10579i
\(214\) 0 0
\(215\) −0.635830 0.263369i −0.635830 0.263369i
\(216\) 0.0980171 + 0.995185i 0.0980171 + 0.995185i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0.192102 + 0.287500i 0.192102 + 0.287500i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 2.11114i 2.11114i
\(226\) 0 0
\(227\) 0.704900 + 1.05496i 0.704900 + 1.05496i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(228\) 0 0
\(229\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(234\) −0.995185 0.0980171i −0.995185 0.0980171i
\(235\) 2.26737 + 1.51501i 2.26737 + 1.51501i
\(236\) 0.360791 0.871028i 0.360791 0.871028i
\(237\) 0.0761205 0.382683i 0.0761205 0.382683i
\(238\) 0 0
\(239\) −0.410525 0.410525i −0.410525 0.410525i 0.471397 0.881921i \(-0.343750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(240\) −1.62958 0.674993i −1.62958 0.674993i
\(241\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(242\) 0.610014 0.743304i 0.610014 0.743304i
\(243\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(244\) 1.84776i 1.84776i
\(245\) 0.979938 1.46658i 0.979938 1.46658i
\(246\) 0.368309 + 0.448786i 0.368309 + 0.448786i
\(247\) 0 0
\(248\) 0 0
\(249\) −0.732410 1.76820i −0.732410 1.76820i
\(250\) 1.72846 + 0.923880i 1.72846 + 0.923880i
\(251\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.924678 + 1.72995i 0.924678 + 1.72995i
\(255\) 0 0
\(256\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0.183930 + 0.344109i 0.183930 + 0.344109i
\(259\) 0 0
\(260\) 0.979938 1.46658i 0.979938 1.46658i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(264\) 0.0192147 0.195090i 0.0192147 0.195090i
\(265\) 0 0
\(266\) 0 0
\(267\) −0.858923 + 1.28547i −0.858923 + 1.28547i
\(268\) 0 0
\(269\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(270\) −1.11897 + 1.36347i −1.11897 + 1.36347i
\(271\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −1.26268 + 0.124363i −1.26268 + 0.124363i
\(275\) −0.0807393 + 0.405904i −0.0807393 + 0.405904i
\(276\) 0 0
\(277\) 1.38268 + 0.923880i 1.38268 + 0.923880i 1.00000 \(0\)
0.382683 + 0.923880i \(0.375000\pi\)
\(278\) 1.65493 + 0.162997i 1.65493 + 0.162997i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.871028 0.360791i 0.871028 0.360791i 0.0980171 0.995185i \(-0.468750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(282\) −0.448786 1.47945i −0.448786 1.47945i
\(283\) −0.149316 0.750661i −0.149316 0.750661i −0.980785 0.195090i \(-0.937500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(284\) −1.95213 0.388302i −1.95213 0.388302i
\(285\) 0 0
\(286\) 0.187593 + 0.0569057i 0.187593 + 0.0569057i
\(287\) 0 0
\(288\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.247528 + 1.24441i 0.247528 + 1.24441i 0.881921 + 0.471397i \(0.156250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(294\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(295\) 1.53636 0.636379i 1.53636 0.636379i
\(296\) 0 0
\(297\) −0.181112 0.0750191i −0.181112 0.0750191i
\(298\) 0.124363 1.26268i 0.124363 1.26268i
\(299\) 0 0
\(300\) −0.807898 1.95044i −0.807898 1.95044i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.30457 2.30457i 2.30457 2.30457i
\(306\) 0 0
\(307\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(308\) 0 0
\(309\) 0.785695 1.17588i 0.785695 1.17588i
\(310\) 0 0
\(311\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(312\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(313\) 0.149316 + 0.360480i 0.149316 + 0.360480i 0.980785 0.195090i \(-0.0625000\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(314\) −0.924678 + 1.72995i −0.924678 + 1.72995i
\(315\) 0 0
\(316\) −0.0761205 0.382683i −0.0761205 0.382683i
\(317\) −1.28547 + 0.858923i −1.28547 + 0.858923i −0.995185 0.0980171i \(-0.968750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.76384 −1.76384
