Properties

Label 2496.2.d.q.1535.5
Level $2496$
Weight $2$
Character 2496.1535
Analytic conductor $19.931$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,2,Mod(1535,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1535");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{17} + 18 x^{16} + 8 x^{14} - 8 x^{13} + 241 x^{12} - 44 x^{11} - 112 x^{10} - 132 x^{9} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{23}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1248)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1535.5
Root \(0.587478 + 1.62938i\) of defining polynomial
Character \(\chi\) \(=\) 2496.1535
Dual form 2496.2.d.q.1535.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.736734 - 1.56755i) q^{3} +2.65543i q^{5} -4.30836i q^{7} +(-1.91445 + 2.30974i) q^{9} +2.82843 q^{11} -1.00000 q^{13} +(4.16253 - 1.95635i) q^{15} +1.67254i q^{17} +0.395673i q^{19} +(-6.75359 + 3.17412i) q^{21} -7.57972 q^{23} -2.05131 q^{25} +(5.03108 + 1.29933i) q^{27} -2.82843i q^{29} -11.1150i q^{31} +(-2.08380 - 4.43371i) q^{33} +11.4406 q^{35} +5.06937 q^{37} +(0.736734 + 1.56755i) q^{39} -8.00304i q^{41} +3.30270i q^{43} +(-6.13335 - 5.08368i) q^{45} -2.64266 q^{47} -11.5620 q^{49} +(2.62180 - 1.23222i) q^{51} +7.02015i q^{53} +7.51069i q^{55} +(0.620239 - 0.291506i) q^{57} +2.82843 q^{59} -9.31801 q^{61} +(9.95120 + 8.24813i) q^{63} -2.65543i q^{65} -7.60433i q^{67} +(5.58424 + 11.8816i) q^{69} -10.2908 q^{71} +11.4081 q^{73} +(1.51127 + 3.21553i) q^{75} -12.1859i q^{77} +12.7374i q^{79} +(-1.66979 - 8.84374i) q^{81} -9.35747 q^{83} -4.44132 q^{85} +(-4.43371 + 2.08380i) q^{87} -13.6854i q^{89} +4.30836i q^{91} +(-17.4234 + 8.18881i) q^{93} -1.05068 q^{95} +0.628049 q^{97} +(-5.41487 + 6.53293i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{9} - 20 q^{13} + 12 q^{21} - 36 q^{25} - 16 q^{37} - 4 q^{45} - 76 q^{49} - 16 q^{57} + 56 q^{61} - 24 q^{69} + 88 q^{73} + 72 q^{81} - 56 q^{85} - 96 q^{93} - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.736734 1.56755i −0.425354 0.905027i
\(4\) 0 0
\(5\) 2.65543i 1.18754i 0.804633 + 0.593772i \(0.202362\pi\)
−0.804633 + 0.593772i \(0.797638\pi\)
\(6\) 0 0
\(7\) 4.30836i 1.62841i −0.580579 0.814204i \(-0.697174\pi\)
0.580579 0.814204i \(-0.302826\pi\)
\(8\) 0 0
\(9\) −1.91445 + 2.30974i −0.638149 + 0.769913i
\(10\) 0 0
\(11\) 2.82843 0.852803 0.426401 0.904534i \(-0.359781\pi\)
0.426401 + 0.904534i \(0.359781\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 4.16253 1.95635i 1.07476 0.505126i
\(16\) 0 0
\(17\) 1.67254i 0.405651i 0.979215 + 0.202826i \(0.0650125\pi\)
−0.979215 + 0.202826i \(0.934988\pi\)
\(18\) 0 0
\(19\) 0.395673i 0.0907736i 0.998969 + 0.0453868i \(0.0144520\pi\)
−0.998969 + 0.0453868i \(0.985548\pi\)
\(20\) 0 0
\(21\) −6.75359 + 3.17412i −1.47375 + 0.692649i
\(22\) 0 0
\(23\) −7.57972 −1.58048 −0.790241 0.612797i \(-0.790044\pi\)
−0.790241 + 0.612797i \(0.790044\pi\)
\(24\) 0 0
\(25\) −2.05131 −0.410262
\(26\) 0 0
\(27\) 5.03108 + 1.29933i 0.968231 + 0.250057i
\(28\) 0 0
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 0 0
\(31\) 11.1150i 1.99632i −0.0606681 0.998158i \(-0.519323\pi\)
0.0606681 0.998158i \(-0.480677\pi\)
\(32\) 0 0
\(33\) −2.08380 4.43371i −0.362743 0.771810i
\(34\) 0 0
\(35\) 11.4406 1.93381
\(36\) 0 0
\(37\) 5.06937 0.833399 0.416700 0.909044i \(-0.363187\pi\)
0.416700 + 0.909044i \(0.363187\pi\)
\(38\) 0 0
\(39\) 0.736734 + 1.56755i 0.117972 + 0.251009i
\(40\) 0 0
\(41\) 8.00304i 1.24987i −0.780679 0.624933i \(-0.785126\pi\)
0.780679 0.624933i \(-0.214874\pi\)
\(42\) 0 0
\(43\) 3.30270i 0.503657i 0.967772 + 0.251829i \(0.0810320\pi\)
−0.967772 + 0.251829i \(0.918968\pi\)
\(44\) 0 0
\(45\) −6.13335 5.08368i −0.914306 0.757830i
\(46\) 0 0
\(47\) −2.64266 −0.385471 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(48\) 0 0
\(49\) −11.5620 −1.65171
\(50\) 0 0
\(51\) 2.62180 1.23222i 0.367125 0.172545i
\(52\) 0 0
\(53\) 7.02015i 0.964292i 0.876091 + 0.482146i \(0.160143\pi\)
−0.876091 + 0.482146i \(0.839857\pi\)
\(54\) 0 0
\(55\) 7.51069i 1.01274i
\(56\) 0 0
\(57\) 0.620239 0.291506i 0.0821526 0.0386109i
\(58\) 0 0
\(59\) 2.82843 0.368230 0.184115 0.982905i \(-0.441058\pi\)
0.184115 + 0.982905i \(0.441058\pi\)
\(60\) 0 0
\(61\) −9.31801 −1.19305 −0.596524 0.802595i \(-0.703452\pi\)
−0.596524 + 0.802595i \(0.703452\pi\)
\(62\) 0 0
\(63\) 9.95120 + 8.24813i 1.25373 + 1.03917i
\(64\) 0 0
\(65\) 2.65543i 0.329366i
\(66\) 0 0
\(67\) 7.60433i 0.929016i −0.885569 0.464508i \(-0.846231\pi\)
0.885569 0.464508i \(-0.153769\pi\)
\(68\) 0 0
\(69\) 5.58424 + 11.8816i 0.672263 + 1.43038i
\(70\) 0 0
\(71\) −10.2908 −1.22130 −0.610648 0.791902i \(-0.709091\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(72\) 0 0
