Properties

Label 2496.4.a.bm.1.2
Level $2496$
Weight $4$
Character 2496.1
Self dual yes
Analytic conductor $147.269$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(147.268767374\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.13916.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.68690\) of defining polynomial
Character \(\chi\) \(=\) 2496.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -3.18652 q^{5} +23.9341 q^{7} +9.00000 q^{9} +6.74761 q^{11} -13.0000 q^{13} +9.55955 q^{15} +104.244 q^{17} +137.915 q^{19} -71.8024 q^{21} +110.244 q^{23} -114.846 q^{25} -27.0000 q^{27} +57.6048 q^{29} +319.893 q^{31} -20.2428 q^{33} -76.2666 q^{35} +2.88089 q^{37} +39.0000 q^{39} +319.145 q^{41} -344.705 q^{43} -28.6787 q^{45} -439.549 q^{47} +229.843 q^{49} -312.733 q^{51} +97.2632 q^{53} -21.5014 q^{55} -413.745 q^{57} -448.114 q^{59} +264.592 q^{61} +215.407 q^{63} +41.4247 q^{65} +712.701 q^{67} -330.733 q^{69} +1134.68 q^{71} -666.573 q^{73} +344.538 q^{75} +161.498 q^{77} +828.682 q^{79} +81.0000 q^{81} -734.136 q^{83} -332.177 q^{85} -172.814 q^{87} +153.255 q^{89} -311.144 q^{91} -959.679 q^{93} -439.469 q^{95} -569.044 q^{97} +60.7285 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 4 q^{5} + 6 q^{7} + 27 q^{9} - 32 q^{11} - 39 q^{13} - 12 q^{15} + 158 q^{17} - 70 q^{19} - 18 q^{21} + 176 q^{23} + 209 q^{25} - 81 q^{27} - 222 q^{29} + 54 q^{31} + 96 q^{33} - 496 q^{35}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −3.18652 −0.285011 −0.142505 0.989794i \(-0.545516\pi\)
−0.142505 + 0.989794i \(0.545516\pi\)
\(6\) 0 0
\(7\) 23.9341 1.29232 0.646161 0.763201i \(-0.276374\pi\)
0.646161 + 0.763201i \(0.276374\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 6.74761 0.184953 0.0924765 0.995715i \(-0.470522\pi\)
0.0924765 + 0.995715i \(0.470522\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 9.55955 0.164551
\(16\) 0 0
\(17\) 104.244 1.48723 0.743617 0.668606i \(-0.233109\pi\)
0.743617 + 0.668606i \(0.233109\pi\)
\(18\) 0 0
\(19\) 137.915 1.66526 0.832628 0.553832i \(-0.186835\pi\)
0.832628 + 0.553832i \(0.186835\pi\)
\(20\) 0 0
\(21\) −71.8024 −0.746122
\(22\) 0 0
\(23\) 110.244 0.999458 0.499729 0.866182i \(-0.333433\pi\)
0.499729 + 0.866182i \(0.333433\pi\)
\(24\) 0 0
\(25\) −114.846 −0.918769
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 57.6048 0.368860 0.184430 0.982846i \(-0.440956\pi\)
0.184430 + 0.982846i \(0.440956\pi\)
\(30\) 0 0
\(31\) 319.893 1.85337 0.926685 0.375839i \(-0.122646\pi\)
0.926685 + 0.375839i \(0.122646\pi\)
\(32\) 0 0
\(33\) −20.2428 −0.106783
\(34\) 0 0
\(35\) −76.2666 −0.368326
\(36\) 0 0
\(37\) 2.88089 0.0128004 0.00640021 0.999980i \(-0.497963\pi\)
0.00640021 + 0.999980i \(0.497963\pi\)
\(38\) 0 0
\(39\) 39.0000 0.160128
\(40\) 0 0
\(41\) 319.145 1.21566 0.607831 0.794067i \(-0.292040\pi\)
0.607831 + 0.794067i \(0.292040\pi\)
\(42\) 0 0
\(43\) −344.705 −1.22249 −0.611244 0.791442i \(-0.709331\pi\)
−0.611244 + 0.791442i \(0.709331\pi\)
\(44\) 0 0
\(45\) −28.6787 −0.0950036
\(46\) 0 0
\(47\) −439.549 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(48\) 0 0
\(49\) 229.843 0.670095
\(50\) 0 0
\(51\) −312.733 −0.858655
\(52\) 0 0
\(53\) 97.2632 0.252078 0.126039 0.992025i \(-0.459774\pi\)
0.126039 + 0.992025i \(0.459774\pi\)
\(54\) 0 0
\(55\) −21.5014 −0.0527136
\(56\) 0 0
\(57\) −413.745 −0.961437
\(58\) 0 0
\(59\) −448.114 −0.988805 −0.494403 0.869233i \(-0.664613\pi\)
−0.494403 + 0.869233i \(0.664613\pi\)
\(60\) 0 0
\(61\) 264.592 0.555370 0.277685 0.960672i \(-0.410433\pi\)
0.277685 + 0.960672i \(0.410433\pi\)
\(62\) 0 0
\(63\) 215.407 0.430774
\(64\) 0 0
\(65\) 41.4247 0.0790478
\(66\) 0 0
\(67\) 712.701 1.29956 0.649778 0.760124i \(-0.274862\pi\)
0.649778 + 0.760124i \(0.274862\pi\)
\(68\) 0 0
\(69\) −330.733 −0.577038
\(70\) 0 0
\(71\) 1134.68 1.89665 0.948323 0.317308i \(-0.102779\pi\)
0.948323 + 0.317308i \(0.102779\pi\)
\(72\) 0 0
\(73\) −666.573 −1.06872 −0.534359 0.845257i \(-0.679447\pi\)
−0.534359 + 0.845257i \(0.679447\pi\)
\(74\) 0 0
\(75\) 344.538 0.530451
\(76\) 0 0
\(77\) 161.498 0.239019
\(78\) 0 0
\(79\) 828.682 1.18018 0.590089 0.807338i \(-0.299093\pi\)
