Properties

Label 250.4.d.b.151.2
Level $250$
Weight $4$
Character 250.151
Analytic conductor $14.750$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [250,4,Mod(51,250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(250, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("250.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 250 = 2 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 250.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7504775014\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 135 x^{14} + 7296 x^{12} + 200295 x^{10} + 2912021 x^{8} + 20937420 x^{6} + 57578496 x^{4} + \cdots + 952576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 5^{6} \)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 151.2
Root \(2.36461i\) of defining polynomial
Character \(\chi\) \(=\) 250.151
Dual form 250.4.d.b.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.618034 - 1.90211i) q^{2} +(-3.55790 + 2.58496i) q^{3} +(-3.23607 + 2.35114i) q^{4} +(7.11579 + 5.16993i) q^{6} -32.4633 q^{7} +(6.47214 + 4.70228i) q^{8} +(-2.36687 + 7.28447i) q^{9} +(-13.6751 - 42.0875i) q^{11} +(5.43598 - 16.7302i) q^{12} +(6.12486 - 18.8504i) q^{13} +(20.0634 + 61.7488i) q^{14} +(4.94427 - 15.2169i) q^{16} +(66.6454 + 48.4207i) q^{17} +15.3187 q^{18} +(-8.36319 - 6.07621i) q^{19} +(115.501 - 83.9163i) q^{21} +(-71.6036 + 52.0231i) q^{22} +(60.0803 + 184.908i) q^{23} -35.1824 q^{24} -39.6409 q^{26} +(-47.1019 - 144.965i) q^{27} +(105.053 - 76.3257i) q^{28} +(159.317 - 115.751i) q^{29} +(68.1740 + 49.5313i) q^{31} -32.0000 q^{32} +(157.449 + 114.394i) q^{33} +(50.9126 - 156.693i) q^{34} +(-9.46747 - 29.1379i) q^{36} +(70.9588 - 218.389i) q^{37} +(-6.38891 + 19.6630i) q^{38} +(26.9359 + 82.9003i) q^{39} +(-6.39296 + 19.6755i) q^{41} +(-231.002 - 167.833i) q^{42} +36.8678 q^{43} +(143.207 + 104.046i) q^{44} +(314.584 - 228.559i) q^{46} +(343.561 - 249.612i) q^{47} +(21.7439 + 66.9209i) q^{48} +710.864 q^{49} -362.283 q^{51} +(24.4995 + 75.4016i) q^{52} +(-4.23242 + 3.07504i) q^{53} +(-246.629 + 179.186i) q^{54} +(-210.107 - 152.651i) q^{56} +45.4621 q^{57} +(-318.635 - 231.502i) q^{58} +(16.0299 - 49.3350i) q^{59} +(-38.3804 - 118.123i) q^{61} +(52.0803 - 160.287i) q^{62} +(76.8363 - 236.478i) q^{63} +(19.7771 + 60.8676i) q^{64} +(120.280 - 370.185i) q^{66} +(-630.360 - 457.984i) q^{67} -329.513 q^{68} +(-691.740 - 502.578i) q^{69} +(-496.268 + 360.560i) q^{71} +(-49.5723 + 36.0164i) q^{72} +(280.603 + 863.608i) q^{73} -459.255 q^{74} +41.3499 q^{76} +(443.937 + 1366.30i) q^{77} +(141.038 - 102.470i) q^{78} +(500.100 - 363.344i) q^{79} +(375.005 + 272.457i) q^{81} +41.3761 q^{82} +(-365.730 - 265.719i) q^{83} +(-176.470 + 543.118i) q^{84} +(-22.7855 - 70.1266i) q^{86} +(-267.623 + 823.659i) q^{87} +(109.401 - 336.700i) q^{88} +(266.987 + 821.703i) q^{89} +(-198.833 + 611.945i) q^{91} +(-629.169 - 457.118i) q^{92} -370.592 q^{93} +(-687.123 - 499.224i) q^{94} +(113.853 - 82.7188i) q^{96} +(528.660 - 384.094i) q^{97} +(-439.338 - 1352.14i) q^{98} +338.953 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 7 q^{3} - 16 q^{4} + 14 q^{6} + 54 q^{7} + 32 q^{8} - 83 q^{9} + 152 q^{11} + 12 q^{12} - 77 q^{13} + 52 q^{14} - 64 q^{16} - 76 q^{17} - 304 q^{18} - 20 q^{19} + 257 q^{21} + 226 q^{22}+ \cdots - 1786 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/250\mathbb{Z}\right)^\times\).

\(n\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 1.90211i −0.218508 0.672499i
\(3\) −3.55790 + 2.58496i −0.684717 + 0.497476i −0.874919 0.484269i \(-0.839086\pi\)
0.190202 + 0.981745i \(0.439086\pi\)
\(4\) −3.23607 + 2.35114i −0.404508 + 0.293893i
\(5\) 0 0
\(6\) 7.11579 + 5.16993i 0.484168 + 0.351769i
\(7\) −32.4633 −1.75285 −0.876426 0.481537i \(-0.840079\pi\)
−0.876426 + 0.481537i \(0.840079\pi\)
\(8\) 6.47214 + 4.70228i 0.286031 + 0.207813i
\(9\) −2.36687 + 7.28447i −0.0876618 + 0.269795i
\(10\) 0 0
\(11\) −13.6751 42.0875i −0.374835 1.15362i −0.943590 0.331117i \(-0.892575\pi\)
0.568754 0.822507i \(-0.307425\pi\)
\(12\) 5.43598 16.7302i 0.130769 0.402467i
\(13\) 6.12486 18.8504i 0.130672 0.402166i −0.864220 0.503114i \(-0.832188\pi\)
0.994892 + 0.100948i \(0.0321876\pi\)
\(14\) 20.0634 + 61.7488i 0.383012 + 1.17879i
\(15\) 0 0
\(16\) 4.94427 15.2169i 0.0772542 0.237764i
\(17\) 66.6454 + 48.4207i 0.950817 + 0.690809i 0.951000 0.309191i \(-0.100058\pi\)
−0.000182954 1.00000i \(0.500058\pi\)
\(18\) 15.3187 0.200592
\(19\) −8.36319 6.07621i −0.100981 0.0733673i 0.536149 0.844124i \(-0.319879\pi\)
−0.637130 + 0.770756i \(0.719879\pi\)
\(20\) 0 0
\(21\) 115.501 83.9163i 1.20021 0.872002i
\(22\) −71.6036 + 52.0231i −0.693906 + 0.504152i
\(23\) 60.0803 + 184.908i 0.544678 + 1.67635i 0.721753 + 0.692151i \(0.243337\pi\)
−0.177075 + 0.984197i \(0.556663\pi\)
\(24\) −35.1824 −0.299232
\(25\) 0 0
\(26\) −39.6409 −0.299009
\(27\) −47.1019 144.965i −0.335732 1.03328i
\(28\) 105.053 76.3257i 0.709043 0.515150i
\(29\) 159.317 115.751i 1.02016 0.741186i 0.0538405 0.998550i \(-0.482854\pi\)
0.966315 + 0.257363i \(0.0828538\pi\)
\(30\) 0 0
\(31\) 68.1740 + 49.5313i 0.394981 + 0.286970i 0.767493 0.641057i \(-0.221504\pi\)
−0.372513 + 0.928027i \(0.621504\pi\)
\(32\) −32.0000 −0.176777
\(33\) 157.449 + 114.394i 0.830557 + 0.603435i
\(34\) 50.9126 156.693i 0.256807 0.790370i
\(35\) 0 0
\(36\) −9.46747 29.1379i −0.0438309 0.134898i
\(37\) 70.9588 218.389i 0.315285 0.970348i −0.660352 0.750956i \(-0.729593\pi\)
0.975637 0.219391i \(-0.0704072\pi\)
\(38\) −6.38891 + 19.6630i −0.0272741 + 0.0839412i
\(39\) 26.9359 + 82.9003i 0.110595 + 0.340376i
\(40\) 0 0
\(41\) −6.39296 + 19.6755i −0.0243515 + 0.0749463i −0.962494 0.271304i \(-0.912545\pi\)
