Properties

Label 2496.2.a.s
Level $2496$
Weight $2$
Character orbit 2496.a
Self dual yes
Analytic conductor $19.931$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,2,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9306603445\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - 2 q^{5} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - 2 q^{5} + q^{9} - q^{13} - 2 q^{15} + 2 q^{17} - 4 q^{19} - q^{25} + q^{27} - 6 q^{29} + 2 q^{37} - q^{39} + 6 q^{41} - 12 q^{43} - 2 q^{45} + 4 q^{47} - 7 q^{49} + 2 q^{51} - 6 q^{53} - 4 q^{57} - 8 q^{59} + 2 q^{61} + 2 q^{65} + 4 q^{67} + 12 q^{71} - 14 q^{73} - q^{75} + q^{81} + 8 q^{83} - 4 q^{85} - 6 q^{87} - 18 q^{89} + 8 q^{95} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −2.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.2.a.s 1
3.b odd 2 1 7488.2.a.br 1
4.b odd 2 1 2496.2.a.c 1
8.b even 2 1 624.2.a.d 1
8.d odd 2 1 312.2.a.f 1
12.b even 2 1 7488.2.a.bs 1
24.f even 2 1 936.2.a.b 1
24.h odd 2 1 1872.2.a.e 1
40.e odd 2 1 7800.2.a.d 1
104.e even 2 1 8112.2.a.f 1
104.h odd 2 1 4056.2.a.m 1
104.m even 4 2 4056.2.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.a.f 1 8.d odd 2 1
624.2.a.d 1 8.b even 2 1
936.2.a.b 1 24.f even 2 1
1872.2.a.e 1 24.h odd 2 1
2496.2.a.c 1 4.b odd 2 1
2496.2.a.s 1 1.a even 1 1 trivial
4056.2.a.m 1 104.h odd 2 1
4056.2.c.h 2 104.m even 4 2
7488.2.a.br 1 3.b odd 2 1
7488.2.a.bs 1 12.b even 2 1
7800.2.a.d 1 40.e odd 2 1
8112.2.a.f 1 104.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2496))\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display
\( T_{19} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 12 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 8 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T + 14 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 8 \) Copy content Toggle raw display
$89$ \( T + 18 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less