0.590089 + 0.807338i \(0.299093\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −734.136 −0.970867 −0.485433 0.874274i \(-0.661338\pi\)
−0.485433 + 0.874274i \(0.661338\pi\)
\(84\) 0 0
\(85\) −332.177 −0.423878
\(86\) 0 0
\(87\) −172.814 −0.212961
\(88\) 0 0
\(89\) 153.255 0.182528 0.0912639 0.995827i \(-0.470909\pi\)
0.0912639 + 0.995827i \(0.470909\pi\)
\(90\) 0 0
\(91\) −311.144 −0.358426
\(92\) 0 0
\(93\) −959.679 −1.07004
\(94\) 0 0
\(95\) −439.469 −0.474616
\(96\) 0 0
\(97\) −569.044 −0.595646 −0.297823 0.954621i \(-0.596261\pi\)
−0.297823 + 0.954621i \(0.596261\pi\)
\(98\) 0 0
\(99\) 60.7285 0.0616510
\(100\) 0 0
\(101\) 1504.47 1.48218 0.741090 0.671406i \(-0.234309\pi\)
0.741090 + 0.671406i \(0.234309\pi\)
\(102\) 0 0
\(103\) −1564.26 −1.49642 −0.748211 0.663461i \(-0.769087\pi\)
−0.748211 + 0.663461i \(0.769087\pi\)
\(104\) 0 0
\(105\) 228.800 0.212653
\(106\) 0 0
\(107\) −1486.11 −1.34268 −0.671342 0.741148i \(-0.734282\pi\)
−0.671342 + 0.741148i \(0.734282\pi\)
\(108\) 0 0
\(109\) 1482.89 1.30307 0.651537 0.758617i \(-0.274125\pi\)
0.651537 + 0.758617i \(0.274125\pi\)
\(110\) 0 0
\(111\) −8.64267 −0.00739033
\(112\) 0 0
\(113\) −534.504 −0.444973 −0.222486 0.974936i \(-0.571417\pi\)
−0.222486 + 0.974936i \(0.571417\pi\)
\(114\) 0 0
\(115\) −351.296 −0.284856
\(116\) 0 0
\(117\) −117.000 −0.0924500
\(118\) 0 0
\(119\) 2495.00 1.92198
\(120\) 0 0
\(121\) −1285.47 −0.965792
\(122\) 0 0
\(123\) −957.436 −0.701862
\(124\) 0 0
\(125\) 764.274 0.546870
\(126\) 0 0
\(127\) −1810.76 −1.26519 −0.632594 0.774484i \(-0.718010\pi\)
−0.632594 + 0.774484i \(0.718010\pi\)
\(128\) 0 0
\(129\) 1034.11 0.705804
\(130\) 0 0
\(131\) 1210.44 0.807303 0.403652 0.914913i \(-0.367741\pi\)
0.403652 + 0.914913i \(0.367741\pi\)
\(132\) 0 0
\(133\) 3300.88 2.15205
\(134\) 0 0
\(135\) 86.0360 0.0548504
\(136\) 0 0
\(137\) −1894.68 −1.18156 −0.590780 0.806833i \(-0.701180\pi\)
−0.590780 + 0.806833i \(0.701180\pi\)
\(138\) 0 0
\(139\) 799.458 0.487835 0.243918 0.969796i \(-0.421567\pi\)
0.243918 + 0.969796i \(0.421567\pi\)
\(140\) 0 0
\(141\) 1318.65 0.787590
\(142\) 0 0
\(143\) −87.7190 −0.0512967
\(144\) 0 0
\(145\) −183.559 −0.105129
\(146\) 0 0
\(147\) −689.528 −0.386880
\(148\) 0 0
\(149\) 1936.45 1.06470 0.532350 0.846524i \(-0.321309\pi\)
0.532350 + 0.846524i \(0.321309\pi\)
\(150\) 0 0
\(151\) −2200.40 −1.18587 −0.592933 0.805252i \(-0.702030\pi\)
−0.592933 + 0.805252i \(0.702030\pi\)
\(152\) 0 0
\(153\) 938.199 0.495745
\(154\) 0 0
\(155\) −1019.34 −0.528230
\(156\) 0 0
\(157\) −2438.48 −1.23957 −0.619783 0.784773i \(-0.712780\pi\)
−0.619783 + 0.784773i \(0.712780\pi\)
\(158\) 0 0
\(159\) −291.790 −0.145537
\(160\) 0 0
\(161\) 2638.60 1.29162
\(162\) 0 0
\(163\) 946.712 0.454921 0.227461 0.973787i \(-0.426958\pi\)
0.227461 + 0.973787i \(0.426958\pi\)
\(164\) 0 0
\(165\) 64.5042 0.0304342
\(166\) 0 0
\(167\) −2027.84 −0.939633 −0.469816 0.882764i \(-0.655680\pi\)
−0.469816 + 0.882764i \(0.655680\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 1241.24 0.555086
\(172\) 0 0
\(173\) −1050.48 −0.461655 −0.230828 0.972995i \(-0.574143\pi\)
−0.230828 + 0.972995i \(0.574143\pi\)
\(174\) 0 0
\(175\) −2748.74 −1.18734
\(176\) 0 0
\(177\) 1344.34 0.570887
\(178\) 0 0
\(179\) −2332.61 −0.974009 −0.487005 0.873399i \(-0.661911\pi\)
−0.487005 + 0.873399i \(0.661911\pi\)
\(180\) 0 0
\(181\) −1058.06 −0.434502 −0.217251 0.976116i \(-0.569709\pi\)
−0.217251 + 0.976116i \(0.569709\pi\)
\(182\) 0 0
\(183\) −793.777 −0.320643
\(184\) 0 0
\(185\) −9.18001 −0.00364826
\(186\) 0 0
\(187\) 703.401 0.275068
\(188\) 0 0
\(189\) −646.222 −0.248707
\(190\) 0 0
\(191\) −102.458 −0.0388146 −0.0194073 0.999812i \(-0.506178\pi\)
−0.0194073 + 0.999812i \(0.506178\pi\)
\(192\) 0 0
\(193\) 102.396 0.0381899 0.0190949 0.999818i \(-0.493922\pi\)
0.0190949 + 0.999818i \(0.493922\pi\)
\(194\) 0 0
\(195\) −124.274 −0.0456383
\(196\) 0 0
\(197\) 4990.28 1.80478 0.902392 0.430916i \(-0.141809\pi\)
0.902392 + 0.430916i \(0.141809\pi\)
\(198\) 0 0
\(199\) −2934.60 −1.04537 −0.522684 0.852526i \(-0.675069\pi\)
−0.522684 + 0.852526i \(0.675069\pi\)