0.938142 + 0.346250i \(0.112545\pi\)
\(42\) −231.002 167.833i −0.848675 0.616599i
\(43\) 36.8678 0.130751 0.0653753 0.997861i \(-0.479176\pi\)
0.0653753 + 0.997861i \(0.479176\pi\)
\(44\) 143.207 + 104.046i 0.490666 + 0.356490i
\(45\) 0 0
\(46\) 314.584 228.559i 1.00832 0.732591i
\(47\) 343.561 249.612i 1.06625 0.774673i 0.0910123 0.995850i \(-0.470990\pi\)
0.975234 + 0.221177i \(0.0709898\pi\)
\(48\) 21.7439 + 66.9209i 0.0653847 + 0.201233i
\(49\) 710.864 2.07249
\(50\) 0 0
\(51\) −362.283 −0.994702
\(52\) 24.4995 + 75.4016i 0.0653358 + 0.201083i
\(53\) −4.23242 + 3.07504i −0.0109692 + 0.00796960i −0.593256 0.805014i \(-0.702158\pi\)
0.582287 + 0.812983i \(0.302158\pi\)
\(54\) −246.629 + 179.186i −0.621517 + 0.451558i
\(55\) 0 0
\(56\) −210.107 152.651i −0.501369 0.364266i
\(57\) 45.4621 0.105642
\(58\) −318.635 231.502i −0.721359 0.524098i
\(59\) 16.0299 49.3350i 0.0353715 0.108862i −0.931812 0.362942i \(-0.881772\pi\)
0.967183 + 0.254079i \(0.0817724\pi\)
\(60\) 0 0
\(61\) −38.3804 118.123i −0.0805592 0.247936i 0.902663 0.430348i \(-0.141609\pi\)
−0.983222 + 0.182413i \(0.941609\pi\)
\(62\) 52.0803 160.287i 0.106681 0.328329i
\(63\) 76.8363 236.478i 0.153658 0.472911i
\(64\) 19.7771 + 60.8676i 0.0386271 + 0.118882i
\(65\) 0 0
\(66\) 120.280 370.185i 0.224326 0.690404i
\(67\) −630.360 457.984i −1.14941 0.835098i −0.161011 0.986953i \(-0.551476\pi\)
−0.988403 + 0.151854i \(0.951476\pi\)
\(68\) −329.513 −0.587637
\(69\) −691.740 502.578i −1.20689 0.876860i
\(70\) 0 0
\(71\) −496.268 + 360.560i −0.829523 + 0.602684i −0.919424 0.393267i \(-0.871345\pi\)
0.0899013 + 0.995951i \(0.471345\pi\)
\(72\) −49.5723 + 36.0164i −0.0811411 + 0.0589524i
\(73\) 280.603 + 863.608i 0.449892 + 1.38463i 0.877028 + 0.480439i \(0.159523\pi\)
−0.427136 + 0.904187i \(0.640477\pi\)
\(74\) −459.255 −0.721450
\(75\) 0 0
\(76\) 41.3499 0.0624099
\(77\) 443.937 + 1366.30i 0.657031 + 2.02213i
\(78\) 141.038 102.470i 0.204737 0.148750i
\(79\) 500.100 363.344i 0.712224 0.517461i −0.171667 0.985155i \(-0.554915\pi\)
0.883890 + 0.467694i \(0.154915\pi\)
\(80\) 0 0
\(81\) 375.005 + 272.457i 0.514411 + 0.373741i
\(82\) 41.3761 0.0557223
\(83\) −365.730 265.719i −0.483664 0.351403i 0.319078 0.947728i \(-0.396627\pi\)
−0.802743 + 0.596326i \(0.796627\pi\)
\(84\) −176.470 + 543.118i −0.229219 + 0.705465i
\(85\) 0 0
\(86\) −22.7855 70.1266i −0.0285701 0.0879296i
\(87\) −267.623 + 823.659i −0.329795 + 1.01501i
\(88\) 109.401 336.700i 0.132524 0.407868i
\(89\) 266.987 + 821.703i 0.317984 + 0.978656i 0.974509 + 0.224350i \(0.0720260\pi\)
−0.656524 + 0.754305i \(0.727974\pi\)
\(90\) 0 0
\(91\) −198.833 + 611.945i −0.229048 + 0.704937i
\(92\) −629.169 457.118i −0.712993 0.518020i
\(93\) −370.592 −0.413211
\(94\) −687.123 499.224i −0.753950 0.547777i
\(95\) 0 0
\(96\) 113.853 82.7188i 0.121042 0.0879422i
\(97\) 528.660 384.094i 0.553374 0.402050i −0.275654 0.961257i \(-0.588894\pi\)
0.829028 + 0.559207i \(0.188894\pi\)
\(98\) −439.338 1352.14i −0.452856 1.39375i
\(99\) 338.953 0.344101
\(100\) 0 0
\(101\) 684.563 0.674421 0.337211 0.941429i \(-0.390517\pi\)
0.337211 + 0.941429i \(0.390517\pi\)
\(102\) 223.903 + 689.104i 0.217350 + 0.668936i
\(103\) 3.12140 2.26783i 0.00298603 0.00216948i −0.586291 0.810100i \(-0.699413\pi\)
0.589277 + 0.807931i \(0.299413\pi\)
\(104\) 128.281 93.2015i 0.120952 0.0878765i
\(105\) 0 0
\(106\) 8.46485 + 6.15007i 0.00775640 + 0.00563536i
\(107\) 1045.89 0.944951 0.472476 0.881344i \(-0.343360\pi\)
0.472476 + 0.881344i \(0.343360\pi\)
\(108\) 493.257 + 358.372i 0.439479 + 0.319300i
\(109\) −356.163 + 1096.16i −0.312974 + 0.963236i 0.663606 + 0.748082i \(0.269025\pi\)
−0.976580 + 0.215153i \(0.930975\pi\)
\(110\) 0 0
\(111\) 312.063 + 960.430i 0.266844 + 0.821261i
\(112\) −160.507 + 493.990i −0.135415 + 0.416765i
\(113\) −41.9853 + 129.218i −0.0349526 + 0.107573i −0.967011 0.254736i \(-0.918011\pi\)
0.932058 + 0.362309i \(0.118011\pi\)
\(114\) −28.0971 86.4741i −0.0230837 0.0710442i
\(115\) 0 0
\(116\) −243.415 + 749.155i −0.194832 + 0.599632i
\(117\) 122.818 + 89.2328i 0.0970476 + 0.0705092i
\(118\) −103.748 −0.0809387
\(119\) −2163.53 1571.90i −1.66664 1.21089i
\(120\) 0 0
\(121\) −507.551 + 368.758i −0.381331 + 0.277053i
\(122\) −200.963 + 146.008i −0.149134 + 0.108352i
\(123\) −28.1150 86.5290i −0.0206101 0.0634314i
\(124\) −337.071 −0.244112
\(125\) 0 0
\(126\) −497.295 −0.351608
\(127\) 505.692 + 1556.36i 0.353330 + 1.08744i 0.956971 + 0.290182i \(0.0937159\pi\)
−0.603641 + 0.797256i \(0.706284\pi\)
\(128\) 103.554 75.2365i 0.0715077 0.0519534i
\(129\) −131.172 + 95.3018i −0.0895273 + 0.0650454i
\(130\) 0 0
\(131\) 874.934 + 635.677i 0.583537 + 0.423964i 0.839997 0.542590i \(-0.182556\pi\)
−0.256461 + 0.966555i \(0.582556\pi\)
\(132\) −778.471 −0.513312
\(133\) 271.496 + 197.254i 0.177005 + 0.128602i
\(134\) −481.552 + 1482.07i −0.310446 + 0.955455i
\(135\) 0 0
\(136\) 203.650 + 626.771i 0.128403 + 0.395185i
\(137\) 716.275 2204.47i 0.446683 1.37475i −0.433945 0.900939i \(-0.642879\pi\)
0.880628 0.473809i \(-0.157121\pi\)
\(138\) −528.442 + 1626.38i −0.325971 + 1.00324i
\(139\) −327.762 1008.75i −0.200003 0.615546i −0.999882 0.0153844i \(-0.995103\pi\)
0.799879 0.600162i \(-0.204897\pi\)
\(140\) 0 0
\(141\) −577.118 + 1776.19i −0.344696 + 1.06086i
\(142\) 992.535 + 721.119i 0.586561 + 0.426162i
\(143\) −877.124 −0.512929
\(144\) 99.1447 + 72.0328i 0.0573754 + 0.0416857i
\(145\) 0 0
\(146\) 1469.26 1067.48i 0.832854 0.605104i
\(147\) −2529.18 + 1837.56i −1.41907 + 1.03101i
\(148\) 283.835 + 873.554i 0.157643 + 0.485174i
\(149\) −1830.45 −1.00642 −0.503209 0.864165i \(-0.667848\pi\)
