Properties

Label 2496.2.d.q.1535.13
Level $2496$
Weight $2$
Character 2496.1535
Analytic conductor $19.931$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,2,Mod(1535,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1535");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{17} + 18 x^{16} + 8 x^{14} - 8 x^{13} + 241 x^{12} - 44 x^{11} - 112 x^{10} - 132 x^{9} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{23}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1248)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1535.13
Root \(-0.853779 + 1.50700i\) of defining polynomial
Character \(\chi\) \(=\) 2496.1535
Dual form 2496.2.d.q.1535.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.461900 - 1.66933i) q^{3} +1.99193i q^{5} +1.52766i q^{7} +(-2.57330 - 1.54212i) q^{9} +2.82843 q^{11} -1.00000 q^{13} +(3.32519 + 0.920073i) q^{15} -4.93184i q^{17} +0.312481i q^{19} +(2.55017 + 0.705628i) q^{21} +0.713524 q^{23} +1.03220 q^{25} +(-3.76291 + 3.58337i) q^{27} +2.82843i q^{29} -1.32156i q^{31} +(1.30645 - 4.72157i) q^{33} -3.04301 q^{35} +6.18986 q^{37} +(-0.461900 + 1.66933i) q^{39} -7.19538i q^{41} +9.95155i q^{43} +(3.07180 - 5.12584i) q^{45} +4.97738 q^{47} +4.66624 q^{49} +(-8.23285 - 2.27802i) q^{51} +0.271609i q^{53} +5.63404i q^{55} +(0.521633 + 0.144335i) q^{57} +2.82843 q^{59} +12.1758 q^{61} +(2.35585 - 3.93114i) q^{63} -1.99193i q^{65} +8.31248i q^{67} +(0.329576 - 1.19110i) q^{69} +7.19718 q^{71} +4.43037 q^{73} +(0.476774 - 1.72308i) q^{75} +4.32089i q^{77} -5.21299i q^{79} +(4.24372 + 7.93668i) q^{81} -1.49246 q^{83} +9.82390 q^{85} +(4.72157 + 1.30645i) q^{87} +4.43237i q^{89} -1.52766i q^{91} +(-2.20611 - 0.610426i) q^{93} -0.622442 q^{95} +16.0138 q^{97} +(-7.27838 - 4.36178i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{9} - 20 q^{13} + 12 q^{21} - 36 q^{25} - 16 q^{37} - 4 q^{45} - 76 q^{49} - 16 q^{57} + 56 q^{61} - 24 q^{69} + 88 q^{73} + 72 q^{81} - 56 q^{85} - 96 q^{93} - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.461900 1.66933i 0.266678 0.963786i
\(4\) 0 0
\(5\) 1.99193i 0.890820i 0.895327 + 0.445410i \(0.146942\pi\)
−0.895327 + 0.445410i \(0.853058\pi\)
\(6\) 0 0
\(7\) 1.52766i 0.577403i 0.957419 + 0.288702i \(0.0932235\pi\)
−0.957419 + 0.288702i \(0.906776\pi\)
\(8\) 0 0
\(9\) −2.57330 1.54212i −0.857766 0.514041i
\(10\) 0 0
\(11\) 2.82843 0.852803 0.426401 0.904534i \(-0.359781\pi\)
0.426401 + 0.904534i \(0.359781\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 3.32519 + 0.920073i 0.858559 + 0.237562i
\(16\) 0 0
\(17\) 4.93184i 1.19615i −0.801441 0.598074i \(-0.795933\pi\)
0.801441 0.598074i \(-0.204067\pi\)
\(18\) 0 0
\(19\) 0.312481i 0.0716881i 0.999357 + 0.0358440i \(0.0114120\pi\)
−0.999357 + 0.0358440i \(0.988588\pi\)
\(20\) 0 0
\(21\) 2.55017 + 0.705628i 0.556493 + 0.153981i
\(22\) 0 0
\(23\) 0.713524 0.148780 0.0743900 0.997229i \(-0.476299\pi\)
0.0743900 + 0.997229i \(0.476299\pi\)
\(24\) 0 0
\(25\) 1.03220 0.206440
\(26\) 0 0
\(27\) −3.76291 + 3.58337i −0.724172 + 0.689619i
\(28\) 0 0
\(29\) 2.82843i 0.525226i 0.964901 + 0.262613i \(0.0845842\pi\)
−0.964901 + 0.262613i \(0.915416\pi\)
\(30\) 0 0
\(31\) 1.32156i 0.237359i −0.992933 0.118679i \(-0.962134\pi\)
0.992933 0.118679i \(-0.0378660\pi\)
\(32\) 0 0
\(33\) 1.30645 4.72157i 0.227424 0.821919i
\(34\) 0 0
\(35\) −3.04301 −0.514362
\(36\) 0 0
\(37\) 6.18986 1.01761 0.508803 0.860883i \(-0.330088\pi\)
0.508803 + 0.860883i \(0.330088\pi\)
\(38\) 0 0
\(39\) −0.461900 + 1.66933i −0.0739631 + 0.267306i
\(40\) 0 0
\(41\) 7.19538i 1.12373i −0.827229 0.561865i \(-0.810084\pi\)
0.827229 0.561865i \(-0.189916\pi\)
\(42\) 0 0
\(43\) 9.95155i 1.51760i 0.651325 + 0.758799i \(0.274213\pi\)
−0.651325 + 0.758799i \(0.725787\pi\)
\(44\) 0 0
\(45\) 3.07180 5.12584i 0.457917 0.764115i
\(46\) 0 0
\(47\) 4.97738 0.726026 0.363013 0.931784i \(-0.381748\pi\)
0.363013 + 0.931784i \(0.381748\pi\)
\(48\) 0 0
\(49\) 4.66624 0.666606
\(50\) 0 0
\(51\) −8.23285 2.27802i −1.15283 0.318986i
\(52\) 0 0
\(53\) 0.271609i 0.0373083i 0.999826 + 0.0186542i \(0.00593815\pi\)
−0.999826 + 0.0186542i \(0.994062\pi\)
\(54\) 0 0
\(55\) 5.63404i 0.759693i
\(56\) 0 0
\(57\) 0.521633 + 0.144335i 0.0690920 + 0.0191176i
\(58\) 0 0
\(59\) 2.82843 0.368230 0.184115 0.982905i \(-0.441058\pi\)
0.184115 + 0.982905i \(0.441058\pi\)
\(60\) 0 0
\(61\) 12.1758 1.55895 0.779476 0.626432i \(-0.215485\pi\)
0.779476 + 0.626432i \(0.215485\pi\)
\(62\) 0 0
\(63\) 2.35585 3.93114i 0.296809 0.495277i
\(64\) 0 0
\(65\) 1.99193i 0.247069i
\(66\) 0 0
\(67\) 8.31248i 1.01553i 0.861495 + 0.507766i \(0.169528\pi\)
−0.861495 + 0.507766i \(0.830472\pi\)
\(68\) 0 0
\(69\) 0.329576 1.19110i 0.0396763 0.143392i
\(70\) 0 0