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.980785 0.195090i 0.980785 0.195090i
\(325\) 2.07058 0.411863i 2.07058 0.411863i
\(326\) 0 0
\(327\) 0 0
\(328\) 0.512016 + 0.273678i 0.512016 + 0.273678i
\(329\) 0 0
\(330\) 0.267287 0.219356i 0.267287 0.219356i
\(331\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(332\) −1.35332 1.35332i −1.35332 1.35332i
\(333\) 0 0
\(334\) 1.47945 + 1.21415i 1.47945 + 1.21415i
\(335\) 0 0
\(336\) 0 0
\(337\) −1.38704 1.38704i −1.38704 1.38704i −0.831470 0.555570i \(-0.812500\pi\)
−0.555570 0.831470i \(-0.687500\pi\)
\(338\) −0.0980171 0.995185i −0.0980171 0.995185i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0.301614 + 0.247528i 0.301614 + 0.247528i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(348\) 0 0
\(349\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(350\) 0 0
\(351\) 1.00000i 1.00000i
\(352\) −0.0569057 0.187593i −0.0569057 0.187593i
\(353\) 1.91388i 1.91388i 0.290285 + 0.956940i \(0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(354\) −0.902197 0.273678i −0.902197 0.273678i
\(355\) −1.95044 2.91904i −1.95044 2.91904i
\(356\) −0.301614 + 1.51631i −0.301614 + 1.51631i
\(357\) 0 0
\(358\) 0 0
\(359\) 1.17221 0.485544i 1.17221 0.485544i 0.290285 0.956940i \(-0.406250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(360\) −0.512016 + 1.68789i −0.512016 + 1.68789i
\(361\) −0.923880 0.382683i −0.923880 0.382683i
\(362\) −1.65493 0.162997i −1.65493 0.162997i
\(363\) −0.799517 0.534220i −0.799517 0.534220i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.83886 + 0.181112i −1.83886 + 0.181112i
\(367\) 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(368\) 0 0
\(369\) 0.410525 0.410525i 0.410525 0.410525i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.425215 + 0.636379i −0.425215 + 0.636379i −0.980785 0.195090i \(-0.937500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(374\) 0 0
\(375\) 0.750012 1.81069i 0.750012 1.81069i
\(376\) −0.980785 1.19509i −0.980785 1.19509i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(380\) 0 0
\(381\) 1.63099 1.08979i 1.63099 1.08979i
\(382\) 0 0
\(383\) −1.91388 −1.91388 −0.956940 0.290285i \(-0.906250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(384\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(385\) 0 0
\(386\) 0 0
\(387\) 0.324423 0.216773i 0.324423 0.216773i
\(388\) 0 0
\(389\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(390\) −1.55557 0.831470i −1.55557 0.831470i
\(391\) 0 0
\(392\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(393\) 0 0
\(394\) 1.26268 + 1.53858i 1.26268 + 1.53858i
\(395\) 0.382353 0.572232i 0.382353 0.572232i
\(396\) −0.196034 −0.196034
\(397\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(398\) 1.05496 1.28547i 1.05496 1.28547i
\(399\) 0 0
\(400\) −1.49280 1.49280i −1.49280 1.49280i
\(401\) 1.40740 + 1.40740i 1.40740 + 1.40740i 0.773010 + 0.634393i \(0.218750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.46658 + 0.979938i 1.46658 + 0.979938i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(410\) 0.297261 + 0.979938i 0.297261 + 0.979938i
\(411\) 0.247528 + 1.24441i 0.247528 + 1.24441i
\(412\) 0.275899 1.38704i 0.275899 1.38704i
\(413\) 0 0
\(414\) 0 0
\(415\) 3.37578i 3.37578i
\(416\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(417\) 1.66294i 1.66294i
\(418\) 0 0
\(419\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(420\) 0 0
\(421\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(422\) −1.76820 + 0.536376i −1.76820 + 0.536376i
\(423\) −1.42834 + 0.591637i −1.42834 + 0.591637i
\(424\) 0 0
\(425\) 0 0
\(426\) −0.195090 + 1.98079i −0.195090 + 1.98079i
\(427\) 0 0
\(428\) 0 0
\(429\) 0.0382444 0.192268i 0.0382444 0.192268i
\(430\) 0.0674571 + 0.684903i 0.0674571 + 0.684903i