−0.503209 + 0.864165i \(0.667848\pi\)
\(150\) 0 0
\(151\) −1585.52 −0.854491 −0.427246 0.904136i \(-0.640516\pi\)
−0.427246 + 0.904136i \(0.640516\pi\)
\(152\) −25.5556 78.6521i −0.0136371 0.0419706i
\(153\) −510.460 + 370.871i −0.269727 + 0.195968i
\(154\) 2324.49 1688.84i 1.21631 0.883704i
\(155\) 0 0
\(156\) −282.077 204.941i −0.144771 0.105182i
\(157\) 1535.51 0.780554 0.390277 0.920698i \(-0.372379\pi\)
0.390277 + 0.920698i \(0.372379\pi\)
\(158\) −1000.20 726.688i −0.503618 0.365900i
\(159\) 7.10967 21.8813i 0.00354612 0.0109138i
\(160\) 0 0
\(161\) −1950.40 6002.72i −0.954741 2.93839i
\(162\) 286.479 881.690i 0.138938 0.427606i
\(163\) 517.820 1593.69i 0.248827 0.765811i −0.746156 0.665771i \(-0.768103\pi\)
0.994983 0.100040i \(-0.0318972\pi\)
\(164\) −25.5719 78.7021i −0.0121758 0.0374732i
\(165\) 0 0
\(166\) −279.393 + 859.884i −0.130633 + 0.402048i
\(167\) −1664.99 1209.69i −0.771503 0.560530i 0.130914 0.991394i \(-0.458209\pi\)
−0.902417 + 0.430864i \(0.858209\pi\)
\(168\) 1142.14 0.524510
\(169\) 1459.59 + 1060.45i 0.664355 + 0.482682i
\(170\) 0 0
\(171\) 64.0566 46.5398i 0.0286464 0.0208128i
\(172\) −119.307 + 86.6813i −0.0528898 + 0.0384267i
\(173\) −1331.88 4099.10i −0.585323 1.80144i −0.597971 0.801518i \(-0.704026\pi\)
0.0126483 0.999920i \(-0.495974\pi\)
\(174\) 1732.09 0.754653
\(175\) 0 0
\(176\) −708.055 −0.303248
\(177\) 70.4964 + 216.966i 0.0299369 + 0.0921364i
\(178\) 1397.96 1015.68i 0.588662 0.427688i
\(179\) 2202.60 1600.28i 0.919719 0.668215i −0.0237350 0.999718i \(-0.507556\pi\)
0.943454 + 0.331503i \(0.107556\pi\)
\(180\) 0 0
\(181\) 1056.07 + 767.281i 0.433686 + 0.315091i 0.783121 0.621869i \(-0.213626\pi\)
−0.349435 + 0.936961i \(0.613626\pi\)
\(182\) 1286.87 0.524118
\(183\) 441.897 + 321.057i 0.178502 + 0.129690i
\(184\) −480.642 + 1479.26i −0.192573 + 0.592679i
\(185\) 0 0
\(186\) 229.039 + 704.909i 0.0902900 + 0.277884i
\(187\) 1126.53 3467.10i 0.440534 1.35583i
\(188\) −524.915 + 1615.52i −0.203635 + 0.626724i
\(189\) 1529.08 + 4706.03i 0.588488 + 1.81118i
\(190\) 0 0
\(191\) 1225.39 3771.37i 0.464221 1.42872i −0.395739 0.918363i \(-0.629511\pi\)
0.859960 0.510362i \(-0.170489\pi\)
\(192\) −227.705 165.438i −0.0855897 0.0621845i
\(193\) 1941.18 0.723986 0.361993 0.932181i \(-0.382096\pi\)
0.361993 + 0.932181i \(0.382096\pi\)
\(194\) −1057.32 768.188i −0.391295 0.284292i
\(195\) 0 0
\(196\) −2300.40 + 1671.34i −0.838340 + 0.609089i
\(197\) −1633.01 + 1186.45i −0.590595 + 0.429092i −0.842528 0.538652i \(-0.818934\pi\)
0.251933 + 0.967745i \(0.418934\pi\)
\(198\) −209.484 644.726i −0.0751889 0.231408i
\(199\) 985.509 0.351060 0.175530 0.984474i \(-0.443836\pi\)
0.175530 + 0.984474i \(0.443836\pi\)
\(200\) 0 0
\(201\) 3426.63 1.20247
\(202\) −423.083 1302.12i −0.147366 0.453547i
\(203\) −5171.96 + 3757.65i −1.78818 + 1.29919i
\(204\) 1172.37 851.779i 0.402365 0.292336i
\(205\) 0 0
\(206\) −6.24281 4.53567i −0.00211144 0.00153405i
\(207\) −1489.16 −0.500018
\(208\) −256.562 186.403i −0.0855257 0.0621381i
\(209\) −141.366 + 435.079i −0.0467869 + 0.143995i
\(210\) 0 0
\(211\) 1338.94 + 4120.84i 0.436856 + 1.34450i 0.891173 + 0.453664i \(0.149884\pi\)
−0.454317 + 0.890840i \(0.650116\pi\)
\(212\) 6.46657 19.9021i 0.00209493 0.00644754i
\(213\) 833.636 2565.67i 0.268168 0.825336i
\(214\) −646.394 1989.40i −0.206479 0.635478i
\(215\) 0 0
\(216\) 376.815 1159.72i 0.118699 0.365318i
\(217\) −2213.15 1607.95i −0.692343 0.503017i
\(218\) 2305.13 0.716162
\(219\) −3230.75 2347.28i −0.996868 0.724267i
\(220\) 0 0
\(221\) 1320.94 959.722i 0.402065 0.292117i
\(222\) 1633.98 1187.16i 0.493989 0.358904i
\(223\) 1606.36 + 4943.88i 0.482377 + 1.48460i 0.835744 + 0.549119i \(0.185037\pi\)
−0.353367 + 0.935485i \(0.614963\pi\)
\(224\) 1038.82 0.309863
\(225\) 0 0
\(226\) 271.735 0.0799802
\(227\) −1157.17 3561.42i −0.338345 1.04132i −0.965051 0.262064i \(-0.915597\pi\)
0.626705 0.779256i \(-0.284403\pi\)
\(228\) −147.119 + 106.888i −0.0427332 + 0.0310475i
\(229\) 3401.89 2471.62i 0.981673 0.713227i 0.0235912 0.999722i \(-0.492490\pi\)
0.958082 + 0.286494i \(0.0924900\pi\)
\(230\) 0 0
\(231\) −5111.31 3713.59i −1.45584 1.05773i
\(232\) 1575.42 0.445824
\(233\) 5028.05 + 3653.09i 1.41373 + 1.02713i 0.992767 + 0.120055i \(0.0383072\pi\)
0.420961 + 0.907079i \(0.361693\pi\)
\(234\) 93.8249 288.763i 0.0262116 0.0806712i
\(235\) 0 0
\(236\) 64.1197 + 197.340i 0.0176857 + 0.0544311i
\(237\) −840.073 + 2585.48i −0.230247 + 0.708629i
\(238\) −1652.79 + 5086.76i −0.450144 + 1.38540i
\(239\) 262.864 + 809.011i 0.0711432 + 0.218956i 0.980306 0.197485i \(-0.0632773\pi\)
−0.909163 + 0.416441i \(0.863277\pi\)
\(240\) 0 0
\(241\) 1457.32 4485.16i 0.389518 1.19881i −0.543631 0.839325i \(-0.682951\pi\)
0.933149 0.359490i \(-0.117049\pi\)
\(242\) 1015.10 + 737.515i 0.269642 + 0.195906i
\(243\) 2076.95 0.548298
\(244\) 401.925 + 292.016i 0.105453 + 0.0766164i
\(245\) 0 0
\(246\) −147.212 + 106.956i −0.0381540 + 0.0277205i
\(247\) −165.762 + 120.433i −0.0427012 + 0.0310243i
\(248\) 208.321 + 641.146i 0.0533403 + 0.164165i
\(249\) 1988.10 0.505988
\(250\) 0 0
\(251\) 619.865 0.155879 0.0779393 0.996958i \(-0.475166\pi\)
0.0779393 + 0.996958i \(0.475166\pi\)
\(252\) 307.345 + 945.911i 0.0768291 + 0.236456i
\(253\) 6960.72 5057.26i 1.72971 1.25671i
\(254\) 2647.84 1923.77i 0.654095 0.475228i
\(255\) 0 0
\(256\) −207.108 150.473i −0.0505636 0.0367366i
\(257\) 3006.52 0.729733 0.364867 0.931060i \(-0.381115\pi\)
0.364867 + 0.931060i \(0.381115\pi\)
\(258\) 262.343 + 190.604i 0.0633053 + 0.0459940i
\(259\) −2303.55 + 7089.61i −0.552648 + 1.70088i
\(260\) 0 0