\(71\) 7.19718 0.854148 0.427074 0.904217i \(-0.359544\pi\)
0.427074 + 0.904217i \(0.359544\pi\)
\(72\) 0 0
\(73\) 4.43037 0.518535 0.259268 0.965806i \(-0.416519\pi\)
0.259268 + 0.965806i \(0.416519\pi\)
\(74\) 0 0
\(75\) 0.476774 1.72308i 0.0550531 0.198964i
\(76\) 0 0
\(77\) 4.32089i 0.492411i
\(78\) 0 0
\(79\) 5.21299i 0.586507i −0.956035 0.293253i \(-0.905262\pi\)
0.956035 0.293253i \(-0.0947380\pi\)
\(80\) 0 0
\(81\) 4.24372 + 7.93668i 0.471525 + 0.881853i
\(82\) 0 0
\(83\) −1.49246 −0.163819 −0.0819095 0.996640i \(-0.526102\pi\)
−0.0819095 + 0.996640i \(0.526102\pi\)
\(84\) 0 0
\(85\) 9.82390 1.06555
\(86\) 0 0
\(87\) 4.72157 + 1.30645i 0.506205 + 0.140066i
\(88\) 0 0
\(89\) 4.43237i 0.469830i 0.972016 + 0.234915i \(0.0754812\pi\)
−0.972016 + 0.234915i \(0.924519\pi\)
\(90\) 0 0
\(91\) 1.52766i 0.160143i
\(92\) 0 0
\(93\) −2.20611 0.610426i −0.228763 0.0632983i
\(94\) 0 0
\(95\) −0.622442 −0.0638612
\(96\) 0 0
\(97\) 16.0138 1.62595 0.812975 0.582298i \(-0.197846\pi\)
0.812975 + 0.582298i \(0.197846\pi\)
\(98\) 0 0
\(99\) −7.27838 4.36178i −0.731505 0.438375i
\(100\) 0 0
\(101\) 7.14932i 0.711384i 0.934603 + 0.355692i \(0.115755\pi\)
−0.934603 + 0.355692i \(0.884245\pi\)
\(102\) 0 0
\(103\) 9.21299i 0.907783i 0.891057 + 0.453891i \(0.149965\pi\)
−0.891057 + 0.453891i \(0.850035\pi\)
\(104\) 0 0
\(105\) −1.40556 + 5.07977i −0.137169 + 0.495735i
\(106\) 0 0
\(107\) 18.1030 1.75009 0.875043 0.484046i \(-0.160833\pi\)
0.875043 + 0.484046i \(0.160833\pi\)
\(108\) 0 0
\(109\) −10.1899 −0.976012 −0.488006 0.872840i \(-0.662276\pi\)
−0.488006 + 0.872840i \(0.662276\pi\)
\(110\) 0 0
\(111\) 2.85909 10.3329i 0.271373 0.980755i
\(112\) 0 0
\(113\) 12.9637i 1.21952i −0.792585 0.609762i \(-0.791265\pi\)
0.792585 0.609762i \(-0.208735\pi\)
\(114\) 0 0
\(115\) 1.42129i 0.132536i
\(116\) 0 0
\(117\) 2.57330 + 1.54212i 0.237901 + 0.142569i
\(118\) 0 0
\(119\) 7.53420 0.690659
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) −12.0114 3.32354i −1.08304 0.299674i
\(124\) 0 0
\(125\) 12.0157i 1.07472i
\(126\) 0 0
\(127\) 3.79170i 0.336459i −0.985748 0.168229i \(-0.946195\pi\)
0.985748 0.168229i \(-0.0538049\pi\)
\(128\) 0 0
\(129\) 16.6124 + 4.59662i 1.46264 + 0.404710i
\(130\) 0 0
\(131\) −17.6695 −1.54379 −0.771895 0.635750i \(-0.780691\pi\)
−0.771895 + 0.635750i \(0.780691\pi\)
\(132\) 0 0
\(133\) −0.477366 −0.0413929
\(134\) 0 0
\(135\) −7.13783 7.49546i −0.614326 0.645107i
\(136\) 0 0
\(137\) 12.3090i 1.05163i −0.850599 0.525815i \(-0.823760\pi\)
0.850599 0.525815i \(-0.176240\pi\)
\(138\) 0 0
\(139\) 10.9606i 0.929668i 0.885398 + 0.464834i \(0.153886\pi\)
−0.885398 + 0.464834i \(0.846114\pi\)
\(140\) 0 0
\(141\) 2.29905 8.30887i 0.193615 0.699733i
\(142\) 0 0
\(143\) −2.82843 −0.236525
\(144\) 0 0
\(145\) −5.63404 −0.467881
\(146\) 0 0
\(147\) 2.15533 7.78948i 0.177769 0.642465i
\(148\) 0 0
\(149\) 22.1984i 1.81856i −0.416183 0.909281i \(-0.636633\pi\)
0.416183 0.909281i \(-0.363367\pi\)
\(150\) 0 0
\(151\) 4.96711i 0.404217i 0.979363 + 0.202109i \(0.0647794\pi\)
−0.979363 + 0.202109i \(0.935221\pi\)
\(152\) 0 0
\(153\) −7.60550 + 12.6911i −0.614868 + 1.02601i
\(154\) 0 0
\(155\) 2.63245 0.211444
\(156\) 0 0
\(157\) 4.11140 0.328126 0.164063 0.986450i \(-0.447540\pi\)
0.164063 + 0.986450i \(0.447540\pi\)
\(158\) 0 0
\(159\) 0.453404 + 0.125456i 0.0359573 + 0.00994931i
\(160\) 0 0
\(161\) 1.09003i 0.0859060i
\(162\) 0 0
\(163\) 24.9049i 1.95071i −0.220650 0.975353i \(-0.570818\pi\)
0.220650 0.975353i \(-0.429182\pi\)
\(164\) 0 0
\(165\) 9.40504 + 2.60236i 0.732182 + 0.202593i
\(166\) 0 0
\(167\) −18.1684 −1.40592 −0.702958 0.711231i \(-0.748138\pi\)
−0.702958 + 0.711231i \(0.748138\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0.481884 0.804107i 0.0368506 0.0614916i
\(172\) 0 0
\(173\) 20.7739i 1.57941i 0.613486 + 0.789705i \(0.289767\pi\)
−0.613486 + 0.789705i \(0.710233\pi\)
\(174\) 0 0
\(175\) 1.57686i 0.119199i
\(176\) 0 0
\(177\) 1.30645 4.72157i 0.0981987 0.354895i
\(178\) 0 0
\(179\) 13.4627 1.00625 0.503123 0.864215i \(-0.332184\pi\)
0.503123 + 0.864215i \(0.332184\pi\)
\(180\) 0 0
\(181\) 9.74544 0.724373 0.362186 0.932106i \(-0.382030\pi\)
0.362186 + 0.932106i \(0.382030\pi\)
\(182\) 0 0
\(183\) 5.62400 20.3254i 0.415738 1.50250i
\(184\) 0 0
\(185\) 12.3298i 0.906504i
\(186\) 0 0
\(187\) 13.9494i 1.02008i
\(188\) 0 0
\(189\) −5.47418 5.74846i −0.398188 0.418139i
\(190\) 0 0
\(191\) −21.4388 −1.55126 −0.775628 0.631190i \(-0.782567\pi\)
−0.775628 + 0.631190i \(0.782567\pi\)
\(192\) 0 0
\(193\) 5.20367 0.374568 0.187284 0.982306i \(-0.440031\pi\)
0.187284 + 0.982306i \(0.440031\pi\)
\(194\) 0 0
\(195\) −3.32519 0.920073i −0.238121 0.0658878i
\(196\) 0 0
\(197\) 20.9495i 1.49259i −0.665614 0.746296i \(-0.731830\pi\)