\(431\) 1.35332 + 1.35332i 1.35332 + 1.35332i 0.881921 + 0.471397i \(0.156250\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(432\) 0.831470 0.555570i 0.831470 0.555570i
\(433\) −1.17588 + 1.17588i −1.17588 + 1.17588i −0.195090 + 0.980785i \(0.562500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(440\) 0.162997 0.304945i 0.162997 0.304945i
\(441\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(442\) 0 0
\(443\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(444\) 0 0
\(445\) −2.26737 + 1.51501i −2.26737 + 1.51501i
\(446\) 0 0
\(447\) −1.26879 −1.26879
\(448\) 0 0
\(449\) −1.54602 −1.54602 −0.773010 0.634393i \(-0.781250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(450\) −1.86186 + 0.995185i −1.86186 + 0.995185i
\(451\) −0.0946308 + 0.0632303i −0.0946308 + 0.0632303i
\(452\) 0 0
\(453\) 0 0
\(454\) 0.598102 1.11897i 0.598102 1.11897i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.192268 + 0.0382444i 0.192268 + 0.0382444i 0.290285 0.956940i \(-0.406250\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(468\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(469\) 0 0
\(470\) 0.267287 2.71381i 0.267287 2.71381i
\(471\) 1.81225 + 0.750661i 1.81225 + 0.750661i
\(472\) −0.938254 + 0.0924099i −0.938254 + 0.0924099i
\(473\) −0.0706664 + 0.0292710i −0.0706664 + 0.0292710i
\(474\) −0.373380 + 0.113263i −0.373380 + 0.113263i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −0.168530 + 0.555570i −0.168530 + 0.555570i
\(479\) 0.196034i 0.196034i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(480\) 0.172887 + 1.75535i 0.172887 + 1.75535i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.943094 0.187593i −0.943094 0.187593i
\(485\) 0 0
\(486\) −0.290285 0.956940i −0.290285 0.956940i
\(487\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(488\) −1.62958 + 0.871028i −1.62958 + 0.871028i
\(489\) 0 0
\(490\) −1.75535 0.172887i −1.75535 0.172887i
\(491\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(492\) 0.222174 0.536376i 0.222174 0.536376i
\(493\) 0 0
\(494\) 0 0
\(495\) −0.244499 0.244499i −0.244499 0.244499i
\(496\) 0 0
\(497\) 0 0
\(498\) −1.21415 + 1.47945i −1.21415 + 1.47945i
\(499\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(500\) 1.95988i 1.95988i
\(501\) 1.06330 1.59133i 1.06330 1.59133i
\(502\) 0 0
\(503\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(508\) 1.08979 1.63099i 1.08979 1.63099i
\(509\) 0.482726 0.322547i 0.482726 0.322547i −0.290285 0.956940i \(-0.593750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(513\) 0 0
\(514\) 0 0
\(515\) 2.07406 1.38584i 2.07406 1.38584i
\(516\) 0.216773 0.324423i 0.216773 0.324423i
\(517\) 0.297250 0.0591266i 0.297250 0.0591266i
\(518\) 0 0
\(519\) 0 0
\(520\) −1.75535 0.172887i −1.75535 0.172887i
\(521\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(522\) 0 0
\(523\) 0.923880 1.38268i 0.923880 1.38268i 1.00000i \(-0.5\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.181112 + 0.0750191i −0.181112 + 0.0750191i
\(529\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(530\) 0 0
\(531\) −0.183930 + 0.924678i −0.183930 + 0.924678i
\(532\) 0 0
\(533\) 0.482726 + 0.322547i 0.482726 + 0.322547i
\(534\) 1.53858 + 0.151537i 1.53858 + 0.151537i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.0382444 0.192268i −0.0382444 0.192268i
\(540\) 1.72995 + 0.344109i 1.72995 + 0.344109i
\(541\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(542\) 0 0
\(543\) 1.66294i 1.66294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.617317 0.923880i −0.617317 0.923880i 0.382683 0.923880i \(-0.375000\pi\)
−1.00000 \(\pi\)
\(548\) 0.704900 + 1.05496i 0.704900 + 1.05496i
\(549\) 0.360480 + 1.81225i 0.360480 + 1.81225i