\(200\) 0 0
\(201\) −2138.10 −0.750299
\(202\) 0 0
\(203\) 1378.72 0.476686
\(204\) 0 0
\(205\) −1016.96 −0.346477
\(206\) 0 0
\(207\) 992.199 0.333153
\(208\) 0 0
\(209\) 930.598 0.307994
\(210\) 0 0
\(211\) −4955.08 −1.61669 −0.808345 0.588709i \(-0.799636\pi\)
−0.808345 + 0.588709i \(0.799636\pi\)
\(212\) 0 0
\(213\) −3404.04 −1.09503
\(214\) 0 0
\(215\) 1098.41 0.348422
\(216\) 0 0
\(217\) 7656.36 2.39515
\(218\) 0 0
\(219\) 1999.72 0.617025
\(220\) 0 0
\(221\) −1355.18 −0.412484
\(222\) 0 0
\(223\) 1258.69 0.377975 0.188987 0.981980i \(-0.439479\pi\)
0.188987 + 0.981980i \(0.439479\pi\)
\(224\) 0 0
\(225\) −1033.61 −0.306256
\(226\) 0 0
\(227\) 102.354 0.0299273 0.0149636 0.999888i \(-0.495237\pi\)
0.0149636 + 0.999888i \(0.495237\pi\)
\(228\) 0 0
\(229\) 2489.73 0.718455 0.359228 0.933250i \(-0.383040\pi\)
0.359228 + 0.933250i \(0.383040\pi\)
\(230\) 0 0
\(231\) −484.495 −0.137998
\(232\) 0 0
\(233\) 4274.64 1.20189 0.600946 0.799289i \(-0.294791\pi\)
0.600946 + 0.799289i \(0.294791\pi\)
\(234\) 0 0
\(235\) 1400.63 0.388796
\(236\) 0 0
\(237\) −2486.05 −0.681376
\(238\) 0 0
\(239\) 2348.81 0.635697 0.317848 0.948142i \(-0.397040\pi\)
0.317848 + 0.948142i \(0.397040\pi\)
\(240\) 0 0
\(241\) −3130.05 −0.836615 −0.418308 0.908305i \(-0.637377\pi\)
−0.418308 + 0.908305i \(0.637377\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −732.398 −0.190984
\(246\) 0 0
\(247\) −1792.90 −0.461859
\(248\) 0 0
\(249\) 2202.41 0.560530
\(250\) 0 0
\(251\) 1571.61 0.395216 0.197608 0.980281i \(-0.436683\pi\)
0.197608 + 0.980281i \(0.436683\pi\)
\(252\) 0 0
\(253\) 743.887 0.184853
\(254\) 0 0
\(255\) 996.530 0.244726
\(256\) 0 0
\(257\) 2968.71 0.720555 0.360278 0.932845i \(-0.382682\pi\)
0.360278 + 0.932845i \(0.382682\pi\)
\(258\) 0 0
\(259\) 68.9516 0.0165423
\(260\) 0 0
\(261\) 518.443 0.122953
\(262\) 0 0
\(263\) 2982.14 0.699188 0.349594 0.936901i \(-0.386320\pi\)
0.349594 + 0.936901i \(0.386320\pi\)
\(264\) 0 0
\(265\) −309.931 −0.0718449
\(266\) 0 0
\(267\) −459.765 −0.105383
\(268\) 0 0
\(269\) 1706.67 0.386832 0.193416 0.981117i \(-0.438043\pi\)
0.193416 + 0.981117i \(0.438043\pi\)
\(270\) 0 0
\(271\) 3988.26 0.893984 0.446992 0.894538i \(-0.352495\pi\)
0.446992 + 0.894538i \(0.352495\pi\)
\(272\) 0 0
\(273\) 933.431 0.206937
\(274\) 0 0
\(275\) −774.937 −0.169929
\(276\) 0 0
\(277\) 5098.99 1.10602 0.553012 0.833173i \(-0.313478\pi\)
0.553012 + 0.833173i \(0.313478\pi\)
\(278\) 0 0
\(279\) 2879.04 0.617790
\(280\) 0 0
\(281\) 8080.89 1.71554 0.857768 0.514038i \(-0.171851\pi\)
0.857768 + 0.514038i \(0.171851\pi\)
\(282\) 0 0
\(283\) 228.187 0.0479305 0.0239652 0.999713i \(-0.492371\pi\)
0.0239652 + 0.999713i \(0.492371\pi\)
\(284\) 0 0
\(285\) 1318.41 0.274020
\(286\) 0 0
\(287\) 7638.47 1.57103
\(288\) 0 0
\(289\) 5953.89 1.21186
\(290\) 0 0
\(291\) 1707.13 0.343896
\(292\) 0 0
\(293\) 1857.24 0.370310 0.185155 0.982709i \(-0.440721\pi\)
0.185155 + 0.982709i \(0.440721\pi\)
\(294\) 0 0
\(295\) 1427.92 0.281820
\(296\) 0 0
\(297\) −182.186 −0.0355942
\(298\) 0 0
\(299\) −1433.18 −0.277200
\(300\) 0 0
\(301\) −8250.21 −1.57985
\(302\) 0 0
\(303\) −4513.41 −0.855737
\(304\) 0 0
\(305\) −843.128 −0.158286
\(306\) 0 0
\(307\) 8204.32 1.52523 0.762614 0.646854i \(-0.223916\pi\)
0.762614 + 0.646854i \(0.223916\pi\)
\(308\) 0 0
\(309\) 4692.79 0.863960
\(310\) 0 0
\(311\) 3194.10 0.582382 0.291191 0.956665i \(-0.405949\pi\)
0.291191 + 0.956665i \(0.405949\pi\)
\(312\) 0 0
\(313\) 7309.24 1.31995 0.659973 0.751290i \(-0.270568\pi\)
0.659973 + 0.751290i \(0.270568\pi\)
\(314\) 0 0
\(315\) −686.399 −0.122775
\(316\) 0 0
\(317\) 8262.59 1.46395 0.731976 0.681330i \(-0.238598\pi\)
0.731976 + 0.681330i \(0.238598\pi\)
\(318\) 0 0
\(319\) 388.695 0.0682218
\(320\) 0 0
\(321\) 4458.32 0.775199
\(322\) 0 0
\(323\) 14376.9 2.47663
\(324\) 0 0
\(325\) 1493.00 0.254821
\(326\) 0 0
\(327\) −4448.67 −0.752330
\(328\) 0 0
\(329\) −10520.2 −1.76291
\(330\) 0 0
\(331\) 2736.73 0.454454 0.227227 0.973842i \(-0.427034\pi\)
0.227227 + 0.973842i \(0.427034\pi\)
\(332\) 0 0
\(333\) 25.9280 0.00426681
\(334\) 0 0
\(335\) −2271.03 −0.370387
\(336\) 0 0