0.665614 0.746296i \(-0.268170\pi\)
\(198\) 0 0
\(199\) 21.4257i 1.51883i 0.650607 + 0.759415i \(0.274515\pi\)
−0.650607 + 0.759415i \(0.725485\pi\)
\(200\) 0 0
\(201\) 13.8762 + 3.83953i 0.978754 + 0.270820i
\(202\) 0 0
\(203\) −4.32089 −0.303267
\(204\) 0 0
\(205\) 14.3327 1.00104
\(206\) 0 0
\(207\) −1.83611 1.10034i −0.127618 0.0764790i
\(208\) 0 0
\(209\) 0.883830i 0.0611358i
\(210\) 0 0
\(211\) 2.04845i 0.141021i 0.997511 + 0.0705106i \(0.0224628\pi\)
−0.997511 + 0.0705106i \(0.977537\pi\)
\(212\) 0 0
\(213\) 3.32437 12.0144i 0.227782 0.823216i
\(214\) 0 0
\(215\) −19.8228 −1.35191
\(216\) 0 0
\(217\) 2.01890 0.137052
\(218\) 0 0
\(219\) 2.04638 7.39573i 0.138282 0.499757i
\(220\) 0 0
\(221\) 4.93184i 0.331752i
\(222\) 0 0
\(223\) 1.91178i 0.128022i −0.997949 0.0640111i \(-0.979611\pi\)
0.997949 0.0640111i \(-0.0203893\pi\)
\(224\) 0 0
\(225\) −2.65616 1.59178i −0.177078 0.106119i
\(226\) 0 0
\(227\) 19.8671 1.31863 0.659313 0.751869i \(-0.270847\pi\)
0.659313 + 0.751869i \(0.270847\pi\)
\(228\) 0 0
\(229\) −15.8239 −1.04567 −0.522836 0.852433i \(-0.675126\pi\)
−0.522836 + 0.852433i \(0.675126\pi\)
\(230\) 0 0
\(231\) 7.21297 + 1.99582i 0.474579 + 0.131315i
\(232\) 0 0
\(233\) 10.2517i 0.671609i −0.941932 0.335805i \(-0.890992\pi\)
0.941932 0.335805i \(-0.109008\pi\)
\(234\) 0 0
\(235\) 9.91461i 0.646758i
\(236\) 0 0
\(237\) −8.70218 2.40788i −0.565267 0.156408i
\(238\) 0 0
\(239\) −17.6952 −1.14460 −0.572302 0.820043i \(-0.693950\pi\)
−0.572302 + 0.820043i \(0.693950\pi\)
\(240\) 0 0
\(241\) −7.24992 −0.467009 −0.233504 0.972356i \(-0.575019\pi\)
−0.233504 + 0.972356i \(0.575019\pi\)
\(242\) 0 0
\(243\) 15.2091 3.41821i 0.975662 0.219278i
\(244\) 0 0
\(245\) 9.29484i 0.593825i
\(246\) 0 0
\(247\) 0.312481i 0.0198827i
\(248\) 0 0
\(249\) −0.689367 + 2.49140i −0.0436869 + 0.157886i
\(250\) 0 0
\(251\) −0.985133 −0.0621810 −0.0310905 0.999517i \(-0.509898\pi\)
−0.0310905 + 0.999517i \(0.509898\pi\)
\(252\) 0 0
\(253\) 2.01815 0.126880
\(254\) 0 0
\(255\) 4.53765 16.3993i 0.284159 1.02696i
\(256\) 0 0
\(257\) 13.1455i 0.819995i −0.912087 0.409997i \(-0.865530\pi\)
0.912087 0.409997i \(-0.134470\pi\)
\(258\) 0 0
\(259\) 9.45603i 0.587569i
\(260\) 0 0
\(261\) 4.36178 7.27838i 0.269987 0.450521i
\(262\) 0 0
\(263\) −29.6883 −1.83066 −0.915331 0.402703i \(-0.868071\pi\)
−0.915331 + 0.402703i \(0.868071\pi\)
\(264\) 0 0
\(265\) −0.541027 −0.0332350
\(266\) 0 0
\(267\) 7.39907 + 2.04731i 0.452816 + 0.125293i
\(268\) 0 0
\(269\) 21.8771i 1.33387i −0.745116 0.666935i \(-0.767606\pi\)
0.745116 0.666935i \(-0.232394\pi\)
\(270\) 0 0
\(271\) 13.1799i 0.800619i −0.916380 0.400310i \(-0.868903\pi\)
0.916380 0.400310i \(-0.131097\pi\)
\(272\) 0 0
\(273\) −2.55017 0.705628i −0.154343 0.0427065i
\(274\) 0 0
\(275\) 2.91951 0.176053
\(276\) 0 0
\(277\) 7.63404 0.458685 0.229342 0.973346i \(-0.426342\pi\)
0.229342 + 0.973346i \(0.426342\pi\)
\(278\) 0 0
\(279\) −2.03800 + 3.40076i −0.122012 + 0.203598i
\(280\) 0 0
\(281\) 7.28647i 0.434674i −0.976097 0.217337i \(-0.930263\pi\)
0.976097 0.217337i \(-0.0697371\pi\)
\(282\) 0 0
\(283\) 11.4764i 0.682200i 0.940027 + 0.341100i \(0.110799\pi\)
−0.940027 + 0.341100i \(0.889201\pi\)
\(284\) 0 0
\(285\) −0.287505 + 1.03906i −0.0170304 + 0.0615485i
\(286\) 0 0
\(287\) 10.9921 0.648845
\(288\) 0 0
\(289\) −7.32306 −0.430768
\(290\) 0 0
\(291\) 7.39675 26.7322i 0.433605 1.56707i
\(292\) 0 0
\(293\) 1.44513i 0.0844251i −0.999109 0.0422126i \(-0.986559\pi\)
0.999109 0.0422126i \(-0.0134407\pi\)
\(294\) 0 0
\(295\) 5.63404i 0.328026i
\(296\) 0 0
\(297\) −10.6431 + 10.1353i −0.617576 + 0.588109i
\(298\) 0 0
\(299\) −0.713524 −0.0412642
\(300\) 0 0
\(301\) −15.2026 −0.876265
\(302\) 0 0
\(303\) 11.9345 + 3.30227i 0.685621 + 0.189710i
\(304\) 0 0
\(305\) 24.2534i 1.38875i
\(306\) 0 0
\(307\) 2.35874i 0.134620i −0.997732 0.0673101i \(-0.978558\pi\)
0.997732 0.0673101i \(-0.0214417\pi\)
\(308\) 0 0
\(309\) 15.3795 + 4.25548i 0.874908 + 0.242086i
\(310\) 0 0
\(311\) 22.4509 1.27307 0.636537 0.771246i \(-0.280366\pi\)
0.636537 + 0.771246i \(0.280366\pi\)
\(312\) 0 0
\(313\) −7.34728 −0.415293 −0.207646 0.978204i \(-0.566580\pi\)
−0.207646 + 0.978204i \(0.566580\pi\)
\(314\) 0 0
\(315\) 7.83056 + 4.69269i 0.441202 + 0.264403i
\(316\) 0 0
\(317\) 22.9646i 1.28982i −0.764259 0.644909i \(-0.776895\pi\)
0.764259 0.644909i \(-0.223105\pi\)
\(318\) 0 0
\(319\) 8.00000i 0.447914i
\(320\) 0 0
\(321\) 8.36178 30.2198i 0.466709 1.68671i
\(322\) 0 0
\(323\) 1.54111 0.0857495
\(324\) 0 0
\(325\) −1.03220 −0.0572563
\(326\) 0 0
\(327\) −4.70669 + 17.0102i −0.260281 + 0.940666i
\(328\) 0 0
\(329\) 7.60377i 0.419210i
\(330\) 0 0
\(331\) 12.7610i 0.701408i 0.936486 + 0.350704i \(0.114058\pi\)