\(550\) 0.396035 0.120136i 0.396035 0.120136i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.162997 1.65493i 0.162997 1.65493i
\(555\) 0 0
\(556\) −0.636379 1.53636i −0.636379 1.53636i
\(557\) 0.373380 1.87711i 0.373380 1.87711i −0.0980171 0.995185i \(-0.531250\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(558\) 0 0
\(559\) 0.275899 + 0.275899i 0.275899 + 0.275899i
\(560\) 0 0
\(561\) 0 0
\(562\) −0.728789 0.598102i −0.728789 0.598102i
\(563\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(564\) −1.09320 + 1.09320i −1.09320 + 1.09320i
\(565\) 0 0
\(566\) −0.591637 + 0.485544i −0.591637 + 0.485544i
\(567\) 0 0
\(568\) 0.577774 + 1.90466i 0.577774 + 1.90466i
\(569\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(570\) 0 0
\(571\) −0.750661 + 0.149316i −0.750661 + 0.149316i −0.555570 0.831470i \(-0.687500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(572\) −0.0382444 0.192268i −0.0382444 0.192268i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.555570 0.831470i 0.555570 0.831470i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.881921 0.471397i 0.881921 0.471397i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.674993 + 1.62958i −0.674993 + 1.62958i
\(586\) 0.980785 0.804910i 0.980785 0.804910i
\(587\) 0.979938 1.46658i 0.979938 1.46658i 0.0980171 0.995185i \(-0.468750\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(588\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(589\) 0 0
\(590\) −1.28547 1.05496i −1.28547 1.05496i
\(591\) 1.40740 1.40740i 1.40740 1.40740i
\(592\) 0 0
\(593\) −0.666656 0.666656i −0.666656 0.666656i 0.290285 0.956940i \(-0.406250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(594\) 0.0192147 + 0.195090i 0.0192147 + 0.195090i
\(595\) 0 0
\(596\) −1.17221 + 0.485544i −1.17221 + 0.485544i
\(597\) −1.38268 0.923880i −1.38268 0.923880i
\(598\) 0 0
\(599\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(600\) −1.33929 + 1.63193i −1.33929 + 1.63193i
\(601\) −1.53636 + 0.636379i −1.53636 + 0.636379i −0.980785 0.195090i \(-0.937500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.942280 1.41022i −0.942280 1.41022i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −3.11882 0.946083i −3.11882 0.946083i
\(611\) −0.858923 1.28547i −0.858923 1.28547i
\(612\) 0 0
\(613\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(614\) 0 0
\(615\) 0.946083 0.391880i 0.946083 0.391880i
\(616\) 0 0
\(617\) 1.62958 + 0.674993i 1.62958 + 0.674993i 0.995185 0.0980171i \(-0.0312500\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(618\) −1.40740 0.138617i −1.40740 0.138617i
\(619\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(625\) 0.951606 0.951606i 0.951606 0.951606i
\(626\) 0.247528 0.301614i 0.247528 0.301614i
\(627\) 0 0
\(628\) 1.96157 1.96157
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(632\) −0.301614 + 0.247528i −0.301614 + 0.247528i
\(633\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(634\) 1.36347 + 0.728789i 1.36347 + 0.728789i
\(635\) 3.39342 0.674993i 3.39342 0.674993i
\(636\) 0 0
\(637\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(638\) 0 0
\(639\) 1.99037 1.99037
\(640\) 0.831470 + 1.55557i 0.831470 + 1.55557i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(644\) 0 0
\(645\) 0.674993 0.134265i 0.674993 0.134265i
\(646\) 0 0
\(647\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(648\) −0.634393 0.773010i −0.634393 0.773010i
\(649\) 0.0707275 0.170751i 0.0707275 0.170751i
\(650\) −1.33929 1.63193i −1.33929 1.63193i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.580569i 0.580569i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(660\) −0.319453 0.132322i −0.319453 0.132322i
\(661\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.555570 + 1.83147i −0.555570 + 1.83147i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.373380 1.87711i 0.373380 1.87711i