\(73\) 11.4081 1.33521 0.667607 0.744514i \(-0.267319\pi\)
0.667607 + 0.744514i \(0.267319\pi\)
\(74\) 0 0
\(75\) 1.51127 + 3.21553i 0.174506 + 0.371298i
\(76\) 0 0
\(77\) 12.1859i 1.38871i
\(78\) 0 0
\(79\) 12.7374i 1.43307i 0.697551 + 0.716535i \(0.254273\pi\)
−0.697551 + 0.716535i \(0.745727\pi\)
\(80\) 0 0
\(81\) −1.66979 8.84374i −0.185532 0.982638i
\(82\) 0 0
\(83\) −9.35747 −1.02712 −0.513558 0.858055i \(-0.671673\pi\)
−0.513558 + 0.858055i \(0.671673\pi\)
\(84\) 0 0
\(85\) −4.44132 −0.481729
\(86\) 0 0
\(87\) −4.43371 + 2.08380i −0.475344 + 0.223407i
\(88\) 0 0
\(89\) 13.6854i 1.45065i −0.688405 0.725327i \(-0.741689\pi\)
0.688405 0.725327i \(-0.258311\pi\)
\(90\) 0 0
\(91\) 4.30836i 0.451639i
\(92\) 0 0
\(93\) −17.4234 + 8.18881i −1.80672 + 0.849140i
\(94\) 0 0
\(95\) −1.05068 −0.107798
\(96\) 0 0
\(97\) 0.628049 0.0637687 0.0318844 0.999492i \(-0.489849\pi\)
0.0318844 + 0.999492i \(0.489849\pi\)
\(98\) 0 0
\(99\) −5.41487 + 6.53293i −0.544215 + 0.656584i
\(100\) 0 0
\(101\) 15.0143i 1.49398i −0.664835 0.746990i \(-0.731498\pi\)
0.664835 0.746990i \(-0.268502\pi\)
\(102\) 0 0
\(103\) 16.7374i 1.64919i −0.565727 0.824593i \(-0.691404\pi\)
0.565727 0.824593i \(-0.308596\pi\)
\(104\) 0 0
\(105\) −8.42865 17.9337i −0.822552 1.75015i
\(106\) 0 0
\(107\) −14.2968 −1.38212 −0.691061 0.722796i \(-0.742857\pi\)
−0.691061 + 0.722796i \(0.742857\pi\)
\(108\) 0 0
\(109\) −9.06937 −0.868688 −0.434344 0.900747i \(-0.643020\pi\)
−0.434344 + 0.900747i \(0.643020\pi\)
\(110\) 0 0
\(111\) −3.73478 7.94651i −0.354489 0.754249i
\(112\) 0 0
\(113\) 0.846642i 0.0796454i −0.999207 0.0398227i \(-0.987321\pi\)
0.999207 0.0398227i \(-0.0126793\pi\)
\(114\) 0 0
\(115\) 20.1274i 1.87689i
\(116\) 0 0
\(117\) 1.91445 2.30974i 0.176991 0.213535i
\(118\) 0 0
\(119\) 7.20592 0.660566
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) −12.5452 + 5.89611i −1.13116 + 0.531635i
\(124\) 0 0
\(125\) 7.83004i 0.700340i
\(126\) 0 0
\(127\) 7.39001i 0.655758i −0.944720 0.327879i \(-0.893666\pi\)
0.944720 0.327879i \(-0.106334\pi\)
\(128\) 0 0
\(129\) 5.17716 2.43321i 0.455824 0.214232i
\(130\) 0 0
\(131\) −3.53085 −0.308492 −0.154246 0.988032i \(-0.549295\pi\)
−0.154246 + 0.988032i \(0.549295\pi\)
\(132\) 0 0
\(133\) 1.70470 0.147817
\(134\) 0 0
\(135\) −3.45029 + 13.3597i −0.296953 + 1.14982i
\(136\) 0 0
\(137\) 11.6941i 0.999096i 0.866286 + 0.499548i \(0.166501\pi\)
−0.866286 + 0.499548i \(0.833499\pi\)
\(138\) 0 0
\(139\) 14.0220i 1.18933i 0.803972 + 0.594667i \(0.202716\pi\)
−0.803972 + 0.594667i \(0.797284\pi\)
\(140\) 0 0
\(141\) 1.94694 + 4.14251i 0.163962 + 0.348862i
\(142\) 0 0
\(143\) −2.82843 −0.236525
\(144\) 0 0
\(145\) 7.51069 0.623729
\(146\) 0 0
\(147\) 8.51812 + 18.1240i 0.702562 + 1.49485i
\(148\) 0 0
\(149\) 18.1081i 1.48347i −0.670691 0.741737i \(-0.734002\pi\)
0.670691 0.741737i \(-0.265998\pi\)
\(150\) 0 0
\(151\) 2.99709i 0.243900i −0.992536 0.121950i \(-0.961085\pi\)
0.992536 0.121950i \(-0.0389148\pi\)
\(152\) 0 0
\(153\) −3.86314 3.20199i −0.312316 0.258866i
\(154\) 0 0
\(155\) 29.5151 2.37071
\(156\) 0 0
\(157\) −11.2154 −0.895086 −0.447543 0.894262i \(-0.647701\pi\)
−0.447543 + 0.894262i \(0.647701\pi\)
\(158\) 0 0
\(159\) 11.0045 5.17199i 0.872711 0.410165i
\(160\) 0 0
\(161\) 32.6562i 2.57367i
\(162\) 0 0
\(163\) 9.89504i 0.775039i −0.921861 0.387520i \(-0.873332\pi\)
0.921861 0.387520i \(-0.126668\pi\)
\(164\) 0 0
\(165\) 11.7734 5.53338i 0.916558 0.430773i
\(166\) 0 0
\(167\) −10.2201 −0.790857 −0.395428 0.918497i \(-0.629404\pi\)
−0.395428 + 0.918497i \(0.629404\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −0.913902 0.757495i −0.0698878 0.0579271i
\(172\) 0 0
\(173\) 10.0495i 0.764046i −0.924153 0.382023i \(-0.875228\pi\)
0.924153 0.382023i \(-0.124772\pi\)
\(174\) 0 0
\(175\) 8.83778i 0.668074i
\(176\) 0 0
\(177\) −2.08380 4.43371i −0.156628 0.333258i
\(178\) 0 0
\(179\) 5.84262 0.436698 0.218349 0.975871i \(-0.429933\pi\)
0.218349 + 0.975871i \(0.429933\pi\)
\(180\) 0 0
\(181\) −18.7261 −1.39190 −0.695949 0.718091i \(-0.745016\pi\)
−0.695949 + 0.718091i \(0.745016\pi\)
\(182\) 0 0
\(183\) 6.86489 + 14.6065i 0.507468 + 1.07974i
\(184\) 0 0
\(185\) 13.4614i 0.989699i
\(186\) 0 0
\(187\) 4.73067i 0.345941i
\(188\) 0 0
\(189\) 5.59800 21.6757i 0.407195 1.57668i
\(190\) 0 0
\(191\) −12.4890 −0.903671 −0.451835 0.892101i \(-0.649231\pi\)
−0.451835 + 0.892101i \(0.649231\pi\)
\(192\) 0 0
\(193\) −14.9188 −1.07388 −0.536938 0.843622i \(-0.680419\pi\)
−0.536938 + 0.843622i \(0.680419\pi\)
\(194\) 0 0
\(195\) −4.16253 + 1.95635i −0.298085 + 0.140097i
\(196\) 0 0
\(197\) 19.6515i 1.40011i 0.714087 + 0.700057i \(0.246842\pi\)