−0.936486 + 0.350704i \(0.885942\pi\)
\(332\) 0 0
\(333\) −15.9284 9.54552i −0.872868 0.523091i
\(334\) 0 0
\(335\) −16.5579 −0.904655
\(336\) 0 0
\(337\) 0.143607 0.00782275 0.00391138 0.999992i \(-0.498755\pi\)
0.00391138 + 0.999992i \(0.498755\pi\)
\(338\) 0 0
\(339\) −21.6407 5.98794i −1.17536 0.325220i
\(340\) 0 0
\(341\) 3.73793i 0.202420i
\(342\) 0 0
\(343\) 17.8221i 0.962303i
\(344\) 0 0
\(345\) 2.37260 + 0.656494i 0.127736 + 0.0353445i
\(346\) 0 0
\(347\) 4.75843 0.255446 0.127723 0.991810i \(-0.459233\pi\)
0.127723 + 0.991810i \(0.459233\pi\)
\(348\) 0 0
\(349\) −20.1111 −1.07652 −0.538262 0.842778i \(-0.680919\pi\)
−0.538262 + 0.842778i \(0.680919\pi\)
\(350\) 0 0
\(351\) 3.76291 3.58337i 0.200849 0.191266i
\(352\) 0 0
\(353\) 15.9329i 0.848022i 0.905657 + 0.424011i \(0.139378\pi\)
−0.905657 + 0.424011i \(0.860622\pi\)
\(354\) 0 0
\(355\) 14.3363i 0.760892i
\(356\) 0 0
\(357\) 3.48004 12.5770i 0.184183 0.665647i
\(358\) 0 0
\(359\) 17.4944 0.923319 0.461659 0.887057i \(-0.347254\pi\)
0.461659 + 0.887057i \(0.347254\pi\)
\(360\) 0 0
\(361\) 18.9024 0.994861
\(362\) 0 0
\(363\) −1.38570 + 5.00798i −0.0727303 + 0.262851i
\(364\) 0 0
\(365\) 8.82500i 0.461921i
\(366\) 0 0
\(367\) 23.6304i 1.23350i 0.787161 + 0.616748i \(0.211550\pi\)
−0.787161 + 0.616748i \(0.788450\pi\)
\(368\) 0 0
\(369\) −11.0962 + 18.5159i −0.577643 + 0.963897i
\(370\) 0 0
\(371\) −0.414927 −0.0215420
\(372\) 0 0
\(373\) −25.3325 −1.31167 −0.655833 0.754906i \(-0.727682\pi\)
−0.655833 + 0.754906i \(0.727682\pi\)
\(374\) 0 0
\(375\) 20.0582 + 5.55007i 1.03580 + 0.286604i
\(376\) 0 0
\(377\) 2.82843i 0.145671i
\(378\) 0 0
\(379\) 29.6224i 1.52160i 0.648986 + 0.760801i \(0.275194\pi\)
−0.648986 + 0.760801i \(0.724806\pi\)
\(380\) 0 0
\(381\) −6.32958 1.75138i −0.324274 0.0897261i
\(382\) 0 0
\(383\) −11.0634 −0.565313 −0.282657 0.959221i \(-0.591216\pi\)
−0.282657 + 0.959221i \(0.591216\pi\)
\(384\) 0 0
\(385\) −8.60692 −0.438649
\(386\) 0 0
\(387\) 15.3465 25.6083i 0.780107 1.30174i
\(388\) 0 0
\(389\) 22.8760i 1.15986i 0.814666 + 0.579931i \(0.196920\pi\)
−0.814666 + 0.579931i \(0.803080\pi\)
\(390\) 0 0
\(391\) 3.51899i 0.177963i
\(392\) 0 0
\(393\) −8.16153 + 29.4961i −0.411695 + 1.48788i
\(394\) 0 0
\(395\) 10.3839 0.522472
\(396\) 0 0
\(397\) −0.204658 −0.0102715 −0.00513574 0.999987i \(-0.501635\pi\)
−0.00513574 + 0.999987i \(0.501635\pi\)
\(398\) 0 0
\(399\) −0.220495 + 0.796880i −0.0110386 + 0.0398939i
\(400\) 0 0
\(401\) 24.3889i 1.21792i 0.793199 + 0.608962i \(0.208414\pi\)
−0.793199 + 0.608962i \(0.791586\pi\)
\(402\) 0 0
\(403\) 1.32156i 0.0658314i
\(404\) 0 0
\(405\) −15.8093 + 8.45321i −0.785572 + 0.420043i
\(406\) 0 0
\(407\) 17.5076 0.867818
\(408\) 0 0
\(409\) 25.9675 1.28401 0.642005 0.766700i \(-0.278103\pi\)
0.642005 + 0.766700i \(0.278103\pi\)
\(410\) 0 0
\(411\) −20.5478 5.68553i −1.01355 0.280447i
\(412\) 0 0
\(413\) 4.32089i 0.212617i
\(414\) 0 0
\(415\) 2.97288i 0.145933i
\(416\) 0 0
\(417\) 18.2969 + 5.06271i 0.896001 + 0.247922i
\(418\) 0 0
\(419\) 2.82300 0.137913 0.0689563 0.997620i \(-0.478033\pi\)
0.0689563 + 0.997620i \(0.478033\pi\)
\(420\) 0 0
\(421\) −27.0920 −1.32038 −0.660191 0.751098i \(-0.729525\pi\)
−0.660191 + 0.751098i \(0.729525\pi\)
\(422\) 0 0
\(423\) −12.8083 7.67573i −0.622760 0.373207i
\(424\) 0 0
\(425\) 5.09066i 0.246933i
\(426\) 0 0
\(427\) 18.6006i 0.900144i
\(428\) 0 0
\(429\) −1.30645 + 4.72157i −0.0630760 + 0.227959i
\(430\) 0 0
\(431\) 34.2366 1.64912 0.824559 0.565776i \(-0.191423\pi\)
0.824559 + 0.565776i \(0.191423\pi\)
\(432\) 0 0
\(433\) −35.5649 −1.70914 −0.854571 0.519334i \(-0.826180\pi\)
−0.854571 + 0.519334i \(0.826180\pi\)
\(434\) 0 0
\(435\) −2.60236 + 9.40504i −0.124774 + 0.450937i
\(436\) 0 0
\(437\) 0.222963i 0.0106658i
\(438\) 0 0
\(439\) 23.1623i 1.10548i 0.833354 + 0.552739i \(0.186417\pi\)
−0.833354 + 0.552739i \(0.813583\pi\)
\(440\) 0 0
\(441\) −12.0076 7.19591i −0.571792 0.342662i
\(442\) 0 0
\(443\) −12.6867 −0.602763 −0.301381 0.953504i \(-0.597448\pi\)
−0.301381 + 0.953504i \(0.597448\pi\)
\(444\) 0 0
\(445\) −8.82898 −0.418534
\(446\) 0 0
\(447\) −37.0563 10.2534i −1.75270 0.484970i
\(448\) 0 0
\(449\) 16.2929i 0.768909i 0.923144 + 0.384454i \(0.125610\pi\)
−0.923144 + 0.384454i \(0.874390\pi\)
\(450\) 0 0
\(451\) 20.3516i 0.958320i
\(452\) 0 0
\(453\) 8.29172 + 2.29430i 0.389579 + 0.107796i
\(454\) 0 0
\(455\) 3.04301 0.142658
\(456\) 0 0
\(457\) 2.93461 0.137275 0.0686376 0.997642i \(-0.478135\pi\)
0.0686376 + 0.997642i \(0.478135\pi\)
\(458\) 0 0
\(459\) 17.6726 + 18.5581i 0.824886 + 0.866217i
\(460\) 0 0
\(461\) 10.4118i 0.484926i 0.970161 + 0.242463i \(0.0779553\pi\)
−0.970161 + 0.242463i \(0.922045\pi\)
\(462\) 0 0