\(261\) 466.101 + 1434.51i 0.110540 + 0.340207i
\(262\) 668.390 2057.09i 0.157608 0.485067i
\(263\) −149.072 + 458.796i −0.0349512 + 0.107569i −0.967010 0.254738i \(-0.918011\pi\)
0.932059 + 0.362307i \(0.118011\pi\)
\(264\) 481.122 + 1480.74i 0.112163 + 0.345202i
\(265\) 0 0
\(266\) 207.405 638.326i 0.0478075 0.147136i
\(267\) −3073.99 2233.38i −0.704587 0.511913i
\(268\) 3116.67 0.710377
\(269\) −4209.63 3058.48i −0.954148 0.693229i −0.00236368 0.999997i \(-0.500752\pi\)
−0.951784 + 0.306768i \(0.900752\pi\)
\(270\) 0 0
\(271\) 1750.36 1271.71i 0.392351 0.285059i −0.374067 0.927402i \(-0.622037\pi\)
0.766418 + 0.642342i \(0.222037\pi\)
\(272\) 1066.33 774.732i 0.237704 0.172702i
\(273\) −874.428 2691.21i −0.193856 0.596629i
\(274\) −4635.83 −1.02212
\(275\) 0 0
\(276\) 3420.15 0.745902
\(277\) 1542.39 + 4746.99i 0.334561 + 1.02967i 0.966938 + 0.255011i \(0.0820792\pi\)
−0.632377 + 0.774660i \(0.717921\pi\)
\(278\) −1716.19 + 1246.88i −0.370252 + 0.269004i
\(279\) −522.168 + 379.377i −0.112048 + 0.0814076i
\(280\) 0 0
\(281\) −355.968 258.626i −0.0755704 0.0549051i 0.549359 0.835587i \(-0.314872\pi\)
−0.624929 + 0.780682i \(0.714872\pi\)
\(282\) 3735.19 0.788748
\(283\) −2941.14 2136.86i −0.617783 0.448845i 0.234364 0.972149i \(-0.424699\pi\)
−0.852146 + 0.523304i \(0.824699\pi\)
\(284\) 758.229 2333.59i 0.158425 0.487581i
\(285\) 0 0
\(286\) 542.093 + 1668.39i 0.112079 + 0.344944i
\(287\) 207.537 638.732i 0.0426846 0.131370i
\(288\) 75.7398 233.103i 0.0154966 0.0476935i
\(289\) 578.844 + 1781.50i 0.117819 + 0.362609i
\(290\) 0 0
\(291\) −888.049 + 2733.13i −0.178895 + 0.550581i
\(292\) −2938.52 2134.96i −0.588917 0.427873i
\(293\) −7040.42 −1.40377 −0.701887 0.712288i \(-0.747659\pi\)
−0.701887 + 0.712288i \(0.747659\pi\)
\(294\) 5058.36 + 3675.11i 1.00343 + 0.729037i
\(295\) 0 0
\(296\) 1486.18 1079.77i 0.291833 0.212029i
\(297\) −5457.09 + 3964.80i −1.06617 + 0.774617i
\(298\) 1131.28 + 3481.72i 0.219911 + 0.676815i
\(299\) 3853.57 0.745344
\(300\) 0 0
\(301\) −1196.85 −0.229187
\(302\) 979.908 + 3015.85i 0.186713 + 0.574644i
\(303\) −2435.60 + 1769.57i −0.461788 + 0.335509i
\(304\) −133.811 + 97.2194i −0.0252454 + 0.0183418i
\(305\) 0 0
\(306\) 1020.92 + 741.742i 0.190726 + 0.138571i
\(307\) −3985.50 −0.740927 −0.370463 0.928847i \(-0.620801\pi\)
−0.370463 + 0.928847i \(0.620801\pi\)
\(308\) −4648.97 3377.68i −0.860064 0.624873i
\(309\) −5.24337 + 16.1374i −0.000965323 + 0.00297096i
\(310\) 0 0
\(311\) 1984.51 + 6107.70i 0.361837 + 1.11362i 0.951938 + 0.306290i \(0.0990878\pi\)
−0.590101 + 0.807329i \(0.700912\pi\)
\(312\) −215.487 + 663.202i −0.0391012 + 0.120341i
\(313\) 2142.09 6592.67i 0.386831 1.19054i −0.548313 0.836273i \(-0.684730\pi\)
0.935143 0.354269i \(-0.115270\pi\)
\(314\) −948.996 2920.71i −0.170557 0.524921i
\(315\) 0 0
\(316\) −764.085 + 2351.61i −0.136023 + 0.418634i
\(317\) 5346.35 + 3884.35i 0.947258 + 0.688223i 0.950157 0.311773i \(-0.100923\pi\)
−0.00289895 + 0.999996i \(0.500923\pi\)
\(318\) −46.0148 −0.00811440
\(319\) −7050.35 5122.38i −1.23744 0.899053i
\(320\) 0 0
\(321\) −3721.16 + 2703.58i −0.647024 + 0.470091i
\(322\) −10212.4 + 7419.77i −1.76744 + 1.28412i
\(323\) −263.154 809.903i −0.0453321 0.139518i
\(324\) −1854.13 −0.317923
\(325\) 0 0
\(326\) −3351.40 −0.569378
\(327\) −1566.33 4820.68i −0.264888 0.815241i
\(328\) −133.896 + 97.2811i −0.0225401 + 0.0163764i
\(329\) −11153.1 + 8103.22i −1.86897 + 1.35789i
\(330\) 0 0
\(331\) 3033.15 + 2203.71i 0.503676 + 0.365942i 0.810420 0.585850i \(-0.199239\pi\)
−0.306743 + 0.951792i \(0.599239\pi\)
\(332\) 1808.27 0.298921
\(333\) 1422.90 + 1033.79i 0.234157 + 0.170125i
\(334\) −1271.94 + 3914.63i −0.208376 + 0.641315i
\(335\) 0 0
\(336\) −705.879 2172.47i −0.114610 0.352732i
\(337\) −97.7299 + 300.782i −0.0157973 + 0.0486191i −0.958644 0.284606i \(-0.908137\pi\)
0.942847 + 0.333226i \(0.108137\pi\)
\(338\) 1115.03 3431.70i 0.179436 0.552247i
\(339\) −184.643 568.273i −0.0295824 0.0910453i
\(340\) 0 0
\(341\) 1152.37 3546.62i 0.183003 0.563226i
\(342\) −128.113 93.0796i −0.0202560 0.0147169i
\(343\) −11942.1 −1.87992
\(344\) 238.613 + 173.363i 0.0373987 + 0.0271718i
\(345\) 0 0
\(346\) −6973.80 + 5066.77i −1.08357 + 0.787257i
\(347\) 4798.35 3486.20i 0.742331 0.539335i −0.151109 0.988517i \(-0.548285\pi\)
0.893440 + 0.449182i \(0.148285\pi\)
\(348\) −1070.49 3294.64i −0.164898 0.507503i
\(349\) 8313.16 1.27505 0.637526 0.770429i \(-0.279958\pi\)
0.637526 + 0.770429i \(0.279958\pi\)
\(350\) 0 0
\(351\) −3021.13 −0.459419
\(352\) 437.602 + 1346.80i 0.0662621 + 0.203934i
\(353\) −2915.82 + 2118.46i −0.439641 + 0.319418i −0.785492 0.618872i \(-0.787590\pi\)
0.345851 + 0.938289i \(0.387590\pi\)
\(354\) 369.124 268.184i 0.0554201 0.0402651i
\(355\) 0 0
\(356\) −2795.93 2031.36i −0.416247 0.302421i
\(357\) 11760.9 1.74357
\(358\) −4405.19 3200.56i −0.650340 0.472499i
\(359\) 2483.37 7643.04i 0.365090 1.12363i −0.584834 0.811153i \(-0.698840\pi\)
0.949924 0.312480i \(-0.101160\pi\)
\(360\) 0 0
\(361\) −2086.53 6421.66i −0.304203 0.936239i
\(362\) 806.767 2482.97i 0.117135 0.360503i
\(363\) 852.590 2624.00i 0.123277 0.379406i
\(364\) −795.332 2447.78i −0.114524 0.352469i
\(365\) 0 0
\(366\) 337.579 1038.96i 0.0482119 0.148381i
\(367\) 10517.3 + 7641.29i 1.49591 + 1.08684i 0.971974 + 0.235090i \(0.0755384\pi\)
0.523940 + 0.851755i \(0.324462\pi\)
\(368\) 3110.78 0.440654
\(369\) −128.194 93.1387i −0.0180855 0.0131399i
\(370\) 0 0
\(371\) 137.398 99.8257i 0.0192274 0.0139695i
\(372\) 1199.26 871.315i 0.167147 0.121440i
\(373\) 2157.81 + 6641.04i 0.299536 + 0.921877i 0.981660 + 0.190641i \(0.0610565\pi\)