−0.714087 + 0.700057i \(0.753158\pi\)
\(198\) 0 0
\(199\) 2.90070i 0.205625i 0.994701 + 0.102813i \(0.0327842\pi\)
−0.994701 + 0.102813i \(0.967216\pi\)
\(200\) 0 0
\(201\) −11.9202 + 5.60237i −0.840785 + 0.395160i
\(202\) 0 0
\(203\) −12.1859 −0.855282
\(204\) 0 0
\(205\) 21.2515 1.48427
\(206\) 0 0
\(207\) 14.5110 17.5072i 1.00858 1.21683i
\(208\) 0 0
\(209\) 1.11913i 0.0774120i
\(210\) 0 0
\(211\) 15.3027i 1.05348i −0.850026 0.526741i \(-0.823414\pi\)
0.850026 0.526741i \(-0.176586\pi\)
\(212\) 0 0
\(213\) 7.58160 + 16.1314i 0.519483 + 1.10531i
\(214\) 0 0
\(215\) −8.77010 −0.598116
\(216\) 0 0
\(217\) −47.8875 −3.25082
\(218\) 0 0
\(219\) −8.40471 17.8828i −0.567938 1.20841i
\(220\) 0 0
\(221\) 1.67254i 0.112507i
\(222\) 0 0
\(223\) 5.61963i 0.376319i −0.982139 0.188159i \(-0.939748\pi\)
0.982139 0.188159i \(-0.0602521\pi\)
\(224\) 0 0
\(225\) 3.92712 4.73799i 0.261808 0.315866i
\(226\) 0 0
\(227\) −11.9595 −0.793778 −0.396889 0.917867i \(-0.629910\pi\)
−0.396889 + 0.917867i \(0.629910\pi\)
\(228\) 0 0
\(229\) −1.55868 −0.103000 −0.0515002 0.998673i \(-0.516400\pi\)
−0.0515002 + 0.998673i \(0.516400\pi\)
\(230\) 0 0
\(231\) −19.1020 + 8.97776i −1.25682 + 0.590693i
\(232\) 0 0
\(233\) 10.1674i 0.666086i −0.942912 0.333043i \(-0.891925\pi\)
0.942912 0.333043i \(-0.108075\pi\)
\(234\) 0 0
\(235\) 7.01739i 0.457764i
\(236\) 0 0
\(237\) 19.9666 9.38408i 1.29697 0.609561i
\(238\) 0 0
\(239\) 29.6165 1.91573 0.957865 0.287220i \(-0.0927311\pi\)
0.957865 + 0.287220i \(0.0927311\pi\)
\(240\) 0 0
\(241\) −4.41731 −0.284544 −0.142272 0.989828i \(-0.545441\pi\)
−0.142272 + 0.989828i \(0.545441\pi\)
\(242\) 0 0
\(243\) −12.6328 + 9.13297i −0.810397 + 0.585880i
\(244\) 0 0
\(245\) 30.7021i 1.96148i
\(246\) 0 0
\(247\) 0.395673i 0.0251761i
\(248\) 0 0
\(249\) 6.89396 + 14.6683i 0.436887 + 0.929567i
\(250\) 0 0
\(251\) 14.5999 0.921536 0.460768 0.887521i \(-0.347574\pi\)
0.460768 + 0.887521i \(0.347574\pi\)
\(252\) 0 0
\(253\) −21.4387 −1.34784
\(254\) 0 0
\(255\) 3.27207 + 6.96201i 0.204905 + 0.435978i
\(256\) 0 0
\(257\) 17.1780i 1.07153i 0.844366 + 0.535766i \(0.179977\pi\)
−0.844366 + 0.535766i \(0.820023\pi\)
\(258\) 0 0
\(259\) 21.8407i 1.35711i
\(260\) 0 0
\(261\) 6.53293 + 5.41487i 0.404378 + 0.335172i
\(262\) 0 0
\(263\) 10.0032 0.616826 0.308413 0.951253i \(-0.400202\pi\)
0.308413 + 0.951253i \(0.400202\pi\)
\(264\) 0 0
\(265\) −18.6415 −1.14514
\(266\) 0 0
\(267\) −21.4527 + 10.0825i −1.31288 + 0.617041i
\(268\) 0 0
\(269\) 16.5050i 1.00633i 0.864191 + 0.503163i \(0.167831\pi\)
−0.864191 + 0.503163i \(0.832169\pi\)
\(270\) 0 0
\(271\) 20.6410i 1.25385i −0.779079 0.626926i \(-0.784313\pi\)
0.779079 0.626926i \(-0.215687\pi\)
\(272\) 0 0
\(273\) 6.75359 3.17412i 0.408746 0.192106i
\(274\) 0 0
\(275\) −5.80198 −0.349872
\(276\) 0 0
\(277\) −5.51069 −0.331105 −0.165553 0.986201i \(-0.552941\pi\)
−0.165553 + 0.986201i \(0.552941\pi\)
\(278\) 0 0
\(279\) 25.6728 + 21.2791i 1.53699 + 1.27395i
\(280\) 0 0
\(281\) 16.6334i 0.992268i −0.868246 0.496134i \(-0.834752\pi\)
0.868246 0.496134i \(-0.165248\pi\)
\(282\) 0 0
\(283\) 3.63137i 0.215862i 0.994158 + 0.107931i \(0.0344226\pi\)
−0.994158 + 0.107931i \(0.965577\pi\)
\(284\) 0 0
\(285\) 0.774073 + 1.64700i 0.0458521 + 0.0975599i
\(286\) 0 0
\(287\) −34.4800 −2.03529
\(288\) 0 0
\(289\) 14.2026 0.835447
\(290\) 0 0
\(291\) −0.462705 0.984501i −0.0271243 0.0577124i
\(292\) 0 0
\(293\) 15.9605i 0.932420i 0.884674 + 0.466210i \(0.154381\pi\)
−0.884674 + 0.466210i \(0.845619\pi\)
\(294\) 0 0
\(295\) 7.51069i 0.437289i
\(296\) 0 0
\(297\) 14.2300 + 3.67507i 0.825710 + 0.213249i
\(298\) 0 0
\(299\) 7.57972 0.438347
\(300\) 0 0
\(301\) 14.2292 0.820160
\(302\) 0 0
\(303\) −23.5357 + 11.0616i −1.35209 + 0.635470i
\(304\) 0 0
\(305\) 24.7433i 1.41680i
\(306\) 0 0
\(307\) 18.9404i 1.08099i 0.841349 + 0.540493i \(0.181762\pi\)
−0.841349 + 0.540493i \(0.818238\pi\)
\(308\) 0 0
\(309\) −26.2368 + 12.3310i −1.49256 + 0.701487i
\(310\) 0 0
\(311\) 27.5749 1.56363 0.781815 0.623510i \(-0.214294\pi\)
0.781815 + 0.623510i \(0.214294\pi\)
\(312\) 0 0
\(313\) 31.1855 1.76271 0.881353 0.472458i \(-0.156633\pi\)
0.881353 + 0.472458i \(0.156633\pi\)
\(314\) 0 0
\(315\) −21.9023 + 26.4247i −1.23406 + 1.48886i
\(316\) 0 0
\(317\) 29.1493i 1.63719i −0.574372 0.818594i \(-0.694754\pi\)
0.574372 0.818594i \(-0.305246\pi\)
\(318\) 0 0
\(319\) 8.00000i 0.447914i
\(320\) 0 0
\(321\) 10.5329 + 22.4110i 0.587891 + 1.25086i
\(322\) 0 0
\(323\) −0.661780 −0.0368224
\(324\) 0 0
\(325\) 2.05131 0.113786
\(326\) 0 0
\(327\) 6.68171 + 14.2167i 0.369500 + 0.786186i
\(328\) 0 0
\(329\) 11.3855i 0.627705i
\(330\) 0 0
\(331\) 4.42629i 0.243291i 0.992574 + 0.121645i \(0.0388171\pi\)