\(463\) 29.3491i 1.36397i −0.731367 0.681984i \(-0.761118\pi\)
0.731367 0.681984i \(-0.238882\pi\)
\(464\) 0 0
\(465\) 1.21593 4.39442i 0.0563873 0.203786i
\(466\) 0 0
\(467\) 12.6395 0.584884 0.292442 0.956283i \(-0.405532\pi\)
0.292442 + 0.956283i \(0.405532\pi\)
\(468\) 0 0
\(469\) −12.6987 −0.586371
\(470\) 0 0
\(471\) 1.89906 6.86327i 0.0875039 0.316243i
\(472\) 0 0
\(473\) 28.1472i 1.29421i
\(474\) 0 0
\(475\) 0.322544i 0.0147993i
\(476\) 0 0
\(477\) 0.418854 0.698930i 0.0191780 0.0320018i
\(478\) 0 0
\(479\) −17.7181 −0.809562 −0.404781 0.914414i \(-0.632652\pi\)
−0.404781 + 0.914414i \(0.632652\pi\)
\(480\) 0 0
\(481\) −6.18986 −0.282233
\(482\) 0 0
\(483\) 1.81961 + 0.503482i 0.0827950 + 0.0229092i
\(484\) 0 0
\(485\) 31.8983i 1.44843i
\(486\) 0 0
\(487\) 0.904949i 0.0410071i 0.999790 + 0.0205036i \(0.00652695\pi\)
−0.999790 + 0.0205036i \(0.993473\pi\)
\(488\) 0 0
\(489\) −41.5745 11.5036i −1.88006 0.520210i
\(490\) 0 0
\(491\) −39.8566 −1.79870 −0.899352 0.437225i \(-0.855961\pi\)
−0.899352 + 0.437225i \(0.855961\pi\)
\(492\) 0 0
\(493\) 13.9494 0.628247
\(494\) 0 0
\(495\) 8.68837 14.4981i 0.390513 0.651639i
\(496\) 0 0
\(497\) 10.9949i 0.493188i
\(498\) 0 0
\(499\) 22.1823i 0.993016i 0.868032 + 0.496508i \(0.165385\pi\)
−0.868032 + 0.496508i \(0.834615\pi\)
\(500\) 0 0
\(501\) −8.39199 + 30.3290i −0.374927 + 1.35500i
\(502\) 0 0
\(503\) 18.9576 0.845277 0.422639 0.906298i \(-0.361104\pi\)
0.422639 + 0.906298i \(0.361104\pi\)
\(504\) 0 0
\(505\) −14.2410 −0.633714
\(506\) 0 0
\(507\) 0.461900 1.66933i 0.0205137 0.0741374i
\(508\) 0 0
\(509\) 13.6926i 0.606913i −0.952845 0.303456i \(-0.901859\pi\)
0.952845 0.303456i \(-0.0981407\pi\)
\(510\) 0 0
\(511\) 6.76812i 0.299404i
\(512\) 0 0
\(513\) −1.11973 1.17584i −0.0494375 0.0519145i
\(514\) 0 0
\(515\) −18.3517 −0.808671
\(516\) 0 0
\(517\) 14.0782 0.619157
\(518\) 0 0
\(519\) 34.6784 + 9.59546i 1.52221 + 0.421194i
\(520\) 0 0
\(521\) 33.0383i 1.44743i −0.690097 0.723717i \(-0.742432\pi\)
0.690097 0.723717i \(-0.257568\pi\)
\(522\) 0 0
\(523\) 8.65243i 0.378344i 0.981944 + 0.189172i \(0.0605804\pi\)
−0.981944 + 0.189172i \(0.939420\pi\)
\(524\) 0 0
\(525\) 2.63229 + 0.728351i 0.114883 + 0.0317878i
\(526\) 0 0
\(527\) −6.51771 −0.283916
\(528\) 0 0
\(529\) −22.4909 −0.977865
\(530\) 0 0
\(531\) −7.27838 4.36178i −0.315855 0.189285i
\(532\) 0 0
\(533\) 7.19538i 0.311667i
\(534\) 0 0
\(535\) 36.0600i 1.55901i
\(536\) 0 0
\(537\) 6.21840 22.4736i 0.268344 0.969806i
\(538\) 0 0
\(539\) 13.1981 0.568483
\(540\) 0 0
\(541\) 31.6907 1.36249 0.681245 0.732056i \(-0.261439\pi\)
0.681245 + 0.732056i \(0.261439\pi\)
\(542\) 0 0
\(543\) 4.50142 16.2683i 0.193174 0.698140i
\(544\) 0 0
\(545\) 20.2975i 0.869450i
\(546\) 0 0
\(547\) 40.7835i 1.74378i −0.489705 0.871888i \(-0.662896\pi\)
0.489705 0.871888i \(-0.337104\pi\)
\(548\) 0 0
\(549\) −31.3320 18.7766i −1.33722 0.801365i
\(550\) 0 0
\(551\) −0.883830 −0.0376524
\(552\) 0 0
\(553\) 7.96370 0.338651
\(554\) 0 0
\(555\) 20.5824 + 5.69512i 0.873676 + 0.241745i
\(556\) 0 0
\(557\) 21.0442i 0.891671i 0.895115 + 0.445836i \(0.147093\pi\)
−0.895115 + 0.445836i \(0.852907\pi\)
\(558\) 0 0
\(559\) 9.95155i 0.420906i
\(560\) 0 0
\(561\) −23.2860 6.44320i −0.983136 0.272032i
\(562\) 0 0
\(563\) −15.7735 −0.664776 −0.332388 0.943143i \(-0.607854\pi\)
−0.332388 + 0.943143i \(0.607854\pi\)
\(564\) 0 0
\(565\) 25.8229 1.08638
\(566\) 0 0
\(567\) −12.1246 + 6.48298i −0.509185 + 0.272260i
\(568\) 0 0
\(569\) 24.3284i 1.01990i −0.860204 0.509950i \(-0.829664\pi\)
0.860204 0.509950i \(-0.170336\pi\)
\(570\) 0 0
\(571\) 25.2578i 1.05701i 0.848932 + 0.528503i \(0.177246\pi\)
−0.848932 + 0.528503i \(0.822754\pi\)
\(572\) 0 0
\(573\) −9.90256 + 35.7883i −0.413686 + 1.49508i
\(574\) 0 0
\(575\) 0.736501 0.0307142
\(576\) 0 0
\(577\) 3.79244 0.157881 0.0789407 0.996879i \(-0.474846\pi\)
0.0789407 + 0.996879i \(0.474846\pi\)
\(578\) 0 0
\(579\) 2.40357 8.68662i 0.0998891 0.361004i
\(580\) 0 0
\(581\) 2.27998i 0.0945896i
\(582\) 0 0
\(583\) 0.768226i 0.0318167i
\(584\) 0 0
\(585\) −3.07180 + 5.12584i −0.127003 + 0.211927i
\(586\) 0 0
\(587\) 5.15607 0.212814 0.106407 0.994323i \(-0.466065\pi\)
0.106407 + 0.994323i \(0.466065\pi\)
\(588\) 0 0
\(589\) 0.412962 0.0170158
\(590\) 0 0
\(591\) −34.9716 9.67658i −1.43854 0.398041i
\(592\) 0 0
\(593\) 8.50732i 0.349354i −0.984626 0.174677i \(-0.944112\pi\)
0.984626 0.174677i \(-0.0558881\pi\)
\(594\) 0 0
\(595\) 15.0076i 0.615253i
\(596\) 0 0
\(597\) 35.7665 + 9.89654i 1.46383 + 0.405038i
\(598\) 0 0
\(599\) 47.6108 1.94533 0.972663 0.232221i \(-0.0745992\pi\)
0.972663 + 0.232221i \(0.0745992\pi\)
\(600\) 0 0
\(601\) −37.4898 −1.52924 −0.764621 0.644480i \(-0.777074\pi\)
−0.764621 + 0.644480i \(0.777074\pi\)