−0.682124 + 0.731237i \(0.738944\pi\)
\(374\) −7291.05 −1.00805
\(375\) 0 0
\(376\) 3397.32 0.465967
\(377\) −1206.15 3712.15i −0.164774 0.507124i
\(378\) 8006.37 5816.97i 1.08943 0.791515i
\(379\) 741.524 538.749i 0.100500 0.0730176i −0.536400 0.843964i \(-0.680216\pi\)
0.636900 + 0.770946i \(0.280216\pi\)
\(380\) 0 0
\(381\) −5822.33 4230.17i −0.782906 0.568814i
\(382\) −7930.90 −1.06225
\(383\) 453.273 + 329.322i 0.0604730 + 0.0439362i 0.617611 0.786484i \(-0.288101\pi\)
−0.557138 + 0.830420i \(0.688101\pi\)
\(384\) −173.951 + 535.367i −0.0231170 + 0.0711467i
\(385\) 0 0
\(386\) −1199.72 3692.35i −0.158197 0.486880i
\(387\) −87.2611 + 268.562i −0.0114618 + 0.0352759i
\(388\) −807.721 + 2485.91i −0.105685 + 0.325265i
\(389\) −917.355 2823.33i −0.119567 0.367991i 0.873305 0.487174i \(-0.161972\pi\)
−0.992872 + 0.119183i \(0.961972\pi\)
\(390\) 0 0
\(391\) −4949.31 + 15232.4i −0.640147 + 1.97017i
\(392\) 4600.81 + 3342.68i 0.592796 + 0.430691i
\(393\) −4756.12 −0.610470
\(394\) 3266.02 + 2372.90i 0.417613 + 0.303414i
\(395\) 0 0
\(396\) −1096.87 + 796.925i −0.139192 + 0.101129i
\(397\) −5115.40 + 3716.55i −0.646686 + 0.469845i −0.862141 0.506669i \(-0.830877\pi\)
0.215455 + 0.976514i \(0.430877\pi\)
\(398\) −609.078 1874.55i −0.0767094 0.236087i
\(399\) −1475.85 −0.185175
\(400\) 0 0
\(401\) −3008.68 −0.374679 −0.187339 0.982295i \(-0.559986\pi\)
−0.187339 + 0.982295i \(0.559986\pi\)
\(402\) −2117.77 6517.83i −0.262748 0.808656i
\(403\) 1351.24 981.734i 0.167023 0.121349i
\(404\) −2215.29 + 1609.50i −0.272809 + 0.198207i
\(405\) 0 0
\(406\) 10343.9 + 7515.30i 1.26443 + 0.918666i
\(407\) −10161.8 −1.23760
\(408\) −2344.75 1703.56i −0.284515 0.206712i
\(409\) 3472.20 10686.3i 0.419778 1.29194i −0.488129 0.872771i \(-0.662320\pi\)
0.907907 0.419172i \(-0.137680\pi\)
\(410\) 0 0
\(411\) 3150.04 + 9694.82i 0.378053 + 1.16353i
\(412\) −4.76908 + 14.6777i −0.000570281 + 0.00175514i
\(413\) −520.384 + 1601.58i −0.0620010 + 0.190819i
\(414\) 920.352 + 2832.55i 0.109258 + 0.336262i
\(415\) 0 0
\(416\) −195.996 + 603.212i −0.0230997 + 0.0710936i
\(417\) 3773.72 + 2741.77i 0.443165 + 0.321978i
\(418\) 914.937 0.107060
\(419\) −3609.66 2622.57i −0.420867 0.305778i 0.357119 0.934059i \(-0.383759\pi\)
−0.777987 + 0.628281i \(0.783759\pi\)
\(420\) 0 0
\(421\) 4617.41 3354.74i 0.534534 0.388361i −0.287517 0.957775i \(-0.592830\pi\)
0.822051 + 0.569414i \(0.192830\pi\)
\(422\) 7010.80 5093.64i 0.808721 0.587570i
\(423\) 1005.13 + 3093.46i 0.115534 + 0.355577i
\(424\) −41.8525 −0.00479372
\(425\) 0 0
\(426\) −5395.40 −0.613634
\(427\) 1245.95 + 3834.65i 0.141208 + 0.434595i
\(428\) −3384.56 + 2459.03i −0.382241 + 0.277714i
\(429\) 3120.72 2267.33i 0.351211 0.255170i
\(430\) 0 0
\(431\) 6487.97 + 4713.79i 0.725092 + 0.526810i 0.888007 0.459830i \(-0.152090\pi\)
−0.162915 + 0.986640i \(0.552090\pi\)
\(432\) −2438.80 −0.271613
\(433\) 4678.75 + 3399.31i 0.519276 + 0.377276i 0.816331 0.577584i \(-0.196005\pi\)
−0.297055 + 0.954860i \(0.596005\pi\)
\(434\) −1690.70 + 5203.43i −0.186995 + 0.575513i
\(435\) 0 0
\(436\) −1424.65 4384.62i −0.156487 0.481618i
\(437\) 621.078 1911.48i 0.0679867 0.209242i
\(438\) −2468.08 + 7595.95i −0.269245 + 0.828650i
\(439\) 3630.68 + 11174.1i 0.394721 + 1.21483i 0.929178 + 0.369632i \(0.120516\pi\)
−0.534457 + 0.845196i \(0.679484\pi\)
\(440\) 0 0
\(441\) −1682.52 + 5178.27i −0.181678 + 0.559148i
\(442\) −2641.89 1919.44i −0.284303 0.206558i
\(443\) −3568.50 −0.382719 −0.191360 0.981520i \(-0.561290\pi\)
−0.191360 + 0.981520i \(0.561290\pi\)
\(444\) −3267.96 2374.31i −0.349303 0.253784i
\(445\) 0 0
\(446\) 8411.03 6110.97i 0.892990 0.648795i
\(447\) 6512.55 4731.65i 0.689112 0.500669i
\(448\) −642.029 1975.96i −0.0677076 0.208383i
\(449\) −14369.1 −1.51029 −0.755145 0.655558i \(-0.772434\pi\)
−0.755145 + 0.655558i \(0.772434\pi\)
\(450\) 0 0
\(451\) 915.518 0.0955878
\(452\) −167.941 516.870i −0.0174763 0.0537866i
\(453\) 5641.13 4098.52i 0.585085 0.425089i
\(454\) −6059.05 + 4402.15i −0.626355 + 0.455073i
\(455\) 0 0
\(456\) 294.237 + 213.776i 0.0302169 + 0.0219539i
\(457\) 402.073 0.0411558 0.0205779 0.999788i \(-0.493449\pi\)
0.0205779 + 0.999788i \(0.493449\pi\)
\(458\) −6803.78 4943.23i −0.694148 0.504328i
\(459\) 3880.17 11941.9i 0.394577 1.21438i
\(460\) 0 0
\(461\) 2232.00 + 6869.38i 0.225498 + 0.694010i 0.998241 + 0.0592914i \(0.0188841\pi\)
−0.772743 + 0.634719i \(0.781116\pi\)
\(462\) −3904.70 + 12017.4i −0.393210 + 1.21018i
\(463\) 1012.67 3116.67i 0.101647 0.312838i −0.887282 0.461228i \(-0.847409\pi\)
0.988929 + 0.148390i \(0.0474090\pi\)
\(464\) −973.661 2996.62i −0.0974162 0.299816i
\(465\) 0 0
\(466\) 3841.09 11821.7i 0.381835 1.17517i
\(467\) −4679.36 3399.75i −0.463672 0.336877i 0.331298 0.943526i \(-0.392513\pi\)
−0.794970 + 0.606649i \(0.792513\pi\)
\(468\) −607.248 −0.0599787
\(469\) 20463.6 + 14867.6i 2.01475 + 1.46380i
\(470\) 0 0
\(471\) −5463.18 + 3969.23i −0.534459 + 0.388307i
\(472\) 335.735 243.926i 0.0327404 0.0237873i
\(473\) −504.169 1551.67i −0.0490100 0.150837i
\(474\) 5437.07 0.526863
\(475\) 0 0
\(476\) 10697.1 1.03004
\(477\) −12.3824 38.1092i −0.00118858 0.00365807i
\(478\) 1376.37 999.992i 0.131702 0.0956874i
\(479\) −1896.17 + 1377.64i −0.180873 + 0.131412i −0.674538 0.738241i \(-0.735657\pi\)
0.493665 + 0.869652i \(0.335657\pi\)
\(480\) 0 0
\(481\) −3682.10 2675.20i −0.349042 0.253594i
\(482\) −9431.94 −0.891314
\(483\) 22456.1 + 16315.3i 2.11551 + 1.53701i
\(484\) 775.469 2386.65i 0.0728277 0.224141i
\(485\) 0 0
\(486\) −1283.63 3950.60i −0.119808 0.368730i
\(487\) −3635.26 + 11188.2i −0.338253 + 1.04104i 0.626844 + 0.779145i \(0.284346\pi\)