\(337\) 5166.62 0.835144 0.417572 0.908644i \(-0.362881\pi\)
0.417572 + 0.908644i \(0.362881\pi\)
\(338\) 0 0
\(339\) 1603.51 0.256905
\(340\) 0 0
\(341\) 2158.51 0.342786
\(342\) 0 0
\(343\) −2708.32 −0.426343
\(344\) 0 0
\(345\) 1053.89 0.164462
\(346\) 0 0
\(347\) −10218.8 −1.58091 −0.790456 0.612519i \(-0.790156\pi\)
−0.790456 + 0.612519i \(0.790156\pi\)
\(348\) 0 0
\(349\) −1341.71 −0.205788 −0.102894 0.994692i \(-0.532810\pi\)
−0.102894 + 0.994692i \(0.532810\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) 0 0
\(353\) 5268.23 0.794333 0.397166 0.917747i \(-0.369994\pi\)
0.397166 + 0.917747i \(0.369994\pi\)
\(354\) 0 0
\(355\) −3615.68 −0.540564
\(356\) 0 0
\(357\) −7485.00 −1.10966
\(358\) 0 0
\(359\) −2034.67 −0.299125 −0.149562 0.988752i \(-0.547786\pi\)
−0.149562 + 0.988752i \(0.547786\pi\)
\(360\) 0 0
\(361\) 12161.6 1.77308
\(362\) 0 0
\(363\) 3856.41 0.557601
\(364\) 0 0
\(365\) 2124.05 0.304596
\(366\) 0 0
\(367\) −2765.13 −0.393293 −0.196647 0.980474i \(-0.563005\pi\)
−0.196647 + 0.980474i \(0.563005\pi\)
\(368\) 0 0
\(369\) 2872.31 0.405220
\(370\) 0 0
\(371\) 2327.91 0.325766
\(372\) 0 0
\(373\) 1160.30 0.161067 0.0805337 0.996752i \(-0.474338\pi\)
0.0805337 + 0.996752i \(0.474338\pi\)
\(374\) 0 0
\(375\) −2292.82 −0.315736
\(376\) 0 0
\(377\) −748.862 −0.102303
\(378\) 0 0
\(379\) −2577.88 −0.349385 −0.174692 0.984623i \(-0.555893\pi\)
−0.174692 + 0.984623i \(0.555893\pi\)
\(380\) 0 0
\(381\) 5432.27 0.730456
\(382\) 0 0
\(383\) 814.563 0.108674 0.0543371 0.998523i \(-0.482695\pi\)
0.0543371 + 0.998523i \(0.482695\pi\)
\(384\) 0 0
\(385\) −514.617 −0.0681229
\(386\) 0 0
\(387\) −3102.34 −0.407496
\(388\) 0 0
\(389\) 1736.18 0.226293 0.113147 0.993578i \(-0.463907\pi\)
0.113147 + 0.993578i \(0.463907\pi\)
\(390\) 0 0
\(391\) 11492.4 1.48643
\(392\) 0 0
\(393\) −3631.32 −0.466097
\(394\) 0 0
\(395\) −2640.61 −0.336363
\(396\) 0 0
\(397\) −1.18770 −0.000150149 0 −7.50746e−5 1.00000i \(-0.500024\pi\)
−7.50746e−5 1.00000i \(0.500024\pi\)
\(398\) 0 0
\(399\) −9902.63 −1.24249
\(400\) 0 0
\(401\) −6552.48 −0.815998 −0.407999 0.912982i \(-0.633773\pi\)
−0.407999 + 0.912982i \(0.633773\pi\)
\(402\) 0 0
\(403\) −4158.61 −0.514032
\(404\) 0 0
\(405\) −258.108 −0.0316679
\(406\) 0 0
\(407\) 19.4391 0.00236748
\(408\) 0 0
\(409\) −2735.87 −0.330759 −0.165379 0.986230i \(-0.552885\pi\)
−0.165379 + 0.986230i \(0.552885\pi\)
\(410\) 0 0
\(411\) 5684.05 0.682174
\(412\) 0 0
\(413\) −10725.2 −1.27785
\(414\) 0 0
\(415\) 2339.34 0.276708
\(416\) 0 0
\(417\) −2398.37 −0.281652
\(418\) 0 0
\(419\) 9666.00 1.12700 0.563502 0.826115i \(-0.309454\pi\)
0.563502 + 0.826115i \(0.309454\pi\)
\(420\) 0 0
\(421\) −9774.14 −1.13150 −0.565751 0.824576i \(-0.691414\pi\)
−0.565751 + 0.824576i \(0.691414\pi\)
\(422\) 0 0
\(423\) −3955.94 −0.454715
\(424\) 0 0
\(425\) −11972.1 −1.36642
\(426\) 0 0
\(427\) 6332.78 0.717716
\(428\) 0 0
\(429\) 263.157 0.0296162
\(430\) 0 0
\(431\) 5984.17 0.668787 0.334394 0.942434i \(-0.391469\pi\)
0.334394 + 0.942434i \(0.391469\pi\)
\(432\) 0 0
\(433\) −1179.51 −0.130909 −0.0654544 0.997856i \(-0.520850\pi\)
−0.0654544 + 0.997856i \(0.520850\pi\)
\(434\) 0 0
\(435\) 550.676 0.0606963
\(436\) 0 0
\(437\) 15204.4 1.66436
\(438\) 0 0
\(439\) 11989.5 1.30348 0.651741 0.758442i \(-0.274039\pi\)
0.651741 + 0.758442i \(0.274039\pi\)
\(440\) 0 0
\(441\) 2068.58 0.223365
\(442\) 0 0
\(443\) −7682.86 −0.823981 −0.411991 0.911188i \(-0.635166\pi\)
−0.411991 + 0.911188i \(0.635166\pi\)
\(444\) 0 0
\(445\) −488.349 −0.0520224
\(446\) 0 0
\(447\) −5809.36 −0.614705
\(448\) 0 0
\(449\) −12713.8 −1.33631 −0.668155 0.744022i \(-0.732916\pi\)
−0.668155 + 0.744022i \(0.732916\pi\)
\(450\) 0 0
\(451\) 2153.47 0.224840
\(452\) 0 0
\(453\) 6601.19 0.684659
\(454\) 0 0
\(455\) 991.465 0.102155
\(456\) 0 0
\(457\) −1707.47 −0.174775 −0.0873875 0.996174i \(-0.527852\pi\)
−0.0873875 + 0.996174i \(0.527852\pi\)
\(458\) 0 0
\(459\) −2814.60 −0.286218
\(460\) 0 0
\(461\) 12514.3 1.26432 0.632159 0.774838i \(-0.282169\pi\)
0.632159 + 0.774838i \(0.282169\pi\)
\(462\) 0 0
\(463\) −10447.6 −1.04868 −0.524340 0.851509i \(-0.675688\pi\)
