Properties

Label 2499.2.a.bf
Level $2499$
Weight $2$
Character orbit 2499.a
Self dual yes
Analytic conductor $19.955$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2499,2,Mod(1,2499)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2499, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2499.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2499 = 3 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2499.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9546154651\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.29722117.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 9x^{2} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + q^{3} + (\beta_{4} + \beta_{3} + \beta_1 + 1) q^{4} + (\beta_{5} + 1) q^{5} + \beta_1 q^{6} + (\beta_{2} + \beta_1 + 1) q^{8} + q^{9} + (\beta_{3} + 2 \beta_1 + 1) q^{10} + (\beta_{5} - \beta_{2} - \beta_1) q^{11}+ \cdots + (\beta_{5} - \beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 6 q^{3} + 6 q^{4} + 7 q^{5} + 2 q^{6} + 6 q^{8} + 6 q^{9} + 9 q^{10} + q^{11} + 6 q^{12} + 4 q^{13} + 7 q^{15} + 10 q^{16} + 6 q^{17} + 2 q^{18} + 6 q^{19} + 20 q^{20} - 13 q^{22} + 13 q^{23}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 9x^{2} - 7x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 5\nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{5} + 2\nu^{4} + 6\nu^{3} - 11\nu^{2} - 3\nu + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 2\nu^{4} - 6\nu^{3} + 12\nu^{2} + 2\nu - 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 3\nu^{4} - 5\nu^{3} + 18\nu^{2} - 2\nu - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{5} + 7\beta_{4} + 6\beta_{3} + \beta_{2} + 7\beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -2\beta_{5} + 3\beta_{4} + 8\beta_{2} + 30\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.32797
−0.691813
−0.528483
0.866560
2.10362
2.57808
−2.32797 1.00000 3.41944 0.803188 −2.32797 0 −3.30440 1.00000 −1.86980
1.2 −0.691813 1.00000 −1.52139 2.80840 −0.691813 0 2.43615 1.00000 −1.94289
1.3 −0.528483 1.00000 −1.72071 −1.45297 −0.528483 0 1.96633 1.00000 0.767869
1.4 0.866560 1.00000 −1.24907 −0.673093 0.866560 0 −2.81552 1.00000 −0.583275
1.5 2.10362 1.00000 2.42523 3.34838 2.10362 0 0.894514 1.00000 7.04372
1.6 2.57808 1.00000 4.64651 2.16610 2.57808 0 6.82293 1.00000 5.58438
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2499.2.a.bf 6
3.b odd 2 1 7497.2.a.bx 6
7.b odd 2 1 2499.2.a.be 6
7.d odd 6 2 357.2.i.g 12
21.c even 2 1 7497.2.a.by 6
21.g even 6 2 1071.2.i.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.i.g 12 7.d odd 6 2
1071.2.i.h 12 21.g even 6 2
2499.2.a.be 6 7.b odd 2 1
2499.2.a.bf 6 1.a even 1 1 trivial
7497.2.a.bx 6 3.b odd 2 1
7497.2.a.by 6 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2499))\):

\( T_{2}^{6} - 2T_{2}^{5} - 7T_{2}^{4} + 12T_{2}^{3} + 9T_{2}^{2} - 7T_{2} - 4 \) Copy content Toggle raw display
\( T_{5}^{6} - 7T_{5}^{5} + 11T_{5}^{4} + 15T_{5}^{3} - 37T_{5}^{2} - 3T_{5} + 16 \) Copy content Toggle raw display
\( T_{11}^{6} - T_{11}^{5} - 30T_{11}^{4} + 46T_{11}^{3} + 197T_{11}^{2} - 422T_{11} + 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 2 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 7 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - T^{5} + \cdots + 128 \) Copy content Toggle raw display
$13$ \( T^{6} - 4 T^{5} + \cdots - 7 \) Copy content Toggle raw display
$17$ \( (T - 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} - 6 T^{5} + \cdots + 1376 \) Copy content Toggle raw display
$23$ \( T^{6} - 13 T^{5} + \cdots - 1016 \) Copy content Toggle raw display
$29$ \( T^{6} + 2 T^{5} + \cdots + 2194 \) Copy content Toggle raw display
$31$ \( T^{6} - 16 T^{5} + \cdots + 22831 \) Copy content Toggle raw display
$37$ \( T^{6} + 5 T^{5} + \cdots - 177484 \) Copy content Toggle raw display
$41$ \( T^{6} + 3 T^{5} + \cdots - 13174 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots + 59296 \) Copy content Toggle raw display
$47$ \( T^{6} - 3 T^{5} + \cdots - 58 \) Copy content Toggle raw display
$53$ \( T^{6} - 3 T^{5} + \cdots + 43192 \) Copy content Toggle raw display
$59$ \( T^{6} - 12 T^{5} + \cdots + 10048 \) Copy content Toggle raw display
$61$ \( T^{6} - 29 T^{5} + \cdots + 784 \) Copy content Toggle raw display
$67$ \( T^{6} + 9 T^{5} + \cdots - 7792 \) Copy content Toggle raw display
$71$ \( T^{6} - 29 T^{5} + \cdots - 16856 \) Copy content Toggle raw display
$73$ \( T^{6} + 2 T^{5} + \cdots + 40834 \) Copy content Toggle raw display
$79$ \( T^{6} + 6 T^{5} + \cdots - 110912 \) Copy content Toggle raw display
$83$ \( T^{6} - 29 T^{5} + \cdots + 22806 \) Copy content Toggle raw display
$89$ \( T^{6} - 12 T^{5} + \cdots - 19616 \) Copy content Toggle raw display
$97$ \( T^{6} - 7 T^{5} + \cdots + 27944 \) Copy content Toggle raw display
show more
show less