−0.965097 + 0.261892i \(0.915654\pi\)
\(488\) 307.044 944.983i 0.0284820 0.0876585i
\(489\) 2277.27 + 7008.72i 0.210597 + 0.648150i
\(490\) 0 0
\(491\) 3398.57 10459.7i 0.312374 0.961387i −0.664448 0.747334i \(-0.731333\pi\)
0.976822 0.214053i \(-0.0686666\pi\)
\(492\) 294.424 + 213.912i 0.0269790 + 0.0196014i
\(493\) 16222.5 1.48200
\(494\) 331.525 + 240.867i 0.0301943 + 0.0219375i
\(495\) 0 0
\(496\) 1090.78 792.501i 0.0987452 0.0717426i
\(497\) 16110.5 11704.9i 1.45403 1.05642i
\(498\) −1228.72 3781.60i −0.110562 0.340276i
\(499\) 12608.1 1.13109 0.565545 0.824717i \(-0.308666\pi\)
0.565545 + 0.824717i \(0.308666\pi\)
\(500\) 0 0
\(501\) 9050.87 0.807112
\(502\) −383.098 1179.05i −0.0340607 0.104828i
\(503\) −2621.20 + 1904.41i −0.232353 + 0.168814i −0.697870 0.716225i \(-0.745869\pi\)
0.465517 + 0.885039i \(0.345869\pi\)
\(504\) 1609.28 1169.21i 0.142228 0.103335i
\(505\) 0 0
\(506\) −13921.4 10114.5i −1.22309 0.888627i
\(507\) −7934.29 −0.695018
\(508\) −5295.68 3847.53i −0.462515 0.336037i
\(509\) 1458.15 4487.74i 0.126977 0.390797i −0.867279 0.497823i \(-0.834133\pi\)
0.994256 + 0.107026i \(0.0341329\pi\)
\(510\) 0 0
\(511\) −9109.30 28035.6i −0.788595 2.42704i
\(512\) −158.217 + 486.941i −0.0136568 + 0.0420312i
\(513\) −486.914 + 1498.57i −0.0419060 + 0.128973i
\(514\) −1858.13 5718.74i −0.159453 0.490744i
\(515\) 0 0
\(516\) 200.412 616.806i 0.0170982 0.0526228i
\(517\) −15203.8 11046.2i −1.29335 0.939673i
\(518\) 14908.9 1.26459
\(519\) 15334.7 + 11141.3i 1.29695 + 0.942292i
\(520\) 0 0
\(521\) 7016.16 5097.54i 0.589987 0.428651i −0.252324 0.967643i \(-0.581195\pi\)
0.842311 + 0.538992i \(0.181195\pi\)
\(522\) 2440.53 1773.15i 0.204635 0.148676i
\(523\) −1447.19 4454.00i −0.120997 0.372390i 0.872154 0.489232i \(-0.162723\pi\)
−0.993150 + 0.116842i \(0.962723\pi\)
\(524\) −4325.91 −0.360646
\(525\) 0 0
\(526\) 964.814 0.0799769
\(527\) 2145.14 + 6602.07i 0.177313 + 0.545713i
\(528\) 2519.19 1830.30i 0.207639 0.150859i
\(529\) −20738.1 + 15067.1i −1.70445 + 1.23836i
\(530\) 0 0
\(531\) 321.439 + 233.539i 0.0262698 + 0.0190861i
\(532\) −1342.35 −0.109395
\(533\) 331.735 + 241.020i 0.0269588 + 0.0195867i
\(534\) −2348.32 + 7227.37i −0.190303 + 0.585691i
\(535\) 0 0
\(536\) −1926.21 5928.26i −0.155223 0.477728i
\(537\) −3699.94 + 11387.3i −0.297327 + 0.915077i
\(538\) −3215.87 + 9897.44i −0.257707 + 0.793139i
\(539\) −9721.11 29918.5i −0.776842 2.39087i
\(540\) 0 0
\(541\) 1143.80 3520.25i 0.0908980 0.279755i −0.895265 0.445534i \(-0.853014\pi\)
0.986163 + 0.165779i \(0.0530138\pi\)
\(542\) −3500.73 2543.43i −0.277434 0.201567i
\(543\) −5740.78 −0.453703
\(544\) −2132.65 1549.46i −0.168082 0.122119i
\(545\) 0 0
\(546\) −4578.57 + 3326.52i −0.358873 + 0.260736i
\(547\) 15680.7 11392.7i 1.22570 0.890524i 0.229141 0.973393i \(-0.426408\pi\)
0.996560 + 0.0828689i \(0.0264083\pi\)
\(548\) 2865.10 + 8817.88i 0.223341 + 0.687374i
\(549\) 951.304 0.0739539
\(550\) 0 0
\(551\) −2035.73 −0.157396
\(552\) −2113.77 6505.51i −0.162985 0.501618i
\(553\) −16234.9 + 11795.3i −1.24842 + 0.907032i
\(554\) 8076.06 5867.60i 0.619348 0.449983i
\(555\) 0 0
\(556\) 3432.37 + 2493.76i 0.261807 + 0.190214i
\(557\) 4428.74 0.336897 0.168448 0.985710i \(-0.446124\pi\)
0.168448 + 0.985710i \(0.446124\pi\)
\(558\) 1044.34 + 758.755i 0.0792299 + 0.0575639i
\(559\) 225.810 694.972i 0.0170854 0.0525835i
\(560\) 0 0
\(561\) 4954.25 + 15247.6i 0.372849 + 1.14751i
\(562\) −271.936 + 836.932i −0.0204109 + 0.0628182i
\(563\) −3421.90 + 10531.5i −0.256156 + 0.788367i 0.737444 + 0.675409i \(0.236033\pi\)
−0.993600 + 0.112959i \(0.963967\pi\)
\(564\) −2308.47 7104.74i −0.172348 0.530432i
\(565\) 0 0
\(566\) −2246.83 + 6915.03i −0.166857 + 0.513534i
\(567\) −12173.9 8844.85i −0.901685 0.655113i
\(568\) −4907.36 −0.362515
\(569\) 21829.5 + 15860.1i 1.60833 + 1.16852i 0.868432 + 0.495809i \(0.165128\pi\)
0.739903 + 0.672714i \(0.234872\pi\)
\(570\) 0 0
\(571\) −10821.3 + 7862.17i −0.793099 + 0.576220i −0.908881 0.417055i \(-0.863062\pi\)
0.115783 + 0.993275i \(0.463062\pi\)
\(572\) 2838.43 2062.24i 0.207484 0.150746i
\(573\) 5389.03 + 16585.7i 0.392897 + 1.20921i
\(574\) −1343.20 −0.0976730
\(575\) 0 0
\(576\) −490.198 −0.0354599
\(577\) −3221.69 9915.34i −0.232445 0.715391i −0.997450 0.0713674i \(-0.977264\pi\)
0.765005 0.644024i \(-0.222736\pi\)
\(578\) 3030.87 2202.05i 0.218110 0.158466i
\(579\) −6906.52 + 5017.88i −0.495726 + 0.360166i
\(580\) 0 0
\(581\) 11872.8 + 8626.10i 0.847792 + 0.615957i
\(582\) 5747.57 0.409355
\(583\) 187.299 + 136.081i 0.0133056 + 0.00966706i
\(584\) −2244.83 + 6908.87i −0.159061 + 0.489539i
\(585\) 0 0
\(586\) 4351.22 + 13391.7i 0.306736 + 0.944036i
\(587\) 4132.00 12717.0i 0.290538 0.894184i −0.694146 0.719835i \(-0.744218\pi\)
0.984684 0.174350i \(-0.0557823\pi\)
\(588\) 3864.24 11892.9i 0.271018 0.834108i
\(589\) −269.189 828.479i −0.0188315 0.0579573i
\(590\) 0 0
\(591\) 2743.15 8442.54i 0.190927 0.587614i
\(592\) −2972.36 2159.55i −0.206357 0.149927i
\(593\) 2768.13 0.191693 0.0958463 0.995396i \(-0.469444\pi\)
0.0958463 + 0.995396i \(0.469444\pi\)
\(594\) 10914.2 + 7929.61i 0.753895 + 0.547737i
\(595\) 0 0
\(596\) 5923.46 4303.65i 0.407105 0.295779i
\(597\) −3506.34 + 2547.50i −0.240377 + 0.174644i
\(598\) −2381.64 7329.93i −0.162864 0.501243i
\(599\) 4098.71 0.279580 0.139790 0.990181i \(-0.455357\pi\)
0.139790 + 0.990181i \(0.455357\pi\)
\(600\) 0 0
\(601\) −17523.5 −1.18935 −0.594673 0.803968i \(-0.702718\pi\)
−0.594673 + 0.803968i \(0.702718\pi\)
\(602\) 739.693 + 2276.54i 0.0500791 + 0.154128i
\(603\) 4828.15 3507.85i 0.326065 0.236900i
\(604\) 5130.87 3727.79i 0.345649 0.251129i