−0.992574 + 0.121645i \(0.961183\pi\)
\(332\) 0 0
\(333\) −9.70504 + 11.7089i −0.531833 + 0.641645i
\(334\) 0 0
\(335\) 20.1928 1.10325
\(336\) 0 0
\(337\) −18.2667 −0.995051 −0.497525 0.867449i \(-0.665758\pi\)
−0.497525 + 0.867449i \(0.665758\pi\)
\(338\) 0 0
\(339\) −1.32716 + 0.623750i −0.0720812 + 0.0338774i
\(340\) 0 0
\(341\) 31.4380i 1.70246i
\(342\) 0 0
\(343\) 19.6547i 1.06126i
\(344\) 0 0
\(345\) −31.5508 + 14.8286i −1.69864 + 0.798342i
\(346\) 0 0
\(347\) 0.915999 0.0491734 0.0245867 0.999698i \(-0.492173\pi\)
0.0245867 + 0.999698i \(0.492173\pi\)
\(348\) 0 0
\(349\) 30.9747 1.65804 0.829019 0.559220i \(-0.188899\pi\)
0.829019 + 0.559220i \(0.188899\pi\)
\(350\) 0 0
\(351\) −5.03108 1.29933i −0.268539 0.0693533i
\(352\) 0 0
\(353\) 34.2416i 1.82249i 0.411860 + 0.911247i \(0.364879\pi\)
−0.411860 + 0.911247i \(0.635121\pi\)
\(354\) 0 0
\(355\) 27.3266i 1.45034i
\(356\) 0 0
\(357\) −5.30885 11.2957i −0.280974 0.597830i
\(358\) 0 0
\(359\) −24.7734 −1.30749 −0.653745 0.756715i \(-0.726803\pi\)
−0.653745 + 0.756715i \(0.726803\pi\)
\(360\) 0 0
\(361\) 18.8434 0.991760
\(362\) 0 0
\(363\) 2.21020 + 4.70266i 0.116006 + 0.246826i
\(364\) 0 0
\(365\) 30.2933i 1.58563i
\(366\) 0 0
\(367\) 7.89280i 0.412001i 0.978552 + 0.206000i \(0.0660448\pi\)
−0.978552 + 0.206000i \(0.933955\pi\)
\(368\) 0 0
\(369\) 18.4849 + 15.3214i 0.962288 + 0.797600i
\(370\) 0 0
\(371\) 30.2454 1.57026
\(372\) 0 0
\(373\) 7.12400 0.368867 0.184433 0.982845i \(-0.440955\pi\)
0.184433 + 0.982845i \(0.440955\pi\)
\(374\) 0 0
\(375\) 12.2740 5.76866i 0.633827 0.297892i
\(376\) 0 0
\(377\) 2.82843i 0.145671i
\(378\) 0 0
\(379\) 27.9858i 1.43753i −0.695252 0.718766i \(-0.744707\pi\)
0.695252 0.718766i \(-0.255293\pi\)
\(380\) 0 0
\(381\) −11.5842 + 5.44447i −0.593478 + 0.278929i
\(382\) 0 0
\(383\) 25.5238 1.30420 0.652102 0.758131i \(-0.273887\pi\)
0.652102 + 0.758131i \(0.273887\pi\)
\(384\) 0 0
\(385\) 32.3588 1.64916
\(386\) 0 0
\(387\) −7.62838 6.32285i −0.387772 0.321408i
\(388\) 0 0
\(389\) 7.52080i 0.381320i 0.981656 + 0.190660i \(0.0610628\pi\)
−0.981656 + 0.190660i \(0.938937\pi\)
\(390\) 0 0
\(391\) 12.6774i 0.641124i
\(392\) 0 0
\(393\) 2.60130 + 5.53480i 0.131218 + 0.279194i
\(394\) 0 0
\(395\) −33.8233 −1.70183
\(396\) 0 0
\(397\) 6.99210 0.350923 0.175462 0.984486i \(-0.443858\pi\)
0.175462 + 0.984486i \(0.443858\pi\)
\(398\) 0 0
\(399\) −1.25591 2.67221i −0.0628743 0.133778i
\(400\) 0 0
\(401\) 11.9666i 0.597584i −0.954318 0.298792i \(-0.903416\pi\)
0.954318 0.298792i \(-0.0965837\pi\)
\(402\) 0 0
\(403\) 11.1150i 0.553678i
\(404\) 0 0
\(405\) 23.4839 4.43401i 1.16693 0.220328i
\(406\) 0 0
\(407\) 14.3383 0.710725
\(408\) 0 0
\(409\) −6.70802 −0.331690 −0.165845 0.986152i \(-0.553035\pi\)
−0.165845 + 0.986152i \(0.553035\pi\)
\(410\) 0 0
\(411\) 18.3312 8.61546i 0.904209 0.424969i
\(412\) 0 0
\(413\) 12.1859i 0.599629i
\(414\) 0 0
\(415\) 24.8481i 1.21975i
\(416\) 0 0
\(417\) 21.9803 10.3305i 1.07638 0.505888i
\(418\) 0 0
\(419\) 29.5224 1.44226 0.721132 0.692797i \(-0.243622\pi\)
0.721132 + 0.692797i \(0.243622\pi\)
\(420\) 0 0
\(421\) 13.4627 0.656132 0.328066 0.944655i \(-0.393603\pi\)
0.328066 + 0.944655i \(0.393603\pi\)
\(422\) 0 0
\(423\) 5.05923 6.10385i 0.245988 0.296779i
\(424\) 0 0
\(425\) 3.43090i 0.166423i
\(426\) 0 0
\(427\) 40.1454i 1.94277i
\(428\) 0 0
\(429\) 2.08380 + 4.43371i 0.100607 + 0.214062i
\(430\) 0 0
\(431\) 15.8921 0.765494 0.382747 0.923853i \(-0.374978\pi\)
0.382747 + 0.923853i \(0.374978\pi\)
\(432\) 0 0
\(433\) −0.899333 −0.0432192 −0.0216096 0.999766i \(-0.506879\pi\)
−0.0216096 + 0.999766i \(0.506879\pi\)
\(434\) 0 0
\(435\) −5.53338 11.7734i −0.265305 0.564492i
\(436\) 0 0
\(437\) 2.99909i 0.143466i
\(438\) 0 0
\(439\) 21.4681i 1.02462i −0.858802 0.512308i \(-0.828791\pi\)
0.858802 0.512308i \(-0.171209\pi\)
\(440\) 0 0
\(441\) 22.1348 26.7052i 1.05404 1.27168i
\(442\) 0 0
\(443\) −32.8675 −1.56158 −0.780791 0.624792i \(-0.785184\pi\)
−0.780791 + 0.624792i \(0.785184\pi\)
\(444\) 0 0
\(445\) 36.3407 1.72272
\(446\) 0 0
\(447\) −28.3854 + 13.3409i −1.34258 + 0.631001i
\(448\) 0 0
\(449\) 6.38326i 0.301245i −0.988591 0.150622i \(-0.951872\pi\)
0.988591 0.150622i \(-0.0481278\pi\)
\(450\) 0 0
\(451\) 22.6360i 1.06589i
\(452\) 0 0
\(453\) −4.69810 + 2.20806i −0.220736 + 0.103744i
\(454\) 0 0
\(455\) −11.4406 −0.536342
\(456\) 0 0
\(457\) −3.82405 −0.178881 −0.0894407 0.995992i \(-0.528508\pi\)
−0.0894407 + 0.995992i \(0.528508\pi\)
\(458\) 0 0
\(459\) −2.17319 + 8.41469i −0.101436 + 0.392764i
\(460\) 0 0
\(461\) 18.6871i 0.870343i 0.900348 + 0.435171i \(0.143312\pi\)
−0.900348 + 0.435171i \(0.856688\pi\)
\(462\) 0 0
\(463\) 13.8589i 0.644079i −0.946726 0.322039i \(-0.895632\pi\)