\(669\) 0 0
\(670\) 0 0
\(671\) 0.362224i 0.362224i
\(672\) 0 0
\(673\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(674\) −0.569414 + 1.87711i −0.569414 + 1.87711i
\(675\) 1.17289 + 1.75535i 1.17289 + 1.75535i
\(676\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(677\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.17221 0.485544i −1.17221 0.485544i
\(682\) 0 0
\(683\) −0.783904 0.523788i −0.783904 0.523788i 0.0980171 0.995185i \(-0.468750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(684\) 0 0
\(685\) −0.436600 + 2.19494i −0.436600 + 2.19494i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.0761205 0.382683i 0.0761205 0.382683i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.12247 2.70989i 1.12247 2.70989i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(702\) 0.881921 0.471397i 0.881921 0.471397i
\(703\) 0 0
\(704\) −0.138617 + 0.138617i −0.138617 + 0.138617i
\(705\) −2.72694 −2.72694
\(706\) 1.68789 0.902197i 1.68789 0.902197i
\(707\) 0 0
\(708\) 0.183930 + 0.924678i 0.183930 + 0.924678i
\(709\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(710\) −1.65493 + 3.09616i −1.65493 + 3.09616i
\(711\) 0.149316 + 0.360480i 0.149316 + 0.360480i
\(712\) 1.47945 0.448786i 1.47945 0.448786i
\(713\) 0 0
\(714\) 0 0
\(715\) 0.192102 0.287500i 0.192102 0.287500i
\(716\) 0 0
\(717\) 0.569414 + 0.113263i 0.569414 + 0.113263i
\(718\) −0.980785 0.804910i −0.980785 0.804910i
\(719\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(720\) 1.72995 0.344109i 1.72995 0.344109i
\(721\) 0 0
\(722\) 0.0980171 + 0.995185i 0.0980171 + 0.995185i
\(723\) 0 0
\(724\) 0.636379 + 1.53636i 0.636379 + 1.53636i
\(725\) 0 0
\(726\) −0.0942504 + 0.956940i −0.0942504 + 0.956940i
\(727\) 1.02656 + 0.425215i 1.02656 + 0.425215i 0.831470 0.555570i \(-0.187500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(728\) 0 0
\(729\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(730\) 0 0
\(731\) 0 0
\(732\) 1.02656 + 1.53636i 1.02656 + 1.53636i
\(733\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(734\) 0.536376 1.76820i 0.536376 1.76820i
\(735\) 1.76384i 1.76384i
\(736\) 0 0
\(737\) 0 0
\(738\) −0.555570 0.168530i −0.555570 0.168530i
\(739\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.536376 0.222174i 0.536376 0.222174i −0.0980171 0.995185i \(-0.531250\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(744\) 0 0
\(745\) −2.06759 0.856422i −2.06759 0.856422i
\(746\) 0.761681 + 0.0750191i 0.761681 + 0.0750191i
\(747\) 1.59133 + 1.06330i 1.59133 + 1.06330i
\(748\) 0 0
\(749\) 0 0
\(750\) −1.95044 + 0.192102i −1.95044 + 0.192102i
\(751\) −0.541196 0.541196i −0.541196 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(752\) −0.591637 + 1.42834i −0.591637 + 1.42834i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.02656 1.53636i 1.02656 1.53636i 0.195090 0.980785i \(-0.437500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.761681 + 1.83886i 0.761681 + 1.83886i 0.471397 + 0.881921i \(0.343750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(762\) −1.72995 0.924678i −1.72995 0.924678i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0.902197 + 1.68789i 0.902197 + 1.68789i
\(767\) −0.942793 −0.942793
\(768\) 0.195090 0.980785i 0.195090 0.980785i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.87711 + 0.373380i −1.87711 + 0.373380i −0.995185 0.0980171i \(-0.968750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(774\) −0.344109 0.183930i −0.344109 0.183930i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 1.76384i 1.76384i
\(781\) −0.382683 0.0761205i −0.382683 0.0761205i
\(782\) 0 0
\(783\) 0 0
\(784\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(785\) 2.44652 + 2.44652i 2.44652 + 2.44652i
\(786\) 0 0