\(602\) 0 0
\(603\) 12.8189 21.3905i 0.522024 0.871088i
\(604\) 0 0
\(605\) 5.97580i 0.242951i
\(606\) 0 0
\(607\) 16.3327i 0.662925i 0.943468 + 0.331462i \(0.107542\pi\)
−0.943468 + 0.331462i \(0.892458\pi\)
\(608\) 0 0
\(609\) −1.99582 + 7.21297i −0.0808746 + 0.292284i
\(610\) 0 0
\(611\) −4.97738 −0.201363
\(612\) 0 0
\(613\) −39.8244 −1.60849 −0.804245 0.594298i \(-0.797430\pi\)
−0.804245 + 0.594298i \(0.797430\pi\)
\(614\) 0 0
\(615\) 6.62028 23.9260i 0.266955 0.964789i
\(616\) 0 0
\(617\) 2.31346i 0.0931362i 0.998915 + 0.0465681i \(0.0148285\pi\)
−0.998915 + 0.0465681i \(0.985172\pi\)
\(618\) 0 0
\(619\) 14.2618i 0.573232i 0.958046 + 0.286616i \(0.0925303\pi\)
−0.958046 + 0.286616i \(0.907470\pi\)
\(620\) 0 0
\(621\) −2.68493 + 2.55682i −0.107742 + 0.102602i
\(622\) 0 0
\(623\) −6.77118 −0.271281
\(624\) 0 0
\(625\) −18.7735 −0.750942
\(626\) 0 0
\(627\) 1.47540 + 0.408241i 0.0589218 + 0.0163036i
\(628\) 0 0
\(629\) 30.5274i 1.21721i
\(630\) 0 0
\(631\) 20.8339i 0.829385i −0.909962 0.414692i \(-0.863889\pi\)
0.909962 0.414692i \(-0.136111\pi\)
\(632\) 0 0
\(633\) 3.41953 + 0.946178i 0.135914 + 0.0376072i
\(634\) 0 0
\(635\) 7.55281 0.299724
\(636\) 0 0
\(637\) −4.66624 −0.184883
\(638\) 0 0
\(639\) −18.5205 11.0989i −0.732659 0.439067i
\(640\) 0 0
\(641\) 31.9762i 1.26299i −0.775382 0.631493i \(-0.782443\pi\)
0.775382 0.631493i \(-0.217557\pi\)
\(642\) 0 0
\(643\) 33.9140i 1.33744i −0.743515 0.668719i \(-0.766843\pi\)
0.743515 0.668719i \(-0.233157\pi\)
\(644\) 0 0
\(645\) −9.15615 + 33.0907i −0.360523 + 1.30295i
\(646\) 0 0
\(647\) −23.7076 −0.932044 −0.466022 0.884773i \(-0.654313\pi\)
−0.466022 + 0.884773i \(0.654313\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 0.932527 3.37019i 0.0365486 0.132088i
\(652\) 0 0
\(653\) 20.0722i 0.785487i −0.919648 0.392744i \(-0.871526\pi\)
0.919648 0.392744i \(-0.128474\pi\)
\(654\) 0 0
\(655\) 35.1964i 1.37524i
\(656\) 0 0
\(657\) −11.4007 6.83217i −0.444782 0.266548i
\(658\) 0 0
\(659\) −39.4507 −1.53678 −0.768391 0.639981i \(-0.778942\pi\)
−0.768391 + 0.639981i \(0.778942\pi\)
\(660\) 0 0
\(661\) −50.0275 −1.94584 −0.972922 0.231132i \(-0.925757\pi\)
−0.972922 + 0.231132i \(0.925757\pi\)
\(662\) 0 0
\(663\) 8.23285 + 2.27802i 0.319737 + 0.0884708i
\(664\) 0 0
\(665\) 0.950882i 0.0368736i
\(666\) 0 0
\(667\) 2.01815i 0.0781431i
\(668\) 0 0
\(669\) −3.19138 0.883049i −0.123386 0.0341407i
\(670\) 0 0
\(671\) 34.4384 1.32948
\(672\) 0 0
\(673\) 30.6051 1.17974 0.589871 0.807498i \(-0.299179\pi\)
0.589871 + 0.807498i \(0.299179\pi\)
\(674\) 0 0
\(675\) −3.88408 + 3.69876i −0.149498 + 0.142365i
\(676\) 0 0
\(677\) 20.4536i 0.786098i 0.919518 + 0.393049i \(0.128580\pi\)
−0.919518 + 0.393049i \(0.871420\pi\)
\(678\) 0 0
\(679\) 24.4637i 0.938829i
\(680\) 0 0
\(681\) 9.17660 33.1647i 0.351648 1.27087i
\(682\) 0 0
\(683\) −34.9957 −1.33907 −0.669536 0.742779i \(-0.733507\pi\)
−0.669536 + 0.742779i \(0.733507\pi\)
\(684\) 0 0
\(685\) 24.5187 0.936813
\(686\) 0 0
\(687\) −7.30905 + 26.4152i −0.278858 + 1.00780i
\(688\) 0 0
\(689\) 0.271609i 0.0103475i
\(690\) 0 0
\(691\) 14.8587i 0.565251i 0.959230 + 0.282626i \(0.0912054\pi\)
−0.959230 + 0.282626i \(0.908795\pi\)
\(692\) 0 0
\(693\) 6.66334 11.1189i 0.253119 0.422373i
\(694\) 0 0
\(695\) −21.8328 −0.828167
\(696\) 0 0
\(697\) −35.4865 −1.34415
\(698\) 0 0
\(699\) −17.1134 4.73524i −0.647288 0.179103i
\(700\) 0 0
\(701\) 3.95820i 0.149499i −0.997202 0.0747495i \(-0.976184\pi\)
0.997202 0.0747495i \(-0.0238157\pi\)
\(702\) 0 0
\(703\) 1.93421i 0.0729503i
\(704\) 0 0
\(705\) 16.5507 + 4.57956i 0.623336 + 0.172476i
\(706\) 0 0
\(707\) −10.9218 −0.410755
\(708\) 0 0
\(709\) 7.98185 0.299765 0.149882 0.988704i \(-0.452111\pi\)
0.149882 + 0.988704i \(0.452111\pi\)
\(710\) 0 0
\(711\) −8.03906 + 13.4146i −0.301488 + 0.503086i
\(712\) 0 0
\(713\) 0.942962i 0.0353142i
\(714\) 0 0
\(715\) 5.63404i 0.210701i
\(716\) 0 0
\(717\) −8.17339 + 29.5390i −0.305241 + 1.10315i
\(718\) 0 0
\(719\) 17.7752 0.662902 0.331451 0.943472i \(-0.392462\pi\)
0.331451 + 0.943472i \(0.392462\pi\)
\(720\) 0 0
\(721\) −14.0744 −0.524156
\(722\) 0 0
\(723\) −3.34874 + 12.1025i −0.124541 + 0.450096i
\(724\) 0 0
\(725\) 2.91951i 0.108428i
\(726\) 0 0
\(727\) 5.81424i 0.215638i 0.994171 + 0.107819i \(0.0343867\pi\)
−0.994171 + 0.107819i \(0.965613\pi\)
\(728\) 0 0
\(729\) 1.31896 26.9678i 0.0488505 0.998806i
\(730\) 0 0
\(731\) 49.0795 1.81527
\(732\) 0 0
\(733\) 18.1298 0.669641 0.334821 0.942282i \(-0.391324\pi\)
0.334821 + 0.942282i \(0.391324\pi\)
\(734\) 0 0
\(735\) 15.5161 + 4.29328i 0.572320 + 0.158360i
\(736\) 0 0
\(737\) 23.5112i 0.866048i
\(738\) 0 0
\(739\) 42.8348i 1.57570i −0.615866 0.787851i \(-0.711194\pi\)
0.615866 0.787851i \(-0.288806\pi\)
