Properties

Label 2496.4.a.v
Level 24962496
Weight 44
Character orbit 2496.a
Self dual yes
Analytic conductor 147.269147.269
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2496,4,Mod(1,2496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2496.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2496=26313 2496 = 2^{6} \cdot 3 \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2496.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 147.268767374147.268767374
Analytic rank: 11
Dimension: 22
Coefficient field: Q(113)\Q(\sqrt{113})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x28 x^{2} - x - 28 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 312)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=113\beta = \sqrt{113}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3q3+(β3)q5+(β+5)q7+9q9+(4β8)q1113q13+(3β+9)q15+2q17+(5β35)q19+(3β15)q21+64q23+(6β3)q25++(36β72)q99+O(q100) q - 3 q^{3} + ( - \beta - 3) q^{5} + (\beta + 5) q^{7} + 9 q^{9} + ( - 4 \beta - 8) q^{11} - 13 q^{13} + (3 \beta + 9) q^{15} + 2 q^{17} + (5 \beta - 35) q^{19} + ( - 3 \beta - 15) q^{21} + 64 q^{23} + (6 \beta - 3) q^{25}+ \cdots + ( - 36 \beta - 72) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q36q5+10q7+18q916q1126q13+18q15+4q1770q1930q21+128q236q2554q27+80q29+250q31+48q33256q35+144q99+O(q100) 2 q - 6 q^{3} - 6 q^{5} + 10 q^{7} + 18 q^{9} - 16 q^{11} - 26 q^{13} + 18 q^{15} + 4 q^{17} - 70 q^{19} - 30 q^{21} + 128 q^{23} - 6 q^{25} - 54 q^{27} + 80 q^{29} + 250 q^{31} + 48 q^{33} - 256 q^{35}+ \cdots - 144 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
5.81507
−4.81507
0 −3.00000 0 −13.6301 0 15.6301 0 9.00000 0
1.2 0 −3.00000 0 7.63015 0 −5.63015 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.4.a.v 2
4.b odd 2 1 2496.4.a.be 2
8.b even 2 1 624.4.a.q 2
8.d odd 2 1 312.4.a.c 2
24.f even 2 1 936.4.a.d 2
24.h odd 2 1 1872.4.a.x 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.a.c 2 8.d odd 2 1
624.4.a.q 2 8.b even 2 1
936.4.a.d 2 24.f even 2 1
1872.4.a.x 2 24.h odd 2 1
2496.4.a.v 2 1.a even 1 1 trivial
2496.4.a.be 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2496))S_{4}^{\mathrm{new}}(\Gamma_0(2496)):

T52+6T5104 T_{5}^{2} + 6T_{5} - 104 Copy content Toggle raw display
T7210T788 T_{7}^{2} - 10T_{7} - 88 Copy content Toggle raw display
T112+16T111744 T_{11}^{2} + 16T_{11} - 1744 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
55 T2+6T104 T^{2} + 6T - 104 Copy content Toggle raw display
77 T210T88 T^{2} - 10T - 88 Copy content Toggle raw display
1111 T2+16T1744 T^{2} + 16T - 1744 Copy content Toggle raw display
1313 (T+13)2 (T + 13)^{2} Copy content Toggle raw display
1717 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1919 T2+70T1600 T^{2} + 70T - 1600 Copy content Toggle raw display
2323 (T64)2 (T - 64)^{2} Copy content Toggle raw display
2929 T280T2468 T^{2} - 80T - 2468 Copy content Toggle raw display
3131 T2250T9800 T^{2} - 250T - 9800 Copy content Toggle raw display
3737 T2152T30836 T^{2} - 152T - 30836 Copy content Toggle raw display
4141 T2+146T208 T^{2} + 146T - 208 Copy content Toggle raw display
4343 T2+504T+56272 T^{2} + 504T + 56272 Copy content Toggle raw display
4747 T2524T+64576 T^{2} - 524T + 64576 Copy content Toggle raw display
5353 T252T6556 T^{2} - 52T - 6556 Copy content Toggle raw display
5959 T2+164T4576 T^{2} + 164T - 4576 Copy content Toggle raw display
6161 T2304T216004 T^{2} - 304T - 216004 Copy content Toggle raw display
6767 T2+914T+203312 T^{2} + 914T + 203312 Copy content Toggle raw display
7171 T2260352 T^{2} - 260352 Copy content Toggle raw display
7373 T2+456T+47916 T^{2} + 456T + 47916 Copy content Toggle raw display
7979 T2824T+23296 T^{2} - 824T + 23296 Copy content Toggle raw display
8383 T2828T111104 T^{2} - 828T - 111104 Copy content Toggle raw display
8989 T2826T+161416 T^{2} - 826T + 161416 Copy content Toggle raw display
9797 T2552T1605716 T^{2} - 552 T - 1605716 Copy content Toggle raw display
show more
show less