\(605\) 0 0
\(606\) 4871.21 + 3539.14i 0.326533 + 0.237240i
\(607\) −14982.0 −1.00182 −0.500908 0.865501i \(-0.667000\pi\)
−0.500908 + 0.865501i \(0.667000\pi\)
\(608\) 267.622 + 194.439i 0.0178512 + 0.0129696i
\(609\) 8687.92 26738.7i 0.578083 1.77916i
\(610\) 0 0
\(611\) −2601.02 8005.10i −0.172219 0.530036i
\(612\) 779.914 2400.33i 0.0515133 0.158542i
\(613\) 9223.52 28387.1i 0.607723 1.87038i 0.130864 0.991400i \(-0.458225\pi\)
0.476859 0.878980i \(-0.341775\pi\)
\(614\) 2463.17 + 7580.87i 0.161898 + 0.498272i
\(615\) 0 0
\(616\) −3551.50 + 10930.4i −0.232295 + 0.714932i
\(617\) 15515.7 + 11272.8i 1.01238 + 0.735538i 0.964707 0.263325i \(-0.0848191\pi\)
0.0476742 + 0.998863i \(0.484819\pi\)
\(618\) 33.9358 0.00220890
\(619\) −12120.6 8806.12i −0.787023 0.571806i 0.120055 0.992767i \(-0.461693\pi\)
−0.907079 + 0.420961i \(0.861693\pi\)
\(620\) 0 0
\(621\) 23975.3 17419.0i 1.54927 1.12561i
\(622\) 10391.0 7549.53i 0.669843 0.486670i
\(623\) −8667.29 26675.2i −0.557380 1.71544i
\(624\) 1394.66 0.0894731
\(625\) 0 0
\(626\) −13863.9 −0.885164
\(627\) −621.698 1913.39i −0.0395984 0.121871i
\(628\) −4969.01 + 3610.20i −0.315741 + 0.229399i
\(629\) 15303.6 11118.7i 0.970103 0.704821i
\(630\) 0 0
\(631\) −15151.7 11008.3i −0.955908 0.694508i −0.00371118 0.999993i \(-0.501181\pi\)
−0.952197 + 0.305485i \(0.901181\pi\)
\(632\) 4945.26 0.311253
\(633\) −15416.0 11200.4i −0.967982 0.703280i
\(634\) 4084.24 12570.0i 0.255846 0.787412i
\(635\) 0 0
\(636\) 28.4387 + 87.5253i 0.00177306 + 0.00545692i
\(637\) 4353.94 13400.1i 0.270816 0.833485i
\(638\) −5385.98 + 16576.4i −0.334221 + 1.02863i
\(639\) −1451.89 4468.44i −0.0898837 0.276634i
\(640\) 0 0
\(641\) −5889.14 + 18124.9i −0.362881 + 1.11683i 0.588416 + 0.808558i \(0.299752\pi\)
−0.951297 + 0.308275i \(0.900248\pi\)
\(642\) 7442.32 + 5407.16i 0.457515 + 0.332404i
\(643\) 10953.1 0.671768 0.335884 0.941903i \(-0.390965\pi\)
0.335884 + 0.941903i \(0.390965\pi\)
\(644\) 20424.9 + 14839.5i 1.24977 + 0.908012i
\(645\) 0 0
\(646\) −1377.89 + 1001.10i −0.0839201 + 0.0609715i
\(647\) −8682.80 + 6308.42i −0.527598 + 0.383323i −0.819459 0.573138i \(-0.805726\pi\)
0.291860 + 0.956461i \(0.405726\pi\)
\(648\) 1145.91 + 3526.76i 0.0694688 + 0.213803i
\(649\) −2295.60 −0.138845
\(650\) 0 0
\(651\) 12030.6 0.724298
\(652\) 2071.28 + 6374.75i 0.124414 + 0.382906i
\(653\) −6391.92 + 4644.00i −0.383055 + 0.278306i −0.762604 0.646866i \(-0.776079\pi\)
0.379548 + 0.925172i \(0.376079\pi\)
\(654\) −8201.42 + 5958.68i −0.490368 + 0.356274i
\(655\) 0 0
\(656\) 267.792 + 194.562i 0.0159383 + 0.0115798i
\(657\) −6955.08 −0.413004
\(658\) 22306.2 + 16206.4i 1.32156 + 0.960171i
\(659\) −4537.13 + 13963.8i −0.268196 + 0.825423i 0.722743 + 0.691116i \(0.242881\pi\)
−0.990940 + 0.134307i \(0.957119\pi\)
\(660\) 0 0
\(661\) −3412.01 10501.1i −0.200774 0.617919i −0.999860 0.0167028i \(-0.994683\pi\)
0.799086 0.601216i \(-0.205317\pi\)
\(662\) 2317.12 7131.36i 0.136038 0.418683i
\(663\) −2218.94 + 6829.18i −0.129979 + 0.400035i
\(664\) −1117.57 3439.54i −0.0653166 0.201024i
\(665\) 0 0
\(666\) 1087.00 3345.43i 0.0632436 0.194644i
\(667\) 30975.1 + 22504.7i 1.79814 + 1.30643i
\(668\) 8232.18 0.476815
\(669\) −18495.0 13437.4i −1.06885 0.776563i
\(670\) 0 0
\(671\) −4446.64 + 3230.68i −0.255828 + 0.185870i
\(672\) −3696.03 + 2685.32i −0.212169 + 0.154150i
\(673\) −4257.81 13104.2i −0.243873 0.750564i −0.995820 0.0913399i \(-0.970885\pi\)
0.751947 0.659224i \(-0.229115\pi\)
\(674\) 632.521 0.0361481
\(675\) 0 0
\(676\) −7216.60 −0.410594
\(677\) −1996.34 6144.11i −0.113332 0.348799i 0.878264 0.478177i \(-0.158702\pi\)
−0.991595 + 0.129377i \(0.958702\pi\)
\(678\) −966.804 + 702.424i −0.0547638 + 0.0397882i
\(679\) −17162.0 + 12468.9i −0.969983 + 0.704734i
\(680\) 0 0
\(681\) 13323.2 + 9679.90i 0.749703 + 0.544691i
\(682\) −7458.27 −0.418756
\(683\) −9137.33 6638.66i −0.511904 0.371920i 0.301641 0.953421i \(-0.402465\pi\)
−0.813545 + 0.581501i \(0.802465\pi\)
\(684\) −97.8697 + 301.212i −0.00547097 + 0.0168379i
\(685\) 0 0
\(686\) 7380.60 + 22715.2i 0.410777 + 1.26424i
\(687\) −5714.53 + 17587.5i −0.317355 + 0.976718i
\(688\) 182.284 561.013i 0.0101010 0.0310878i
\(689\) 32.0426 + 98.6170i 0.00177174 + 0.00545284i
\(690\) 0 0
\(691\) 828.470 2549.77i 0.0456100 0.140373i −0.925658 0.378361i \(-0.876488\pi\)
0.971268 + 0.237988i \(0.0764878\pi\)
\(692\) 13947.6 + 10133.5i 0.766197 + 0.556675i
\(693\) −11003.5 −0.603158
\(694\) −9596.70 6972.41i −0.524907 0.381367i
\(695\) 0 0
\(696\) −5605.17 + 4072.39i −0.305264 + 0.221787i
\(697\) −1378.76 + 1001.73i −0.0749275 + 0.0544380i
\(698\) −5137.82 15812.6i −0.278609 0.857471i
\(699\) −27332.4 −1.47898
\(700\) 0 0
\(701\) −34520.6 −1.85995 −0.929976 0.367620i \(-0.880173\pi\)
−0.929976 + 0.367620i \(0.880173\pi\)
\(702\) 1867.16 + 5746.54i 0.100387 + 0.308959i
\(703\) −1920.42 + 1395.26i −0.103030 + 0.0748555i
\(704\) 2291.31 1664.74i 0.122666 0.0891224i
\(705\) 0 0
\(706\) 5831.63 + 4236.93i 0.310873 + 0.225862i
\(707\) −22223.1 −1.18216
\(708\) −738.248 536.369i −0.0391879 0.0284717i
\(709\) −6361.25 + 19577.9i −0.336956 + 1.03704i 0.628794 + 0.777572i \(0.283549\pi\)
−0.965751 + 0.259472i \(0.916451\pi\)
\(710\) 0 0
\(711\) 1463.10 + 4502.95i 0.0771736 + 0.237516i
\(712\) −2135.90 + 6573.62i −0.112424 + 0.346007i
\(713\) −5062.82 + 15581.8i −0.265925 + 0.818432i
\(714\) −7268.64 22370.6i −0.380983 1.17255i
\(715\) 0 0
\(716\) −3365.27 + 10357.2i −0.175651 + 0.540597i
\(717\) −3026.50 2198.88i −0.157639 0.114531i
\(718\) −16072.7 −0.835417
\(719\) 8049.33 + 5848.18i 0.417510 + 0.303339i 0.776635 0.629951i \(-0.216925\pi\)