0.946726 0.322039i \(-0.104368\pi\)
\(464\) 0 0
\(465\) −21.7448 46.2666i −1.00839 2.14556i
\(466\) 0 0
\(467\) 9.63501 0.445855 0.222928 0.974835i \(-0.428439\pi\)
0.222928 + 0.974835i \(0.428439\pi\)
\(468\) 0 0
\(469\) −32.7622 −1.51282
\(470\) 0 0
\(471\) 8.26276 + 17.5807i 0.380728 + 0.810077i
\(472\) 0 0
\(473\) 9.34145i 0.429521i
\(474\) 0 0
\(475\) 0.811647i 0.0372409i
\(476\) 0 0
\(477\) −16.2147 13.4397i −0.742421 0.615362i
\(478\) 0 0
\(479\) 6.48839 0.296462 0.148231 0.988953i \(-0.452642\pi\)
0.148231 + 0.988953i \(0.452642\pi\)
\(480\) 0 0
\(481\) −5.06937 −0.231143
\(482\) 0 0
\(483\) 51.1903 24.0589i 2.32924 1.09472i
\(484\) 0 0
\(485\) 1.66774i 0.0757282i
\(486\) 0 0
\(487\) 33.8950i 1.53593i 0.640491 + 0.767965i \(0.278731\pi\)
−0.640491 + 0.767965i \(0.721269\pi\)
\(488\) 0 0
\(489\) −15.5110 + 7.29001i −0.701432 + 0.329666i
\(490\) 0 0
\(491\) −7.84678 −0.354120 −0.177060 0.984200i \(-0.556659\pi\)
−0.177060 + 0.984200i \(0.556659\pi\)
\(492\) 0 0
\(493\) 4.73067 0.213058
\(494\) 0 0
\(495\) −17.3477 14.3788i −0.779723 0.646280i
\(496\) 0 0
\(497\) 44.3366i 1.98877i
\(498\) 0 0
\(499\) 23.7011i 1.06101i −0.847682 0.530504i \(-0.822003\pi\)
0.847682 0.530504i \(-0.177997\pi\)
\(500\) 0 0
\(501\) 7.52951 + 16.0206i 0.336394 + 0.715747i
\(502\) 0 0
\(503\) 22.3070 0.994618 0.497309 0.867573i \(-0.334321\pi\)
0.497309 + 0.867573i \(0.334321\pi\)
\(504\) 0 0
\(505\) 39.8695 1.77417
\(506\) 0 0
\(507\) −0.736734 1.56755i −0.0327195 0.0696175i
\(508\) 0 0
\(509\) 32.5502i 1.44276i 0.692539 + 0.721380i \(0.256492\pi\)
−0.692539 + 0.721380i \(0.743508\pi\)
\(510\) 0 0
\(511\) 49.1501i 2.17427i
\(512\) 0 0
\(513\) −0.514111 + 1.99066i −0.0226986 + 0.0878899i
\(514\) 0 0
\(515\) 44.4450 1.95848
\(516\) 0 0
\(517\) −7.47457 −0.328731
\(518\) 0 0
\(519\) −15.7531 + 7.40377i −0.691482 + 0.324990i
\(520\) 0 0
\(521\) 27.9288i 1.22358i −0.791019 0.611792i \(-0.790449\pi\)
0.791019 0.611792i \(-0.209551\pi\)
\(522\) 0 0
\(523\) 11.4261i 0.499630i −0.968294 0.249815i \(-0.919630\pi\)
0.968294 0.249815i \(-0.0803698\pi\)
\(524\) 0 0
\(525\) 13.8537 6.51109i 0.604625 0.284167i
\(526\) 0 0
\(527\) 18.5903 0.809808
\(528\) 0 0
\(529\) 34.4522 1.49792
\(530\) 0 0
\(531\) −5.41487 + 6.53293i −0.234985 + 0.283505i
\(532\) 0 0
\(533\) 8.00304i 0.346650i
\(534\) 0 0
\(535\) 37.9641i 1.64133i
\(536\) 0 0
\(537\) −4.30446 9.15862i −0.185751 0.395224i
\(538\) 0 0
\(539\) −32.7023 −1.40859
\(540\) 0 0
\(541\) 37.8306 1.62647 0.813233 0.581938i \(-0.197705\pi\)
0.813233 + 0.581938i \(0.197705\pi\)
\(542\) 0 0
\(543\) 13.7961 + 29.3541i 0.592049 + 1.25971i
\(544\) 0 0
\(545\) 24.0831i 1.03161i
\(546\) 0 0
\(547\) 7.77385i 0.332386i −0.986093 0.166193i \(-0.946853\pi\)
0.986093 0.166193i \(-0.0531474\pi\)
\(548\) 0 0
\(549\) 17.8388 21.5222i 0.761343 0.918544i
\(550\) 0 0
\(551\) 1.11913 0.0476766
\(552\) 0 0
\(553\) 54.8774 2.33362
\(554\) 0 0
\(555\) 21.1014 9.91744i 0.895704 0.420972i
\(556\) 0 0
\(557\) 6.44556i 0.273107i −0.990633 0.136553i \(-0.956397\pi\)
0.990633 0.136553i \(-0.0436026\pi\)
\(558\) 0 0
\(559\) 3.30270i 0.139689i
\(560\) 0 0
\(561\) 7.41557 3.48524i 0.313086 0.147147i
\(562\) 0 0
\(563\) 10.4360 0.439823 0.219911 0.975520i \(-0.429423\pi\)
0.219911 + 0.975520i \(0.429423\pi\)
\(564\) 0 0
\(565\) 2.24820 0.0945824
\(566\) 0 0
\(567\) −38.1021 + 7.19407i −1.60014 + 0.302122i
\(568\) 0 0
\(569\) 20.5421i 0.861171i −0.902550 0.430585i \(-0.858307\pi\)
0.902550 0.430585i \(-0.141693\pi\)
\(570\) 0 0
\(571\) 27.6580i 1.15745i −0.815522 0.578726i \(-0.803550\pi\)
0.815522 0.578726i \(-0.196450\pi\)
\(572\) 0 0
\(573\) 9.20106 + 19.5771i 0.384380 + 0.817847i
\(574\) 0 0
\(575\) 15.5483 0.648411
\(576\) 0 0
\(577\) −33.8389 −1.40873 −0.704365 0.709838i \(-0.748768\pi\)
−0.704365 + 0.709838i \(0.748768\pi\)
\(578\) 0 0
\(579\) 10.9912 + 23.3860i 0.456777 + 0.971887i
\(580\) 0 0
\(581\) 40.3154i 1.67256i
\(582\) 0 0
\(583\) 19.8560i 0.822351i
\(584\) 0 0
\(585\) 6.13335 + 5.08368i 0.253583 + 0.210184i
\(586\) 0 0
\(587\) 21.0860 0.870313 0.435156 0.900355i \(-0.356693\pi\)
0.435156 + 0.900355i \(0.356693\pi\)
\(588\) 0 0
\(589\) 4.39791 0.181213
\(590\) 0 0
\(591\) 30.8048 14.4780i 1.26714 0.595543i
\(592\) 0 0
\(593\) 0.255824i 0.0105054i −0.999986 0.00525272i \(-0.998328\pi\)
0.999986 0.00525272i \(-0.00167200\pi\)
\(594\) 0 0
\(595\) 19.1348i 0.784451i
\(596\) 0 0
\(597\) 4.54701 2.13705i 0.186097 0.0874635i
\(598\) 0 0
\(599\) −25.9103 −1.05867 −0.529333 0.848414i \(-0.677558\pi\)
−0.529333 + 0.848414i \(0.677558\pi\)
\(600\) 0 0
\(601\) 28.7626 1.17325 0.586626 0.809858i \(-0.300456\pi\)
0.586626 + 0.809858i \(0.300456\pi\)
\(602\) 0 0