\(787\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(788\) 0.761681 1.83886i 0.761681 1.83886i
\(789\) 0 0
\(790\) −0.684903 0.0674571i −0.684903 0.0674571i
\(791\) 0 0
\(792\) 0.0924099 + 0.172887i 0.0924099 + 0.172887i
\(793\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(794\) 0 0
\(795\) 0 0
\(796\) −1.63099 0.324423i −1.63099 0.324423i
\(797\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.612832 + 2.02024i −0.612832 + 2.02024i
\(801\) 1.54602i 1.54602i
\(802\) 0.577774 1.90466i 0.577774 1.90466i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(810\) 0.172887 1.75535i 0.172887 1.75535i
\(811\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0.724101 0.724101i 0.724101 0.724101i
\(821\) −1.10579 + 1.65493i −1.10579 + 1.65493i −0.471397 + 0.881921i \(0.656250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(822\) 0.980785 0.804910i 0.980785 0.804910i
\(823\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(824\) −1.35332 + 0.410525i −1.35332 + 0.410525i
\(825\) −0.158376 0.382353i −0.158376 0.382353i
\(826\) 0 0
\(827\) 1.72995 0.344109i 1.72995 0.344109i 0.773010 0.634393i \(-0.218750\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(828\) 0 0
\(829\) 1.17588 0.785695i 1.17588 0.785695i 0.195090 0.980785i \(-0.437500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(830\) −2.97718 + 1.59133i −2.97718 + 1.59133i
\(831\) −1.66294 −1.66294
\(832\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(833\) 0 0
\(834\) −1.46658 + 0.783904i −1.46658 + 0.783904i
\(835\) 2.80686 1.87549i 2.80686 1.87549i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.360791 + 0.871028i 0.360791 + 0.871028i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(840\) 0 0
\(841\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(842\) 0 0
\(843\) −0.523788 + 0.783904i −0.523788 + 0.783904i
\(844\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(845\) −1.72995 0.344109i −1.72995 0.344109i
\(846\) 1.19509 + 0.980785i 1.19509 + 0.980785i
\(847\) 0 0
\(848\) 0 0
\(849\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(850\) 0 0
\(851\) 0 0
\(852\) 1.83886 0.761681i 1.83886 0.761681i
\(853\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(858\) −0.187593 + 0.0569057i −0.187593 + 0.0569057i
\(859\) 0.275899 + 1.38704i 0.275899 + 1.38704i 0.831470 + 0.555570i \(0.187500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(860\) 0.572232 0.382353i 0.572232 0.382353i
\(861\) 0 0
\(862\) 0.555570 1.83147i 0.555570 1.83147i
\(863\) 1.54602i 1.54602i −0.634393 0.773010i \(-0.718750\pi\)
0.634393 0.773010i \(-0.281250\pi\)
\(864\) −0.881921 0.471397i −0.881921 0.471397i
\(865\) 0 0
\(866\) 1.59133 + 0.482726i 1.59133 + 0.482726i
\(867\) −0.555570 0.831470i −0.555570 0.831470i
\(868\) 0 0
\(869\) −0.0149222 0.0750191i −0.0149222 0.0750191i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(878\) 1.83886 0.181112i 1.83886 0.181112i
\(879\) −0.897168 0.897168i −0.897168 0.897168i
\(880\) −0.345774 −0.345774
\(881\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(882\) 0.634393 0.773010i 0.634393 0.773010i
\(883\) −1.81225 0.360480i −1.81225 0.360480i −0.831470 0.555570i \(-0.812500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(884\) 0 0
\(885\) −0.923880 + 1.38268i −0.923880 + 1.38268i
\(886\) 0 0
\(887\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 2.40494 + 1.28547i 2.40494 + 1.28547i
\(891\) 0.192268 0.0382444i 0.192268 0.0382444i
\(892\) 0 0
\(893\) 0 0
\(894\) 0.598102 + 1.11897i 0.598102 + 1.11897i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0.728789 + 1.36347i 0.728789 + 1.36347i
\(899\) 0 0
\(900\) 1.75535 + 1.17289i 1.75535 + 1.17289i
\(901\) 0 0
\(902\) 0.100373 + 0.0536504i 0.100373 + 0.0536504i
\(903\) 0 0
\(904\) 0 0
