Properties

Label 25.22.b.a
Level $25$
Weight $22$
Character orbit 25.b
Analytic conductor $69.869$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,22,Mod(24,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.24");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 25.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.8693360718\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 144 \beta q^{2} - 64422 \beta q^{3} + 2014208 q^{4} + 37107072 q^{6} + 384039404 \beta q^{7} + 592035840 \beta q^{8} - 6140423133 q^{9} - 94724929188 q^{11} - 129759307776 \beta q^{12} - 40310894897 \beta q^{13} + \cdots + 58\!\cdots\!04 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4028416 q^{4} + 74214144 q^{6} - 12280846266 q^{9} - 189449858376 q^{11} - 442413393408 q^{14} + 7766175383552 q^{16} + 15841576703480 q^{19} + 197924691875904 q^{21} + 305121063075840 q^{24} + 46438150921344 q^{26}+ \cdots + 11\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
24.1
1.00000i
1.00000i
288.000i 128844.i 2.01421e6 0 3.71071e7 7.68079e8i 1.18407e9i −6.14042e9 0
24.2 288.000i 128844.i 2.01421e6 0 3.71071e7 7.68079e8i 1.18407e9i −6.14042e9 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.22.b.a 2
5.b even 2 1 inner 25.22.b.a 2
5.c odd 4 1 1.22.a.a 1
5.c odd 4 1 25.22.a.a 1
15.e even 4 1 9.22.a.c 1
20.e even 4 1 16.22.a.c 1
35.f even 4 1 49.22.a.a 1
40.i odd 4 1 64.22.a.g 1
40.k even 4 1 64.22.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.22.a.a 1 5.c odd 4 1
9.22.a.c 1 15.e even 4 1
16.22.a.c 1 20.e even 4 1
25.22.a.a 1 5.c odd 4 1
25.22.b.a 2 1.a even 1 1 trivial
25.22.b.a 2 5.b even 2 1 inner
49.22.a.a 1 35.f even 4 1
64.22.a.a 1 40.k even 4 1
64.22.a.g 1 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 82944 \) acting on \(S_{22}^{\mathrm{new}}(25, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 82944 \) Copy content Toggle raw display
$3$ \( T^{2} + 16600776336 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 58\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( (T + 94724929188)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 64\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{2} + 93\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( (T - 7920788351740)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 54\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( (T - 42\!\cdots\!10)^{2} \) Copy content Toggle raw display
$31$ \( (T - 19\!\cdots\!32)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 49\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( (T + 20\!\cdots\!58)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 37\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + 21\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{2} + 41\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( (T - 59\!\cdots\!20)^{2} \) Copy content Toggle raw display
$61$ \( (T - 61\!\cdots\!62)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 28\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( (T + 56\!\cdots\!28)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 18\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( (T - 51\!\cdots\!60)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 23\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( (T - 50\!\cdots\!30)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 65\!\cdots\!24 \) Copy content Toggle raw display
show more
show less