\(603\) 17.5640 + 14.5581i 0.715262 + 0.592851i
\(604\) 0 0
\(605\) 7.96629i 0.323876i
\(606\) 0 0
\(607\) 23.2515i 0.943750i −0.881665 0.471875i \(-0.843577\pi\)
0.881665 0.471875i \(-0.156423\pi\)
\(608\) 0 0
\(609\) 8.97776 + 19.1020i 0.363797 + 0.774054i
\(610\) 0 0
\(611\) 2.64266 0.106911
\(612\) 0 0
\(613\) 36.6495 1.48026 0.740130 0.672464i \(-0.234764\pi\)
0.740130 + 0.672464i \(0.234764\pi\)
\(614\) 0 0
\(615\) −15.6567 33.3129i −0.631340 1.34331i
\(616\) 0 0
\(617\) 3.28046i 0.132066i 0.997817 + 0.0660331i \(0.0210343\pi\)
−0.997817 + 0.0660331i \(0.978966\pi\)
\(618\) 0 0
\(619\) 4.33499i 0.174238i −0.996198 0.0871190i \(-0.972234\pi\)
0.996198 0.0871190i \(-0.0277660\pi\)
\(620\) 0 0
\(621\) −38.1342 9.84858i −1.53027 0.395210i
\(622\) 0 0
\(623\) −58.9618 −2.36226
\(624\) 0 0
\(625\) −31.0487 −1.24195
\(626\) 0 0
\(627\) 1.75430 0.824503i 0.0700600 0.0329275i
\(628\) 0 0
\(629\) 8.47874i 0.338069i
\(630\) 0 0
\(631\) 39.2691i 1.56328i 0.623732 + 0.781638i \(0.285616\pi\)
−0.623732 + 0.781638i \(0.714384\pi\)
\(632\) 0 0
\(633\) −23.9878 + 11.2740i −0.953430 + 0.448102i
\(634\) 0 0
\(635\) 19.6237 0.778741
\(636\) 0 0
\(637\) 11.5620 0.458103
\(638\) 0 0
\(639\) 19.7012 23.7691i 0.779369 0.940292i
\(640\) 0 0
\(641\) 49.4099i 1.95157i −0.218726 0.975786i \(-0.570190\pi\)
0.218726 0.975786i \(-0.429810\pi\)
\(642\) 0 0
\(643\) 12.6144i 0.497463i −0.968573 0.248731i \(-0.919986\pi\)
0.968573 0.248731i \(-0.0800136\pi\)
\(644\) 0 0
\(645\) 6.46123 + 13.7476i 0.254411 + 0.541311i
\(646\) 0 0
\(647\) −5.95489 −0.234111 −0.117055 0.993125i \(-0.537346\pi\)
−0.117055 + 0.993125i \(0.537346\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 35.2804 + 75.0663i 1.38275 + 2.94208i
\(652\) 0 0
\(653\) 6.09222i 0.238407i −0.992870 0.119203i \(-0.961966\pi\)
0.992870 0.119203i \(-0.0380341\pi\)
\(654\) 0 0
\(655\) 9.37594i 0.366348i
\(656\) 0 0
\(657\) −21.8401 + 26.3497i −0.852065 + 1.02800i
\(658\) 0 0
\(659\) −6.82259 −0.265771 −0.132885 0.991131i \(-0.542424\pi\)
−0.132885 + 0.991131i \(0.542424\pi\)
\(660\) 0 0
\(661\) −19.2561 −0.748975 −0.374488 0.927232i \(-0.622181\pi\)
−0.374488 + 0.927232i \(0.622181\pi\)
\(662\) 0 0
\(663\) −2.62180 + 1.23222i −0.101822 + 0.0478554i
\(664\) 0 0
\(665\) 4.52672i 0.175539i
\(666\) 0 0
\(667\) 21.4387i 0.830109i
\(668\) 0 0
\(669\) −8.80908 + 4.14018i −0.340579 + 0.160068i
\(670\) 0 0
\(671\) −26.3553 −1.01744
\(672\) 0 0
\(673\) 6.77958 0.261334 0.130667 0.991426i \(-0.458288\pi\)
0.130667 + 0.991426i \(0.458288\pi\)
\(674\) 0 0
\(675\) −10.3203 2.66533i −0.397228 0.102589i
\(676\) 0 0
\(677\) 27.0889i 1.04111i −0.853828 0.520555i \(-0.825725\pi\)
0.853828 0.520555i \(-0.174275\pi\)
\(678\) 0 0
\(679\) 2.70586i 0.103842i
\(680\) 0 0
\(681\) 8.81095 + 18.7471i 0.337636 + 0.718391i
\(682\) 0 0
\(683\) −50.4159 −1.92911 −0.964556 0.263880i \(-0.914998\pi\)
−0.964556 + 0.263880i \(0.914998\pi\)
\(684\) 0 0
\(685\) −31.0529 −1.18647
\(686\) 0 0
\(687\) 1.14833 + 2.44331i 0.0438116 + 0.0932182i
\(688\) 0 0
\(689\) 7.02015i 0.267447i
\(690\) 0 0
\(691\) 37.2311i 1.41634i 0.706043 + 0.708169i \(0.250479\pi\)
−0.706043 + 0.708169i \(0.749521\pi\)
\(692\) 0 0
\(693\) 28.1462 + 23.3292i 1.06919 + 0.886204i
\(694\) 0 0
\(695\) −37.2346 −1.41239
\(696\) 0 0
\(697\) 13.3854 0.507009
\(698\) 0 0
\(699\) −15.9379 + 7.49064i −0.602826 + 0.283322i
\(700\) 0 0
\(701\) 27.8365i 1.05137i 0.850680 + 0.525684i \(0.176191\pi\)
−0.850680 + 0.525684i \(0.823809\pi\)
\(702\) 0 0
\(703\) 2.00581i 0.0756507i
\(704\) 0 0
\(705\) −11.0001 + 5.16995i −0.414289 + 0.194712i
\(706\) 0 0
\(707\) −64.6872 −2.43281
\(708\) 0 0
\(709\) 31.4387 1.18070 0.590352 0.807146i \(-0.298989\pi\)
0.590352 + 0.807146i \(0.298989\pi\)
\(710\) 0 0
\(711\) −29.4201 24.3851i −1.10334 0.914512i
\(712\) 0 0
\(713\) 84.2487i 3.15514i
\(714\) 0 0
\(715\) 7.51069i 0.280884i
\(716\) 0 0
\(717\) −21.8194 46.4254i −0.814862 1.73379i
\(718\) 0 0
\(719\) 0.760439 0.0283596 0.0141798 0.999899i \(-0.495486\pi\)
0.0141798 + 0.999899i \(0.495486\pi\)
\(720\) 0 0
\(721\) −72.1108 −2.68555
\(722\) 0 0
\(723\) 3.25438 + 6.92436i 0.121032 + 0.257520i
\(724\) 0 0
\(725\) 5.80198i 0.215480i
\(726\) 0 0
\(727\) 36.8954i 1.36838i 0.729306 + 0.684188i \(0.239843\pi\)
−0.729306 + 0.684188i \(0.760157\pi\)
\(728\) 0 0
\(729\) 23.6235 + 13.0741i 0.874943 + 0.484226i
\(730\) 0 0
\(731\) −5.52391 −0.204309
\(732\) 0 0
\(733\) 15.1052 0.557925 0.278963 0.960302i \(-0.410009\pi\)
0.278963 + 0.960302i \(0.410009\pi\)
\(734\) 0 0
\(735\) −48.1271 + 22.6193i −1.77520 + 0.834324i
\(736\) 0 0
\(737\) 21.5083i 0.792268i
\(738\) 0 0
\(739\) 12.1659i 0.447529i 0.974643 + 0.223765i \(0.0718347\pi\)
−0.974643 + 0.223765i \(0.928165\pi\)