−0.524340 + 0.851509i \(0.675688\pi\)
\(464\) 0 0
\(465\) 3058.03 0.304974
\(466\) 0 0
\(467\) 15170.6 1.50324 0.751618 0.659599i \(-0.229274\pi\)
0.751618 + 0.659599i \(0.229274\pi\)
\(468\) 0 0
\(469\) 17057.9 1.67944
\(470\) 0 0
\(471\) 7315.44 0.715664
\(472\) 0 0
\(473\) −2325.94 −0.226103
\(474\) 0 0
\(475\) −15839.0 −1.52999
\(476\) 0 0
\(477\) 875.369 0.0840259
\(478\) 0 0
\(479\) −5177.65 −0.493889 −0.246945 0.969030i \(-0.579427\pi\)
−0.246945 + 0.969030i \(0.579427\pi\)
\(480\) 0 0
\(481\) −37.4516 −0.00355020
\(482\) 0 0
\(483\) −7915.81 −0.745718
\(484\) 0 0
\(485\) 1813.27 0.169766
\(486\) 0 0
\(487\) −4056.52 −0.377451 −0.188725 0.982030i \(-0.560436\pi\)
−0.188725 + 0.982030i \(0.560436\pi\)
\(488\) 0 0
\(489\) −2840.13 −0.262649
\(490\) 0 0
\(491\) 4328.53 0.397849 0.198924 0.980015i \(-0.436255\pi\)
0.198924 + 0.980015i \(0.436255\pi\)
\(492\) 0 0
\(493\) 6004.98 0.548581
\(494\) 0 0
\(495\) −193.513 −0.0175712
\(496\) 0 0
\(497\) 27157.6 2.45108
\(498\) 0 0
\(499\) 12764.9 1.14516 0.572581 0.819848i \(-0.305942\pi\)
0.572581 + 0.819848i \(0.305942\pi\)
\(500\) 0 0
\(501\) 6083.51 0.542497
\(502\) 0 0
\(503\) −16718.4 −1.48198 −0.740991 0.671515i \(-0.765644\pi\)
−0.740991 + 0.671515i \(0.765644\pi\)
\(504\) 0 0
\(505\) −4794.02 −0.422437
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) −6994.30 −0.609071 −0.304535 0.952501i \(-0.598501\pi\)
−0.304535 + 0.952501i \(0.598501\pi\)
\(510\) 0 0
\(511\) −15953.8 −1.38113
\(512\) 0 0
\(513\) −3723.71 −0.320479
\(514\) 0 0
\(515\) 4984.56 0.426497
\(516\) 0 0
\(517\) −2965.91 −0.252303
\(518\) 0 0
\(519\) 3151.43 0.266537
\(520\) 0 0
\(521\) −5281.01 −0.444079 −0.222040 0.975038i \(-0.571271\pi\)
−0.222040 + 0.975038i \(0.571271\pi\)
\(522\) 0 0
\(523\) −3410.20 −0.285120 −0.142560 0.989786i \(-0.545533\pi\)
−0.142560 + 0.989786i \(0.545533\pi\)
\(524\) 0 0
\(525\) 8246.23 0.685514
\(526\) 0 0
\(527\) 33347.0 2.75639
\(528\) 0 0
\(529\) −13.1752 −0.00108286
\(530\) 0 0
\(531\) −4033.03 −0.329602
\(532\) 0 0
\(533\) −4148.89 −0.337164
\(534\) 0 0
\(535\) 4735.50 0.382680
\(536\) 0 0
\(537\) 6997.84 0.562344
\(538\) 0 0
\(539\) 1550.89 0.123936
\(540\) 0 0
\(541\) −1280.98 −0.101800 −0.0508998 0.998704i \(-0.516209\pi\)
−0.0508998 + 0.998704i \(0.516209\pi\)
\(542\) 0 0
\(543\) 3174.18 0.250860
\(544\) 0 0
\(545\) −4725.25 −0.371390
\(546\) 0 0
\(547\) −14379.3 −1.12397 −0.561986 0.827147i \(-0.689963\pi\)
−0.561986 + 0.827147i \(0.689963\pi\)
\(548\) 0 0
\(549\) 2381.33 0.185123
\(550\) 0 0
\(551\) 7944.57 0.614247
\(552\) 0 0
\(553\) 19833.8 1.52517
\(554\) 0 0
\(555\) 27.5400 0.00210632
\(556\) 0 0
\(557\) 17781.2 1.35263 0.676313 0.736614i \(-0.263577\pi\)
0.676313 + 0.736614i \(0.263577\pi\)
\(558\) 0 0
\(559\) 4481.16 0.339057
\(560\) 0 0
\(561\) −2110.20 −0.158811
\(562\) 0 0
\(563\) −11953.0 −0.894775 −0.447387 0.894340i \(-0.647645\pi\)
−0.447387 + 0.894340i \(0.647645\pi\)
\(564\) 0 0
\(565\) 1703.21 0.126822
\(566\) 0 0
\(567\) 1938.66 0.143591
\(568\) 0 0
\(569\) 18111.3 1.33439 0.667193 0.744885i \(-0.267496\pi\)
0.667193 + 0.744885i \(0.267496\pi\)
\(570\) 0 0
\(571\) −10493.0 −0.769032 −0.384516 0.923118i \(-0.625632\pi\)
−0.384516 + 0.923118i \(0.625632\pi\)
\(572\) 0 0
\(573\) 307.374 0.0224096
\(574\) 0 0
\(575\) −12661.1 −0.918271
\(576\) 0 0
\(577\) 8839.27 0.637754 0.318877 0.947796i \(-0.396694\pi\)
0.318877 + 0.947796i \(0.396694\pi\)
\(578\) 0 0
\(579\) −307.189 −0.0220489
\(580\) 0 0
\(581\) −17570.9 −1.25467
\(582\) 0 0
\(583\) 656.294 0.0466225
\(584\) 0 0
\(585\) 372.823 0.0263493
\(586\) 0 0
\(587\) −22816.3 −1.60431 −0.802155 0.597116i \(-0.796313\pi\)
−0.802155 + 0.597116i \(0.796313\pi\)
\(588\) 0 0
\(589\) 44118.0 3.08634
\(590\) 0 0
\(591\) −14970.8 −1.04199
\(592\) 0 0
\(593\) −28015.1 −1.94004 −0.970018 0.243033i \(-0.921858\pi\)
−0.970018 + 0.243033i \(0.921858\pi\)
\(594\) 0 0
\(595\) −7950.36 −0.547787
\(596\) 0 0
\(597\) 8803.80 0.603544
\(598\) 0 0
\(599\) −10404.4 −0.709702 −0.354851 0.934923i \(-0.615468\pi\)
−0.354851 + 0.934923i \(0.615468\pi\)
\(600\) 0 0
\(601\) −6801.55 −0.461632 −0.230816 0.972997i \(-0.574140\pi\)