\(740\) 0 0
\(741\) −0.521633 0.144335i −0.0191627 0.00530228i
\(742\) 0 0
\(743\) 34.0147 1.24788 0.623938 0.781474i \(-0.285532\pi\)
0.623938 + 0.781474i \(0.285532\pi\)
\(744\) 0 0
\(745\) 44.2177 1.62001
\(746\) 0 0
\(747\) 3.84055 + 2.30156i 0.140518 + 0.0842096i
\(748\) 0 0
\(749\) 27.6554i 1.01050i
\(750\) 0 0
\(751\) 8.41666i 0.307128i −0.988139 0.153564i \(-0.950925\pi\)
0.988139 0.153564i \(-0.0490752\pi\)
\(752\) 0 0
\(753\) −0.455032 + 1.64451i −0.0165823 + 0.0599292i
\(754\) 0 0
\(755\) −9.89415 −0.360085
\(756\) 0 0
\(757\) −35.1198 −1.27645 −0.638225 0.769850i \(-0.720331\pi\)
−0.638225 + 0.769850i \(0.720331\pi\)
\(758\) 0 0
\(759\) 0.932183 3.36895i 0.0338361 0.122285i
\(760\) 0 0
\(761\) 13.7590i 0.498765i 0.968405 + 0.249383i \(0.0802276\pi\)
−0.968405 + 0.249383i \(0.919772\pi\)
\(762\) 0 0
\(763\) 15.5667i 0.563552i
\(764\) 0 0
\(765\) −25.2798 15.1496i −0.913994 0.547737i
\(766\) 0 0
\(767\) −2.82843 −0.102129
\(768\) 0 0
\(769\) −49.2675 −1.77663 −0.888316 0.459234i \(-0.848124\pi\)
−0.888316 + 0.459234i \(0.848124\pi\)
\(770\) 0 0
\(771\) −21.9441 6.07191i −0.790299 0.218674i
\(772\) 0 0
\(773\) 41.9899i 1.51027i −0.655569 0.755136i \(-0.727571\pi\)
0.655569 0.755136i \(-0.272429\pi\)
\(774\) 0 0
\(775\) 1.36411i 0.0490004i
\(776\) 0 0
\(777\) 15.7852 + 4.36774i 0.566291 + 0.156692i
\(778\) 0 0
\(779\) 2.24842 0.0805581
\(780\) 0 0
\(781\) 20.3567 0.728420
\(782\) 0 0
\(783\) −10.1353 10.6431i −0.362206 0.380354i
\(784\) 0 0
\(785\) 8.18964i 0.292301i
\(786\) 0 0
\(787\) 0.0716318i 0.00255340i 0.999999 + 0.00127670i \(0.000406386\pi\)
−0.999999 + 0.00127670i \(0.999594\pi\)
\(788\) 0 0
\(789\) −13.7130 + 49.5595i −0.488197 + 1.76437i
\(790\) 0 0
\(791\) 19.8042 0.704157
\(792\) 0 0
\(793\) −12.1758 −0.432376
\(794\) 0 0
\(795\) −0.249900 + 0.903150i −0.00886304 + 0.0320314i
\(796\) 0 0
\(797\) 15.3630i 0.544185i −0.962271 0.272092i \(-0.912284\pi\)
0.962271 0.272092i \(-0.0877157\pi\)
\(798\) 0 0
\(799\) 24.5477i 0.868434i
\(800\) 0 0
\(801\) 6.83525 11.4058i 0.241512 0.403004i
\(802\) 0 0
\(803\) 12.5310 0.442208
\(804\) 0 0
\(805\) −2.17126 −0.0765268
\(806\) 0 0
\(807\) −36.5200 10.1050i −1.28557 0.355714i
\(808\) 0 0
\(809\) 37.9238i 1.33333i 0.745358 + 0.666665i \(0.232279\pi\)
−0.745358 + 0.666665i \(0.767721\pi\)
\(810\) 0 0
\(811\) 2.19743i 0.0771622i −0.999255 0.0385811i \(-0.987716\pi\)
0.999255 0.0385811i \(-0.0122838\pi\)
\(812\) 0 0
\(813\) −22.0015 6.08777i −0.771625 0.213507i
\(814\) 0 0
\(815\) 49.6090 1.73773
\(816\) 0 0
\(817\) −3.10967 −0.108794
\(818\) 0 0
\(819\) −2.35585 + 3.93114i −0.0823199 + 0.137365i
\(820\) 0 0
\(821\) 21.4504i 0.748624i 0.927303 + 0.374312i \(0.122121\pi\)
−0.927303 + 0.374312i \(0.877879\pi\)
\(822\) 0 0
\(823\) 6.53171i 0.227681i 0.993499 + 0.113841i \(0.0363153\pi\)
−0.993499 + 0.113841i \(0.963685\pi\)
\(824\) 0 0
\(825\) 1.34852 4.87361i 0.0469494 0.169677i
\(826\) 0 0
\(827\) −46.3775 −1.61270 −0.806352 0.591436i \(-0.798561\pi\)
−0.806352 + 0.591436i \(0.798561\pi\)
\(828\) 0 0
\(829\) 14.6706 0.509530 0.254765 0.967003i \(-0.418002\pi\)
0.254765 + 0.967003i \(0.418002\pi\)
\(830\) 0 0
\(831\) 3.52616 12.7437i 0.122321 0.442074i
\(832\) 0 0
\(833\) 23.0132i 0.797359i
\(834\) 0 0
\(835\) 36.1903i 1.25242i
\(836\) 0 0
\(837\) 4.73562 + 4.97290i 0.163687 + 0.171888i
\(838\) 0 0
\(839\) −4.64114 −0.160230 −0.0801150 0.996786i \(-0.525529\pi\)
−0.0801150 + 0.996786i \(0.525529\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) −12.1635 3.36562i −0.418933 0.115918i
\(844\) 0 0
\(845\) 1.99193i 0.0685246i
\(846\) 0 0
\(847\) 4.58299i 0.157474i
\(848\) 0 0
\(849\) 19.1578 + 5.30093i 0.657495 + 0.181928i
\(850\) 0 0
\(851\) 4.41661 0.151400
\(852\) 0 0
\(853\) −40.5647 −1.38891 −0.694455 0.719537i \(-0.744354\pi\)
−0.694455 + 0.719537i \(0.744354\pi\)
\(854\) 0 0
\(855\) 1.60173 + 0.959881i 0.0547779 + 0.0328272i
\(856\) 0 0
\(857\) 8.55175i 0.292122i −0.989276 0.146061i \(-0.953340\pi\)
0.989276 0.146061i \(-0.0466596\pi\)
\(858\) 0 0
\(859\) 28.4530i 0.970802i 0.874292 + 0.485401i \(0.161326\pi\)
−0.874292 + 0.485401i \(0.838674\pi\)
\(860\) 0 0
\(861\) 5.07726 18.3495i 0.173033 0.625348i
\(862\) 0 0
\(863\) −5.51439 −0.187712 −0.0938560 0.995586i \(-0.529919\pi\)
−0.0938560 + 0.995586i \(0.529919\pi\)
\(864\) 0 0
\(865\) −41.3802 −1.40697
\(866\) 0 0
\(867\) −3.38252 + 12.2246i −0.114876 + 0.415168i
\(868\) 0 0
\(869\) 14.7446i 0.500175i
\(870\) 0 0
\(871\) 8.31248i 0.281658i
\(872\) 0 0
\(873\) −41.2082 24.6952i −1.39469 0.835805i
\(874\) 0 0
\(875\) −18.3560 −0.620547
\(876\) 0 0
\(877\) 46.4150 1.56732 0.783661 0.621188i \(-0.213350\pi\)
0.783661 + 0.621188i \(0.213350\pi\)
\(878\) 0 0