\(740\) 0 0
\(741\) −0.620239 + 0.291506i −0.0227850 + 0.0107087i
\(742\) 0 0
\(743\) −24.5113 −0.899234 −0.449617 0.893222i \(-0.648439\pi\)
−0.449617 + 0.893222i \(0.648439\pi\)
\(744\) 0 0
\(745\) 48.0848 1.76169
\(746\) 0 0
\(747\) 17.9144 21.6133i 0.655452 0.790790i
\(748\) 0 0
\(749\) 61.5958i 2.25066i
\(750\) 0 0
\(751\) 4.18136i 0.152580i −0.997086 0.0762900i \(-0.975693\pi\)
0.997086 0.0762900i \(-0.0243075\pi\)
\(752\) 0 0
\(753\) −10.7562 22.8861i −0.391979 0.834015i
\(754\) 0 0
\(755\) 7.95857 0.289642
\(756\) 0 0
\(757\) 0.447272 0.0162564 0.00812818 0.999967i \(-0.497413\pi\)
0.00812818 + 0.999967i \(0.497413\pi\)
\(758\) 0 0
\(759\) 15.7946 + 33.6063i 0.573308 + 1.21983i
\(760\) 0 0
\(761\) 19.6627i 0.712774i −0.934338 0.356387i \(-0.884008\pi\)
0.934338 0.356387i \(-0.115992\pi\)
\(762\) 0 0
\(763\) 39.0741i 1.41458i
\(764\) 0 0
\(765\) 8.50267 10.2583i 0.307415 0.370889i
\(766\) 0 0
\(767\) −2.82843 −0.102129
\(768\) 0 0
\(769\) 48.5400 1.75040 0.875199 0.483762i \(-0.160730\pi\)
0.875199 + 0.483762i \(0.160730\pi\)
\(770\) 0 0
\(771\) 26.9274 12.6556i 0.969766 0.455780i
\(772\) 0 0
\(773\) 3.31540i 0.119247i −0.998221 0.0596233i \(-0.981010\pi\)
0.998221 0.0596233i \(-0.0189899\pi\)
\(774\) 0 0
\(775\) 22.8003i 0.819012i
\(776\) 0 0
\(777\) −34.2364 + 16.0908i −1.22823 + 0.577253i
\(778\) 0 0
\(779\) 3.16659 0.113455
\(780\) 0 0
\(781\) −29.1069 −1.04153
\(782\) 0 0
\(783\) 3.67507 14.2300i 0.131336 0.508540i
\(784\) 0 0
\(785\) 29.7817i 1.06295i
\(786\) 0 0
\(787\) 9.53232i 0.339791i 0.985462 + 0.169895i \(0.0543430\pi\)
−0.985462 + 0.169895i \(0.945657\pi\)
\(788\) 0 0
\(789\) −7.36972 15.6806i −0.262369 0.558244i
\(790\) 0 0
\(791\) −3.64764 −0.129695
\(792\) 0 0
\(793\) 9.31801 0.330892
\(794\) 0 0
\(795\) 13.7338 + 29.2216i 0.487089 + 1.03638i
\(796\) 0 0
\(797\) 30.5198i 1.08107i 0.841323 + 0.540533i \(0.181777\pi\)
−0.841323 + 0.540533i \(0.818223\pi\)
\(798\) 0 0
\(799\) 4.41996i 0.156367i
\(800\) 0 0
\(801\) 31.6098 + 26.2000i 1.11688 + 0.925733i
\(802\) 0 0
\(803\) 32.2669 1.13867
\(804\) 0 0
\(805\) −86.7162 −3.05635
\(806\) 0 0
\(807\) 25.8724 12.1598i 0.910753 0.428045i
\(808\) 0 0
\(809\) 37.2270i 1.30883i 0.756135 + 0.654415i \(0.227085\pi\)
−0.756135 + 0.654415i \(0.772915\pi\)
\(810\) 0 0
\(811\) 1.56239i 0.0548630i −0.999624 0.0274315i \(-0.991267\pi\)
0.999624 0.0274315i \(-0.00873281\pi\)
\(812\) 0 0
\(813\) −32.3559 + 15.2069i −1.13477 + 0.533331i
\(814\) 0 0
\(815\) 26.2756 0.920394
\(816\) 0 0
\(817\) −1.30679 −0.0457188
\(818\) 0 0
\(819\) −9.95120 8.24813i −0.347723 0.288213i
\(820\) 0 0
\(821\) 45.2205i 1.57821i 0.614261 + 0.789103i \(0.289454\pi\)
−0.614261 + 0.789103i \(0.710546\pi\)
\(822\) 0 0
\(823\) 3.01464i 0.105084i 0.998619 + 0.0525419i \(0.0167323\pi\)
−0.998619 + 0.0525419i \(0.983268\pi\)
\(824\) 0 0
\(825\) 4.27451 + 9.09491i 0.148819 + 0.316644i
\(826\) 0 0
\(827\) −29.9711 −1.04220 −0.521099 0.853496i \(-0.674478\pi\)
−0.521099 + 0.853496i \(0.674478\pi\)
\(828\) 0 0
\(829\) −6.01255 −0.208825 −0.104412 0.994534i \(-0.533296\pi\)
−0.104412 + 0.994534i \(0.533296\pi\)
\(830\) 0 0
\(831\) 4.05991 + 8.63830i 0.140837 + 0.299659i
\(832\) 0 0
\(833\) 19.3379i 0.670020i
\(834\) 0 0
\(835\) 27.1388i 0.939177i
\(836\) 0 0
\(837\) 14.4421 55.9205i 0.499192 1.93290i
\(838\) 0 0
\(839\) 4.85351 0.167562 0.0837808 0.996484i \(-0.473300\pi\)
0.0837808 + 0.996484i \(0.473300\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) −26.0738 + 12.2544i −0.898030 + 0.422065i
\(844\) 0 0
\(845\) 2.65543i 0.0913496i
\(846\) 0 0
\(847\) 12.9251i 0.444111i
\(848\) 0 0
\(849\) 5.69236 2.67535i 0.195361 0.0918178i
\(850\) 0 0
\(851\) −38.4244 −1.31717
\(852\) 0 0
\(853\) 33.4762 1.14620 0.573101 0.819485i \(-0.305740\pi\)
0.573101 + 0.819485i \(0.305740\pi\)
\(854\) 0 0
\(855\) 2.01147 2.42680i 0.0687910 0.0829949i
\(856\) 0 0
\(857\) 4.40213i 0.150374i −0.997169 0.0751870i \(-0.976045\pi\)
0.997169 0.0751870i \(-0.0239554\pi\)
\(858\) 0 0
\(859\) 31.0587i 1.05971i 0.848088 + 0.529855i \(0.177754\pi\)
−0.848088 + 0.529855i \(0.822246\pi\)
\(860\) 0 0
\(861\) 25.4026 + 54.0493i 0.865718 + 1.84199i
\(862\) 0 0
\(863\) 5.27488 0.179559 0.0897795 0.995962i \(-0.471384\pi\)
0.0897795 + 0.995962i \(0.471384\pi\)
\(864\) 0 0
\(865\) 26.6856 0.907338
\(866\) 0 0
\(867\) −10.4635 22.2633i −0.355360 0.756102i
\(868\) 0 0
\(869\) 36.0268i 1.22213i
\(870\) 0 0
\(871\) 7.60433i 0.257663i
\(872\) 0 0
\(873\) −1.20237 + 1.45063i −0.0406939 + 0.0490964i
\(874\) 0 0
\(875\) 33.7347 1.14044
\(876\) 0 0
\(877\) −12.0491 −0.406870 −0.203435 0.979088i \(-0.565211\pi\)
−0.203435 + 0.979088i \(0.565211\pi\)
\(878\) 0 0
\(879\) 25.0189 11.7586i 0.843865 0.396608i