−0.230816 + 0.972997i \(0.574140\pi\)
\(602\) 0 0
\(603\) 6414.30 0.433185
\(604\) 0 0
\(605\) 4096.17 0.275261
\(606\) 0 0
\(607\) −13046.5 −0.872394 −0.436197 0.899851i \(-0.643675\pi\)
−0.436197 + 0.899851i \(0.643675\pi\)
\(608\) 0 0
\(609\) −4136.16 −0.275215
\(610\) 0 0
\(611\) 5714.14 0.378346
\(612\) 0 0
\(613\) −15725.0 −1.03610 −0.518049 0.855351i \(-0.673342\pi\)
−0.518049 + 0.855351i \(0.673342\pi\)
\(614\) 0 0
\(615\) 3050.89 0.200038
\(616\) 0 0
\(617\) 27568.7 1.79882 0.899411 0.437104i \(-0.143996\pi\)
0.899411 + 0.437104i \(0.143996\pi\)
\(618\) 0 0
\(619\) −9433.05 −0.612514 −0.306257 0.951949i \(-0.599077\pi\)
−0.306257 + 0.951949i \(0.599077\pi\)
\(620\) 0 0
\(621\) −2976.60 −0.192346
\(622\) 0 0
\(623\) 3668.02 0.235885
\(624\) 0 0
\(625\) 11920.4 0.762905
\(626\) 0 0
\(627\) −2791.79 −0.177821
\(628\) 0 0
\(629\) 300.317 0.0190372
\(630\) 0 0
\(631\) 29379.6 1.85354 0.926771 0.375627i \(-0.122572\pi\)
0.926771 + 0.375627i \(0.122572\pi\)
\(632\) 0 0
\(633\) 14865.2 0.933396
\(634\) 0 0
\(635\) 5770.01 0.360592
\(636\) 0 0
\(637\) −2987.96 −0.185851
\(638\) 0 0
\(639\) 10212.1 0.632215
\(640\) 0 0
\(641\) −28264.3 −1.74161 −0.870805 0.491629i \(-0.836401\pi\)
−0.870805 + 0.491629i \(0.836401\pi\)
\(642\) 0 0
\(643\) −27550.9 −1.68974 −0.844869 0.534973i \(-0.820322\pi\)
−0.844869 + 0.534973i \(0.820322\pi\)
\(644\) 0 0
\(645\) −3295.22 −0.201162
\(646\) 0 0
\(647\) 23186.0 1.40887 0.704433 0.709770i \(-0.251201\pi\)
0.704433 + 0.709770i \(0.251201\pi\)
\(648\) 0 0
\(649\) −3023.70 −0.182882
\(650\) 0 0
\(651\) −22969.1 −1.38284
\(652\) 0 0
\(653\) −14294.6 −0.856647 −0.428323 0.903625i \(-0.640896\pi\)
−0.428323 + 0.903625i \(0.640896\pi\)
\(654\) 0 0
\(655\) −3857.09 −0.230090
\(656\) 0 0
\(657\) −5999.16 −0.356240
\(658\) 0 0
\(659\) −2487.32 −0.147029 −0.0735146 0.997294i \(-0.523422\pi\)
−0.0735146 + 0.997294i \(0.523422\pi\)
\(660\) 0 0
\(661\) 2542.95 0.149636 0.0748180 0.997197i \(-0.476162\pi\)
0.0748180 + 0.997197i \(0.476162\pi\)
\(662\) 0 0
\(663\) 4065.53 0.238148
\(664\) 0 0
\(665\) −10518.3 −0.613357
\(666\) 0 0
\(667\) 6350.61 0.368660
\(668\) 0 0
\(669\) −3776.08 −0.218224
\(670\) 0 0
\(671\) 1785.37 0.102717
\(672\) 0 0
\(673\) −15068.1 −0.863049 −0.431524 0.902101i \(-0.642024\pi\)
−0.431524 + 0.902101i \(0.642024\pi\)
\(674\) 0 0
\(675\) 3100.84 0.176817
\(676\) 0 0
\(677\) −28291.2 −1.60608 −0.803042 0.595923i \(-0.796786\pi\)
−0.803042 + 0.595923i \(0.796786\pi\)
\(678\) 0 0
\(679\) −13619.6 −0.769766
\(680\) 0 0
\(681\) −307.063 −0.0172785
\(682\) 0 0
\(683\) 22052.3 1.23545 0.617723 0.786396i \(-0.288055\pi\)
0.617723 + 0.786396i \(0.288055\pi\)
\(684\) 0 0
\(685\) 6037.44 0.336757
\(686\) 0 0
\(687\) −7469.20 −0.414800
\(688\) 0 0
\(689\) −1264.42 −0.0699138
\(690\) 0 0
\(691\) −22010.1 −1.21173 −0.605864 0.795568i \(-0.707173\pi\)
−0.605864 + 0.795568i \(0.707173\pi\)
\(692\) 0 0
\(693\) 1453.48 0.0796729
\(694\) 0 0
\(695\) −2547.49 −0.139038
\(696\) 0 0
\(697\) 33269.1 1.80797
\(698\) 0 0
\(699\) −12823.9 −0.693913
\(700\) 0 0
\(701\) −18959.7 −1.02154 −0.510769 0.859718i \(-0.670639\pi\)
−0.510769 + 0.859718i \(0.670639\pi\)
\(702\) 0 0
\(703\) 397.318 0.0213160
\(704\) 0 0
\(705\) −4201.89 −0.224472
\(706\) 0 0
\(707\) 36008.1 1.91545
\(708\) 0 0
\(709\) 21466.2 1.13707 0.568534 0.822660i \(-0.307511\pi\)
0.568534 + 0.822660i \(0.307511\pi\)
\(710\) 0 0
\(711\) 7458.14 0.393392
\(712\) 0 0
\(713\) 35266.4 1.85237
\(714\) 0 0
\(715\) 279.518 0.0146201
\(716\) 0 0
\(717\) −7046.42 −0.367020
\(718\) 0 0
\(719\) −5589.46 −0.289919 −0.144959 0.989438i \(-0.546305\pi\)
−0.144959 + 0.989438i \(0.546305\pi\)
\(720\) 0 0
\(721\) −37439.3 −1.93386
\(722\) 0 0
\(723\) 9390.15 0.483020
\(724\) 0 0
\(725\) −6615.69 −0.338897
\(726\) 0 0
\(727\) 33648.8 1.71660 0.858298 0.513152i \(-0.171522\pi\)
0.858298 + 0.513152i \(0.171522\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −35933.5 −1.81813
\(732\) 0 0
\(733\) −1542.91 −0.0777470 −0.0388735 0.999244i \(-0.512377\pi\)
−0.0388735 + 0.999244i \(0.512377\pi\)
\(734\) 0 0
\(735\) 2197.19 0.110265
\(736\) 0 0
\(737\) 4809.03 0.240357