\(879\) −2.41239 0.667503i −0.0813677 0.0225143i
\(880\) 0 0
\(881\) 1.78585i 0.0601669i −0.999547 0.0300834i \(-0.990423\pi\)
0.999547 0.0300834i \(-0.00957730\pi\)
\(882\) 0 0
\(883\) 32.9419i 1.10858i 0.832323 + 0.554291i \(0.187011\pi\)
−0.832323 + 0.554291i \(0.812989\pi\)
\(884\) 0 0
\(885\) 9.40504 + 2.60236i 0.316147 + 0.0874774i
\(886\) 0 0
\(887\) −55.4993 −1.86349 −0.931743 0.363119i \(-0.881712\pi\)
−0.931743 + 0.363119i \(0.881712\pi\)
\(888\) 0 0
\(889\) 5.79244 0.194272
\(890\) 0 0
\(891\) 12.0031 + 22.4483i 0.402118 + 0.752047i
\(892\) 0 0
\(893\) 1.55534i 0.0520474i
\(894\) 0 0
\(895\) 26.8167i 0.896384i
\(896\) 0 0
\(897\) −0.329576 + 1.19110i −0.0110042 + 0.0397698i
\(898\) 0 0
\(899\) 3.73793 0.124667
\(900\) 0 0
\(901\) 1.33953 0.0446263
\(902\) 0 0
\(903\) −7.02209 + 25.3781i −0.233681 + 0.844532i
\(904\) 0 0
\(905\) 19.4123i 0.645286i
\(906\) 0 0
\(907\) 5.09939i 0.169322i 0.996410 + 0.0846612i \(0.0269808\pi\)
−0.996410 + 0.0846612i \(0.973019\pi\)
\(908\) 0 0
\(909\) 11.0251 18.3973i 0.365680 0.610200i
\(910\) 0 0
\(911\) 2.91034 0.0964239 0.0482120 0.998837i \(-0.484648\pi\)
0.0482120 + 0.998837i \(0.484648\pi\)
\(912\) 0 0
\(913\) −4.22132 −0.139705
\(914\) 0 0
\(915\) 40.4868 + 11.2026i 1.33845 + 0.370348i
\(916\) 0 0
\(917\) 26.9931i 0.891389i
\(918\) 0 0
\(919\) 59.8779i 1.97519i −0.157019 0.987596i \(-0.550188\pi\)
0.157019 0.987596i \(-0.449812\pi\)
\(920\) 0 0
\(921\) −3.93750 1.08950i −0.129745 0.0359002i
\(922\) 0 0
\(923\) −7.19718 −0.236898
\(924\) 0 0
\(925\) 6.38919 0.210075
\(926\) 0 0
\(927\) 14.2075 23.7078i 0.466637 0.778665i
\(928\) 0 0
\(929\) 6.15670i 0.201995i 0.994887 + 0.100997i \(0.0322034\pi\)
−0.994887 + 0.100997i \(0.967797\pi\)
\(930\) 0 0
\(931\) 1.45811i 0.0477877i
\(932\) 0 0
\(933\) 10.3701 37.4779i 0.339501 1.22697i
\(934\) 0 0
\(935\) 27.7862 0.908705
\(936\) 0 0
\(937\) 25.8098 0.843171 0.421585 0.906789i \(-0.361474\pi\)
0.421585 + 0.906789i \(0.361474\pi\)
\(938\) 0 0
\(939\) −3.39370 + 12.2650i −0.110749 + 0.400253i
\(940\) 0 0
\(941\) 46.0736i 1.50196i −0.660327 0.750978i \(-0.729582\pi\)
0.660327 0.750978i \(-0.270418\pi\)
\(942\) 0 0
\(943\) 5.13408i 0.167189i
\(944\) 0 0
\(945\) 11.4506 10.9042i 0.372487 0.354714i
\(946\) 0 0
\(947\) 45.5752 1.48099 0.740497 0.672060i \(-0.234590\pi\)
0.740497 + 0.672060i \(0.234590\pi\)
\(948\) 0 0
\(949\) −4.43037 −0.143816
\(950\) 0 0
\(951\) −38.3353 10.6073i −1.24311 0.343966i
\(952\) 0 0
\(953\) 4.14268i 0.134195i 0.997746 + 0.0670973i \(0.0213738\pi\)
−0.997746 + 0.0670973i \(0.978626\pi\)
\(954\) 0 0
\(955\) 42.7046i 1.38189i
\(956\) 0 0
\(957\) 13.3546 + 3.69520i 0.431693 + 0.119449i
\(958\) 0 0
\(959\) 18.8041 0.607215
\(960\) 0 0
\(961\) 29.2535 0.943661
\(962\) 0 0
\(963\) −46.5845 27.9171i −1.50116 0.899615i
\(964\) 0 0
\(965\) 10.3654i 0.333673i
\(966\) 0 0
\(967\) 4.67699i 0.150402i 0.997168 + 0.0752010i \(0.0239598\pi\)
−0.997168 + 0.0752010i \(0.976040\pi\)
\(968\) 0 0
\(969\) 0.711837 2.57261i 0.0228675 0.0826442i
\(970\) 0 0
\(971\) −42.4233 −1.36143 −0.680713 0.732550i \(-0.738330\pi\)
−0.680713 + 0.732550i \(0.738330\pi\)
\(972\) 0 0
\(973\) −16.7442 −0.536793
\(974\) 0 0
\(975\) −0.476774 + 1.72308i −0.0152690 + 0.0551828i
\(976\) 0 0
\(977\) 44.4355i 1.42162i 0.703386 + 0.710808i \(0.251671\pi\)
−0.703386 + 0.710808i \(0.748329\pi\)
\(978\) 0 0
\(979\) 12.5366i 0.400673i
\(980\) 0 0
\(981\) 26.2215 + 15.7140i 0.837190 + 0.501710i
\(982\) 0 0
\(983\) −32.2576 −1.02886 −0.514428 0.857534i \(-0.671996\pi\)
−0.514428 + 0.857534i \(0.671996\pi\)
\(984\) 0 0
\(985\) 41.7301 1.32963
\(986\) 0 0
\(987\) 12.6932 + 3.51218i 0.404028 + 0.111794i
\(988\) 0 0
\(989\) 7.10067i 0.225788i
\(990\) 0 0
\(991\) 8.04700i 0.255621i −0.991799 0.127811i \(-0.959205\pi\)
0.991799 0.127811i \(-0.0407950\pi\)
\(992\) 0 0
\(993\) 21.3023 + 5.89430i 0.676007 + 0.187050i
\(994\) 0 0
\(995\) −42.6786 −1.35300
\(996\) 0 0
\(997\) −7.84865 −0.248569 −0.124285 0.992247i \(-0.539664\pi\)
−0.124285 + 0.992247i \(0.539664\pi\)
\(998\) 0 0
\(999\) −23.2919 + 22.1805i −0.736923 + 0.701761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.d.q.1535.13 20
3.2 odd 2 inner 2496.2.d.q.1535.7 20
4.3 odd 2 inner 2496.2.d.q.1535.8 20
8.3 odd 2 1248.2.d.d.287.13 yes 20
8.5 even 2 1248.2.d.d.287.8 yes 20
12.11 even 2 inner 2496.2.d.q.1535.14 20
24.5 odd 2 1248.2.d.d.287.14 yes 20
24.11 even 2 1248.2.d.d.287.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.d.d.287.7 20 24.11 even 2
1248.2.d.d.287.8 yes 20 8.5 even 2
1248.2.d.d.287.13 yes 20 8.3 odd 2
1248.2.d.d.287.14 yes 20 24.5 odd 2
2496.2.d.q.1535.7 20 3.2 odd 2 inner
2496.2.d.q.1535.8 20 4.3 odd 2 inner
2496.2.d.q.1535.13 20 1.1 even 1 trivial
2496.2.d.q.1535.14 20 12.11 even 2 inner