\(880\) 0 0
\(881\) 40.3919i 1.36084i −0.732824 0.680418i \(-0.761798\pi\)
0.732824 0.680418i \(-0.238202\pi\)
\(882\) 0 0
\(883\) 40.1020i 1.34954i 0.738028 + 0.674770i \(0.235757\pi\)
−0.738028 + 0.674770i \(0.764243\pi\)
\(884\) 0 0
\(885\) 11.7734 5.53338i 0.395759 0.186003i
\(886\) 0 0
\(887\) 51.6230 1.73333 0.866665 0.498890i \(-0.166259\pi\)
0.866665 + 0.498890i \(0.166259\pi\)
\(888\) 0 0
\(889\) −31.8389 −1.06784
\(890\) 0 0
\(891\) −4.72288 25.0139i −0.158223 0.837997i
\(892\) 0 0
\(893\) 1.04563i 0.0349906i
\(894\) 0 0
\(895\) 15.5147i 0.518598i
\(896\) 0 0
\(897\) −5.58424 11.8816i −0.186452 0.396716i
\(898\) 0 0
\(899\) −31.4380 −1.04852
\(900\) 0 0
\(901\) −11.7415 −0.391166
\(902\) 0 0
\(903\) −10.4832 22.3051i −0.348858 0.742267i
\(904\) 0 0
\(905\) 49.7258i 1.65294i
\(906\) 0 0
\(907\) 31.9862i 1.06208i −0.847346 0.531042i \(-0.821801\pi\)
0.847346 0.531042i \(-0.178199\pi\)
\(908\) 0 0
\(909\) 34.6792 + 28.7441i 1.15024 + 0.953382i
\(910\) 0 0
\(911\) −38.3560 −1.27079 −0.635395 0.772187i \(-0.719163\pi\)
−0.635395 + 0.772187i \(0.719163\pi\)
\(912\) 0 0
\(913\) −26.4669 −0.875927
\(914\) 0 0
\(915\) −38.7865 + 18.2292i −1.28224 + 0.602640i
\(916\) 0 0
\(917\) 15.2122i 0.502351i
\(918\) 0 0
\(919\) 2.48941i 0.0821181i 0.999157 + 0.0410591i \(0.0130732\pi\)
−0.999157 + 0.0410591i \(0.986927\pi\)
\(920\) 0 0
\(921\) 29.6901 13.9540i 0.978321 0.459801i
\(922\) 0 0
\(923\) 10.2908 0.338727
\(924\) 0 0
\(925\) −10.3988 −0.341912
\(926\) 0 0
\(927\) 38.6590 + 32.0429i 1.26973 + 1.05243i
\(928\) 0 0
\(929\) 41.6415i 1.36621i 0.730319 + 0.683106i \(0.239371\pi\)
−0.730319 + 0.683106i \(0.760629\pi\)
\(930\) 0 0
\(931\) 4.57477i 0.149932i
\(932\) 0 0
\(933\) −20.3154 43.2252i −0.665096 1.41513i
\(934\) 0 0
\(935\) −12.5620 −0.410820
\(936\) 0 0
\(937\) −8.82870 −0.288421 −0.144211 0.989547i \(-0.546064\pi\)
−0.144211 + 0.989547i \(0.546064\pi\)
\(938\) 0 0
\(939\) −22.9754 48.8849i −0.749774 1.59530i
\(940\) 0 0
\(941\) 4.16400i 0.135742i 0.997694 + 0.0678712i \(0.0216207\pi\)
−0.997694 + 0.0678712i \(0.978379\pi\)
\(942\) 0 0
\(943\) 60.6608i 1.97539i
\(944\) 0 0
\(945\) 57.5583 + 14.8651i 1.87237 + 0.483562i
\(946\) 0 0
\(947\) −21.2274 −0.689799 −0.344899 0.938640i \(-0.612087\pi\)
−0.344899 + 0.938640i \(0.612087\pi\)
\(948\) 0 0
\(949\) −11.4081 −0.370322
\(950\) 0 0
\(951\) −45.6931 + 21.4753i −1.48170 + 0.696384i
\(952\) 0 0
\(953\) 10.4143i 0.337352i 0.985672 + 0.168676i \(0.0539492\pi\)
−0.985672 + 0.168676i \(0.946051\pi\)
\(954\) 0 0
\(955\) 33.1636i 1.07315i
\(956\) 0 0
\(957\) −12.5404 + 5.89387i −0.405374 + 0.190522i
\(958\) 0 0
\(959\) 50.3825 1.62694
\(960\) 0 0
\(961\) −92.5436 −2.98528
\(962\) 0 0
\(963\) 27.3704 33.0219i 0.882000 1.06411i
\(964\) 0 0
\(965\) 39.6157i 1.27528i
\(966\) 0 0
\(967\) 5.30046i 0.170451i 0.996362 + 0.0852257i \(0.0271611\pi\)
−0.996362 + 0.0852257i \(0.972839\pi\)
\(968\) 0 0
\(969\) 0.487556 + 1.03738i 0.0156626 + 0.0333253i
\(970\) 0 0
\(971\) −1.71170 −0.0549311 −0.0274655 0.999623i \(-0.508744\pi\)
−0.0274655 + 0.999623i \(0.508744\pi\)
\(972\) 0 0
\(973\) 60.4121 1.93672
\(974\) 0 0
\(975\) −1.51127 3.21553i −0.0483993 0.102980i
\(976\) 0 0
\(977\) 39.0217i 1.24841i −0.781259 0.624207i \(-0.785422\pi\)
0.781259 0.624207i \(-0.214578\pi\)
\(978\) 0 0
\(979\) 38.7083i 1.23712i
\(980\) 0 0
\(981\) 17.3628 20.9479i 0.554352 0.668814i
\(982\) 0 0
\(983\) −23.6712 −0.754993 −0.377497 0.926011i \(-0.623215\pi\)
−0.377497 + 0.926011i \(0.623215\pi\)
\(984\) 0 0
\(985\) −52.1833 −1.66270
\(986\) 0 0
\(987\) 17.8474 8.38811i 0.568090 0.266996i
\(988\) 0 0
\(989\) 25.0336i 0.796021i
\(990\) 0 0
\(991\) 1.11278i 0.0353485i −0.999844 0.0176743i \(-0.994374\pi\)
0.999844 0.0176743i \(-0.00562619\pi\)
\(992\) 0 0
\(993\) 6.93844 3.26100i 0.220185 0.103485i
\(994\) 0 0
\(995\) −7.70261 −0.244189
\(996\) 0 0
\(997\) −51.7107 −1.63769 −0.818846 0.574013i \(-0.805386\pi\)
−0.818846 + 0.574013i \(0.805386\pi\)
\(998\) 0 0
\(999\) 25.5044 + 6.58680i 0.806923 + 0.208397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.d.q.1535.5 20
3.2 odd 2 inner 2496.2.d.q.1535.15 20
4.3 odd 2 inner 2496.2.d.q.1535.16 20
8.3 odd 2 1248.2.d.d.287.5 20
8.5 even 2 1248.2.d.d.287.16 yes 20
12.11 even 2 inner 2496.2.d.q.1535.6 20
24.5 odd 2 1248.2.d.d.287.6 yes 20
24.11 even 2 1248.2.d.d.287.15 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.d.d.287.5 20 8.3 odd 2
1248.2.d.d.287.6 yes 20 24.5 odd 2
1248.2.d.d.287.15 yes 20 24.11 even 2
1248.2.d.d.287.16 yes 20 8.5 even 2
2496.2.d.q.1535.5 20 1.1 even 1 trivial
2496.2.d.q.1535.6 20 12.11 even 2 inner
2496.2.d.q.1535.15 20 3.2 odd 2 inner
2496.2.d.q.1535.16 20 4.3 odd 2 inner