\(738\) 0 0
\(739\) 30154.3 1.50101 0.750503 0.660867i \(-0.229811\pi\)
0.750503 + 0.660867i \(0.229811\pi\)
\(740\) 0 0
\(741\) 5378.69 0.266655
\(742\) 0 0
\(743\) 25634.5 1.26573 0.632866 0.774261i \(-0.281878\pi\)
0.632866 + 0.774261i \(0.281878\pi\)
\(744\) 0 0
\(745\) −6170.54 −0.303451
\(746\) 0 0
\(747\) −6607.23 −0.323622
\(748\) 0 0
\(749\) −35568.6 −1.73518
\(750\) 0 0
\(751\) 4193.68 0.203768 0.101884 0.994796i \(-0.467513\pi\)
0.101884 + 0.994796i \(0.467513\pi\)
\(752\) 0 0
\(753\) −4714.83 −0.228178
\(754\) 0 0
\(755\) 7011.60 0.337984
\(756\) 0 0
\(757\) −21998.9 −1.05623 −0.528113 0.849174i \(-0.677100\pi\)
−0.528113 + 0.849174i \(0.677100\pi\)
\(758\) 0 0
\(759\) −2231.66 −0.106725
\(760\) 0 0
\(761\) −6212.65 −0.295938 −0.147969 0.988992i \(-0.547274\pi\)
−0.147969 + 0.988992i \(0.547274\pi\)
\(762\) 0 0
\(763\) 35491.7 1.68399
\(764\) 0 0
\(765\) −2989.59 −0.141293
\(766\) 0 0
\(767\) 5825.48 0.274245
\(768\) 0 0
\(769\) 12573.3 0.589603 0.294802 0.955558i \(-0.404746\pi\)
0.294802 + 0.955558i \(0.404746\pi\)
\(770\) 0 0
\(771\) −8906.12 −0.416013
\(772\) 0 0
\(773\) 35282.4 1.64168 0.820840 0.571159i \(-0.193506\pi\)
0.820840 + 0.571159i \(0.193506\pi\)
\(774\) 0 0
\(775\) −36738.5 −1.70282
\(776\) 0 0
\(777\) −206.855 −0.00955068
\(778\) 0 0
\(779\) 44014.9 2.02439
\(780\) 0 0
\(781\) 7656.39 0.350790
\(782\) 0 0
\(783\) −1555.33 −0.0709872
\(784\) 0 0
\(785\) 7770.26 0.353290
\(786\) 0 0
\(787\) 35759.1 1.61966 0.809831 0.586663i \(-0.199559\pi\)
0.809831 + 0.586663i \(0.199559\pi\)
\(788\) 0 0
\(789\) −8946.41 −0.403676
\(790\) 0 0
\(791\) −12792.9 −0.575048
\(792\) 0 0
\(793\) −3439.70 −0.154032
\(794\) 0 0
\(795\) 929.793 0.0414797
\(796\) 0 0
\(797\) 24603.7 1.09349 0.546743 0.837301i \(-0.315867\pi\)
0.546743 + 0.837301i \(0.315867\pi\)
\(798\) 0 0
\(799\) −45820.5 −2.02880
\(800\) 0 0
\(801\) 1379.29 0.0608426
\(802\) 0 0
\(803\) −4497.78 −0.197663
\(804\) 0 0
\(805\) −8407.96 −0.368126
\(806\) 0 0
\(807\) −5120.02 −0.223338
\(808\) 0 0
\(809\) 33283.3 1.44645 0.723226 0.690612i \(-0.242659\pi\)
0.723226 + 0.690612i \(0.242659\pi\)
\(810\) 0 0
\(811\) −40351.9 −1.74716 −0.873581 0.486679i \(-0.838208\pi\)
−0.873581 + 0.486679i \(0.838208\pi\)
\(812\) 0 0
\(813\) −11964.8 −0.516142
\(814\) 0 0
\(815\) −3016.71 −0.129658
\(816\) 0 0
\(817\) −47540.0 −2.03576
\(818\) 0 0
\(819\) −2800.29 −0.119475
\(820\) 0 0
\(821\) 18080.9 0.768607 0.384303 0.923207i \(-0.374442\pi\)
0.384303 + 0.923207i \(0.374442\pi\)
\(822\) 0 0
\(823\) −22784.9 −0.965043 −0.482522 0.875884i \(-0.660279\pi\)
−0.482522 + 0.875884i \(0.660279\pi\)
\(824\) 0 0
\(825\) 2324.81 0.0981086
\(826\) 0 0
\(827\) 26389.3 1.10961 0.554804 0.831981i \(-0.312793\pi\)
0.554804 + 0.831981i \(0.312793\pi\)
\(828\) 0 0
\(829\) −23934.1 −1.00274 −0.501368 0.865234i \(-0.667170\pi\)
−0.501368 + 0.865234i \(0.667170\pi\)
\(830\) 0 0
\(831\) −15297.0 −0.638564
\(832\) 0 0
\(833\) 23959.8 0.996589
\(834\) 0 0
\(835\) 6461.74 0.267806
\(836\) 0 0
\(837\) −8637.11 −0.356681
\(838\) 0 0
\(839\) 17716.6 0.729016 0.364508 0.931200i \(-0.381237\pi\)
0.364508 + 0.931200i \(0.381237\pi\)
\(840\) 0 0
\(841\) −21070.7 −0.863942
\(842\) 0 0
\(843\) −24242.7 −0.990465
\(844\) 0 0
\(845\) −538.522 −0.0219239
\(846\) 0 0
\(847\) −30766.6 −1.24811
\(848\) 0 0
\(849\) −684.562 −0.0276727
\(850\) 0 0
\(851\) 317.602 0.0127935
\(852\) 0 0
\(853\) −27077.6 −1.08689 −0.543446 0.839444i \(-0.682881\pi\)
−0.543446 + 0.839444i \(0.682881\pi\)
\(854\) 0 0
\(855\) −3955.22 −0.158205
\(856\) 0 0
\(857\) −22069.8 −0.879684 −0.439842 0.898075i \(-0.644966\pi\)
−0.439842 + 0.898075i \(0.644966\pi\)
\(858\) 0 0
\(859\) 24577.5 0.976221 0.488110 0.872782i \(-0.337686\pi\)
0.488110 + 0.872782i \(0.337686\pi\)
\(860\) 0 0
\(861\) −22915.4 −0.907032
\(862\) 0 0
\(863\) 24322.4 0.959381 0.479690 0.877438i \(-0.340749\pi\)
0.479690 + 0.877438i \(0.340749\pi\)
\(864\) 0 0
\(865\) 3347.37 0.131577
\(866\) 0 0
\(867\) −17861.7 −0.699671
\(868\) 0 0
\(869\) 5591.63 0.218277
\(870\) 0 0
\(871\) −9265.11 −0.360432
\(872\) 0 0
\(873\) −5121.40 −0.198549
\(874\) 0 0
\(875\) 18292.2 0.706732