\(905\) −1.12247 + 2.70989i −1.12247 + 2.70989i
\(906\) 0 0
\(907\) −0.785695 + 1.17588i −0.785695 + 1.17588i 0.195090 + 0.980785i \(0.437500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(908\) −1.26879 −1.26879
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) −0.265297 0.265297i −0.265297 0.265297i
\(914\) 0 0
\(915\) −0.635830 + 3.19653i −0.635830 + 3.19653i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.02656 0.425215i −1.02656 0.425215i −0.195090 0.980785i \(-0.562500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.0569057 0.187593i −0.0569057 0.187593i
\(923\) 0.388302 + 1.95213i 0.388302 + 1.95213i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.41421i 1.41421i
\(928\) 0 0
\(929\) 1.76384i 1.76384i −0.471397 0.881921i \(-0.656250\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.634393 0.773010i 0.634393 0.773010i
\(937\) 1.81225 + 0.750661i 1.81225 + 0.750661i 0.980785 + 0.195090i \(0.0625000\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(938\) 0 0
\(939\) −0.324423 0.216773i −0.324423 0.216773i
\(940\) −2.51936 + 1.04355i −2.51936 + 1.04355i
\(941\) 0.113263 0.569414i 0.113263 0.569414i −0.881921 0.471397i \(-0.843750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(942\) −0.192268 1.95213i −0.192268 1.95213i
\(943\) 0 0
\(944\) 0.523788 + 0.783904i 0.523788 + 0.783904i
\(945\) 0 0
\(946\) 0.0591266 + 0.0485240i 0.0591266 + 0.0485240i
\(947\) 1.24441 + 0.247528i 1.24441 + 0.247528i 0.773010 0.634393i \(-0.218750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(948\) 0.275899 + 0.275899i 0.275899 + 0.275899i
\(949\) 0 0
\(950\) 0 0
\(951\) 0.591637 1.42834i 0.591637 1.42834i
\(952\) 0 0
\(953\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.569414 0.113263i 0.569414 0.113263i
\(957\) 0 0
\(958\) 0.172887 0.0924099i 0.172887 0.0924099i
\(959\) 0 0
\(960\) 1.46658 0.979938i 1.46658 0.979938i
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(968\) 0.279129 + 0.920166i 0.279129 + 0.920166i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(972\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(973\) 0 0
\(974\) 0 0
\(975\) −1.49280 + 1.49280i −1.49280 + 1.49280i
\(976\) 1.53636 + 1.02656i 1.53636 + 1.02656i
\(977\) 0.410525 + 0.410525i 0.410525 + 0.410525i 0.881921 0.471397i \(-0.156250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(978\) 0 0
\(979\) −0.0591266 + 0.297250i −0.0591266 + 0.297250i
\(980\) 0.674993 + 1.62958i 0.674993 + 1.62958i
\(981\) 0 0
\(982\) 0 0
\(983\) 0.871028 + 0.360791i 0.871028 + 0.360791i 0.773010 0.634393i \(-0.218750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(984\) −0.577774 + 0.0569057i −0.577774 + 0.0569057i
\(985\) 3.24346 1.34349i 3.24346 1.34349i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.100373 + 0.330885i −0.100373 + 0.330885i
\(991\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.62958 2.43884i −1.62958 2.43884i
\(996\) 1.87711 + 0.373380i 1.87711 + 0.373380i
\(997\) −0.216773 1.08979i −0.216773 1.08979i −0.923880 0.382683i \(-0.875000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.1.eh.a.77.2 32
3.2 odd 2 inner 2496.1.eh.a.77.3 yes 32
13.12 even 2 inner 2496.1.eh.a.77.3 yes 32
39.38 odd 2 CM 2496.1.eh.a.77.2 32
64.5 even 16 inner 2496.1.eh.a.389.2 yes 32
192.5 odd 16 inner 2496.1.eh.a.389.3 yes 32
832.389 even 16 inner 2496.1.eh.a.389.3 yes 32
2496.389 odd 16 inner 2496.1.eh.a.389.2 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2496.1.eh.a.77.2 32 1.1 even 1 trivial
2496.1.eh.a.77.2 32 39.38 odd 2 CM
2496.1.eh.a.77.3 yes 32 3.2 odd 2 inner
2496.1.eh.a.77.3 yes 32 13.12 even 2 inner
2496.1.eh.a.389.2 yes 32 64.5 even 16 inner
2496.1.eh.a.389.2 yes 32 2496.389 odd 16 inner
2496.1.eh.a.389.3 yes 32 192.5 odd 16 inner
2496.1.eh.a.389.3 yes 32 832.389 even 16 inner