\(876\) 0 0
\(877\) 18624.2 0.717096 0.358548 0.933511i \(-0.383272\pi\)
0.358548 + 0.933511i \(0.383272\pi\)
\(878\) 0 0
\(879\) −5571.71 −0.213799
\(880\) 0 0
\(881\) 46666.0 1.78458 0.892291 0.451460i \(-0.149097\pi\)
0.892291 + 0.451460i \(0.149097\pi\)
\(882\) 0 0
\(883\) −29108.5 −1.10937 −0.554687 0.832059i \(-0.687162\pi\)
−0.554687 + 0.832059i \(0.687162\pi\)
\(884\) 0 0
\(885\) −4283.77 −0.162709
\(886\) 0 0
\(887\) −18025.7 −0.682351 −0.341176 0.940000i \(-0.610825\pi\)
−0.341176 + 0.940000i \(0.610825\pi\)
\(888\) 0 0
\(889\) −43338.9 −1.63503
\(890\) 0 0
\(891\) 546.557 0.0205503
\(892\) 0 0
\(893\) −60620.4 −2.27165
\(894\) 0 0
\(895\) 7432.91 0.277603
\(896\) 0 0
\(897\) 4299.53 0.160041
\(898\) 0 0
\(899\) 18427.4 0.683634
\(900\) 0 0
\(901\) 10139.1 0.374899
\(902\) 0 0
\(903\) 24750.6 0.912126
\(904\) 0 0
\(905\) 3371.52 0.123838
\(906\) 0 0
\(907\) 6690.51 0.244933 0.122467 0.992473i \(-0.460920\pi\)
0.122467 + 0.992473i \(0.460920\pi\)
\(908\) 0 0
\(909\) 13540.2 0.494060
\(910\) 0 0
\(911\) −2333.45 −0.0848633 −0.0424317 0.999099i \(-0.513510\pi\)
−0.0424317 + 0.999099i \(0.513510\pi\)
\(912\) 0 0
\(913\) −4953.67 −0.179565
\(914\) 0 0
\(915\) 2529.38 0.0913867
\(916\) 0 0
\(917\) 28970.9 1.04330
\(918\) 0 0
\(919\) 5069.08 0.181952 0.0909758 0.995853i \(-0.471001\pi\)
0.0909758 + 0.995853i \(0.471001\pi\)
\(920\) 0 0
\(921\) −24613.0 −0.880591
\(922\) 0 0
\(923\) −14750.8 −0.526035
\(924\) 0 0
\(925\) −330.859 −0.0117606
\(926\) 0 0
\(927\) −14078.4 −0.498807
\(928\) 0 0
\(929\) 1321.66 0.0466763 0.0233382 0.999728i \(-0.492571\pi\)
0.0233382 + 0.999728i \(0.492571\pi\)
\(930\) 0 0
\(931\) 31698.8 1.11588
\(932\) 0 0
\(933\) −9582.30 −0.336238
\(934\) 0 0
\(935\) −2241.40 −0.0783975
\(936\) 0 0
\(937\) −52868.3 −1.84326 −0.921629 0.388072i \(-0.873141\pi\)
−0.921629 + 0.388072i \(0.873141\pi\)
\(938\) 0 0
\(939\) −21927.7 −0.762071
\(940\) 0 0
\(941\) 29982.2 1.03867 0.519337 0.854570i \(-0.326179\pi\)
0.519337 + 0.854570i \(0.326179\pi\)
\(942\) 0 0
\(943\) 35184.0 1.21500
\(944\) 0 0
\(945\) 2059.20 0.0708843
\(946\) 0 0
\(947\) 20676.2 0.709488 0.354744 0.934963i \(-0.384568\pi\)
0.354744 + 0.934963i \(0.384568\pi\)
\(948\) 0 0
\(949\) 8665.45 0.296409
\(950\) 0 0
\(951\) −24787.8 −0.845214
\(952\) 0 0
\(953\) 34705.5 1.17967 0.589833 0.807526i \(-0.299194\pi\)
0.589833 + 0.807526i \(0.299194\pi\)
\(954\) 0 0
\(955\) 326.484 0.0110626
\(956\) 0 0
\(957\) −1166.09 −0.0393879
\(958\) 0 0
\(959\) −45347.6 −1.52696
\(960\) 0 0
\(961\) 72540.5 2.43498
\(962\) 0 0
\(963\) −13374.9 −0.447561
\(964\) 0 0
\(965\) −326.288 −0.0108845
\(966\) 0 0
\(967\) 22925.4 0.762390 0.381195 0.924495i \(-0.375513\pi\)
0.381195 + 0.924495i \(0.375513\pi\)
\(968\) 0 0
\(969\) −43130.6 −1.42988
\(970\) 0 0
\(971\) 18359.7 0.606787 0.303393 0.952865i \(-0.401880\pi\)
0.303393 + 0.952865i \(0.401880\pi\)
\(972\) 0 0
\(973\) 19134.3 0.630440
\(974\) 0 0
\(975\) −4479.00 −0.147121
\(976\) 0 0
\(977\) 14567.7 0.477032 0.238516 0.971139i \(-0.423339\pi\)
0.238516 + 0.971139i \(0.423339\pi\)
\(978\) 0 0
\(979\) 1034.10 0.0337591
\(980\) 0 0
\(981\) 13346.0 0.434358
\(982\) 0 0
\(983\) −15297.6 −0.496355 −0.248178 0.968715i \(-0.579832\pi\)
−0.248178 + 0.968715i \(0.579832\pi\)
\(984\) 0 0
\(985\) −15901.6 −0.514383
\(986\) 0 0
\(987\) 31560.7 1.01782
\(988\) 0 0
\(989\) −38001.8 −1.22183
\(990\) 0 0
\(991\) −11376.1 −0.364655 −0.182328 0.983238i \(-0.558363\pi\)
−0.182328 + 0.983238i \(0.558363\pi\)
\(992\) 0 0
\(993\) −8210.20 −0.262379
\(994\) 0 0
\(995\) 9351.16 0.297941
\(996\) 0 0
\(997\) −46713.5 −1.48388 −0.741941 0.670465i \(-0.766094\pi\)
−0.741941 + 0.670465i \(0.766094\pi\)
\(998\) 0 0
\(999\) −77.7840 −0.00246344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.4.a.bm.1.2 3
4.3 odd 2 2496.4.a.bq.1.2 3
8.3 odd 2 624.4.a.s.1.2 3
8.5 even 2 312.4.a.h.1.2 3
24.5 odd 2 936.4.a.l.1.2 3
24.11 even 2 1872.4.a.bl.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.h.1.2 3 8.5 even 2
624.4.a.s.1.2 3 8.3 odd 2
936.4.a.l.1.2 3 24.5 odd 2
1872.4.a.bl.1.2 3 24.11 even 2
2496.4.a.bm.1.2 3 1.1 even 1 trivial
2496.4.a.bq.1.2 3 4.3 odd 2