−0.359125 + 0.933289i \(0.616925\pi\)
\(720\) 0 0
\(721\) −101.331 + 73.6213i −0.00523407 + 0.00380277i
\(722\) −10925.2 + 7937.61i −0.563149 + 0.409151i
\(723\) 6408.98 + 19724.8i 0.329672 + 1.01463i
\(724\) −5221.50 −0.268033
\(725\) 0 0
\(726\) −5518.08 −0.282087
\(727\) 2960.41 + 9111.21i 0.151026 + 0.464809i 0.997737 0.0672442i \(-0.0214206\pi\)
−0.846711 + 0.532053i \(0.821421\pi\)
\(728\) −4164.41 + 3025.62i −0.212010 + 0.154034i
\(729\) −17514.7 + 12725.2i −0.889840 + 0.646506i
\(730\) 0 0
\(731\) 2457.07 + 1785.16i 0.124320 + 0.0903238i
\(732\) −2184.86 −0.110321
\(733\) −25696.8 18669.8i −1.29486 0.940772i −0.294970 0.955507i \(-0.595310\pi\)
−0.999891 + 0.0147351i \(0.995310\pi\)
\(734\) 8034.53 24727.7i 0.404032 1.24348i
\(735\) 0 0
\(736\) −1922.57 5917.06i −0.0962865 0.296339i
\(737\) −10655.2 + 32793.3i −0.532549 + 1.63902i
\(738\) −97.9319 + 301.403i −0.00488472 + 0.0150336i
\(739\) 4249.28 + 13077.9i 0.211519 + 0.650987i 0.999382 + 0.0351378i \(0.0111870\pi\)
−0.787864 + 0.615849i \(0.788813\pi\)
\(740\) 0 0
\(741\) 278.449 856.979i 0.0138044 0.0424857i
\(742\) −274.797 199.651i −0.0135958 0.00987795i
\(743\) 6312.16 0.311670 0.155835 0.987783i \(-0.450193\pi\)
0.155835 + 0.987783i \(0.450193\pi\)
\(744\) −2398.52 1742.63i −0.118191 0.0858708i
\(745\) 0 0
\(746\) 11298.4 8208.78i 0.554510 0.402875i
\(747\) 2801.26 2035.23i 0.137206 0.0996857i
\(748\) 4506.11 + 13868.4i 0.220267 + 0.677913i
\(749\) −33952.9 −1.65636
\(750\) 0 0
\(751\) 40114.6 1.94914 0.974569 0.224087i \(-0.0719400\pi\)
0.974569 + 0.224087i \(0.0719400\pi\)
\(752\) −2099.66 6462.09i −0.101817 0.313362i
\(753\) −2205.42 + 1602.33i −0.106733 + 0.0775459i
\(754\) −6315.49 + 4588.47i −0.305035 + 0.221621i
\(755\) 0 0
\(756\) −16012.7 11633.9i −0.770341 0.559686i
\(757\) 8151.37 0.391369 0.195685 0.980667i \(-0.437307\pi\)
0.195685 + 0.980667i \(0.437307\pi\)
\(758\) −1483.05 1077.50i −0.0710643 0.0516312i
\(759\) −11692.7 + 35986.4i −0.559181 + 1.72098i
\(760\) 0 0
\(761\) −1730.96 5327.36i −0.0824538 0.253767i 0.901328 0.433138i \(-0.142594\pi\)
−0.983781 + 0.179371i \(0.942594\pi\)
\(762\) −4447.87 + 13689.1i −0.211456 + 0.650793i
\(763\) 11562.2 35584.8i 0.548597 1.68841i
\(764\) 4901.56 + 15085.5i 0.232110 + 0.714362i
\(765\) 0 0
\(766\) 346.270 1065.71i 0.0163332 0.0502684i
\(767\) −831.804 604.341i −0.0391587 0.0284504i
\(768\) 1125.84 0.0528973
\(769\) −2973.61 2160.45i −0.139442 0.101311i 0.515877 0.856662i \(-0.327466\pi\)
−0.655320 + 0.755352i \(0.727466\pi\)
\(770\) 0 0
\(771\) −10696.9 + 7771.73i −0.499661 + 0.363025i
\(772\) −6281.80 + 4563.99i −0.292859 + 0.212774i
\(773\) 2094.03 + 6444.75i 0.0974345 + 0.299873i 0.987881 0.155216i \(-0.0496074\pi\)
−0.890446 + 0.455089i \(0.849607\pi\)
\(774\) 564.766 0.0262275
\(775\) 0 0
\(776\) 5227.68 0.241833
\(777\) −10130.6 31178.7i −0.467738 1.43955i
\(778\) −4803.33 + 3489.83i −0.221347 + 0.160818i
\(779\) 173.018 125.705i 0.00795766 0.00578158i
\(780\) 0 0
\(781\) 21961.6 + 15956.0i 1.00621 + 0.731051i
\(782\) 32032.6 1.46481
\(783\) −24283.9 17643.3i −1.10835 0.805263i
\(784\) 3514.70 10817.1i 0.160109 0.492764i
\(785\) 0 0
\(786\) 2939.45 + 9046.69i 0.133393 + 0.410540i
\(787\) −1608.89 + 4951.65i −0.0728725 + 0.224278i −0.980858 0.194722i \(-0.937619\pi\)
0.907986 + 0.419001i \(0.137619\pi\)
\(788\) 2495.02 7678.87i 0.112794 0.347143i
\(789\) −655.588 2017.69i −0.0295812 0.0910416i
\(790\) 0 0
\(791\) 1362.98 4194.82i 0.0612668 0.188560i
\(792\) 2193.75 + 1593.85i 0.0984235 + 0.0715089i
\(793\) −2461.74 −0.110238
\(794\) 10230.8 + 7433.11i 0.457276 + 0.332231i
\(795\) 0 0
\(796\) −3189.17 + 2317.07i −0.142007 + 0.103174i
\(797\) −26265.4 + 19082.9i −1.16734 + 0.848121i −0.990688 0.136153i \(-0.956526\pi\)
−0.176650 + 0.984274i \(0.556526\pi\)
\(798\) 912.125 + 2807.23i 0.0404623 + 0.124530i
\(799\) 34983.2 1.54896
\(800\) 0 0
\(801\) −6617.60 −0.291912
\(802\) 1859.47 + 5722.85i 0.0818703 + 0.251971i
\(803\) 32509.9 23619.8i 1.42870 1.03801i
\(804\) −11088.8 + 8056.48i −0.486408 + 0.353396i
\(805\) 0 0
\(806\) −2702.48 1963.47i −0.118103 0.0858067i
\(807\) 22883.5 0.998187
\(808\) 4430.58 + 3219.01i 0.192905 + 0.140154i
\(809\) 4880.74 15021.4i 0.212111 0.652811i −0.787235 0.616653i \(-0.788488\pi\)
0.999346 0.0361575i \(-0.0115118\pi\)
\(810\) 0 0
\(811\) 1468.40 + 4519.27i 0.0635789 + 0.195676i 0.977800 0.209540i \(-0.0671965\pi\)
−0.914221 + 0.405215i \(0.867197\pi\)
\(812\) 7902.06 24320.0i 0.341512 1.05107i
\(813\) −2940.28 + 9049.25i −0.126839 + 0.390370i
\(814\) 6280.34 + 19328.9i 0.270425 + 0.832282i
\(815\) 0 0
\(816\) −1791.23 + 5512.83i −0.0768450 + 0.236504i
\(817\) −308.332 224.016i −0.0132034 0.00959282i
\(818\) −22472.5 −0.960555
\(819\) −3987.09 2896.79i −0.170110 0.123592i
\(820\) 0 0
\(821\) −33068.5 + 24025.6i −1.40572 + 1.02132i −0.411794 + 0.911277i \(0.635098\pi\)
−0.993927 + 0.110039i \(0.964902\pi\)
\(822\) 16493.8 11983.5i 0.699863 0.508480i
\(823\) −4691.60 14439.2i −0.198710 0.611568i −0.999913 0.0131750i \(-0.995806\pi\)
0.801203 0.598393i \(-0.204194\pi\)
\(824\) 30.8661 0.00130494
\(825\) 0 0
\(826\) 3367.99 0.141874
\(827\) 4888.31 + 15044.7i 0.205542 + 0.632593i 0.999691 + 0.0248693i \(0.00791697\pi\)
−0.794149 + 0.607723i \(0.792083\pi\)
\(828\) 4819.02 3501.23i 0.202262 0.146952i
\(829\) −1.67554 + 1.21735i −7.01976e−5 + 5.10015e-5i −0.587820 0.808991i \(-0.700014\pi\)
0.587750 + 0.809042i \(0.300014\pi\)
\(830\) 0 0
\(831\) −17758.5 12902.3i −0.741317 0.538598i
\(832\) 1268.51 0.0528578
\(833\) 47375.8 + 34420.6i 1.97056 + 1.43169i
\(834\) 2882.87 8872.55i 0.119695 0.368383i
\(835\) 0 0
\(836\) −565.462 1740.31i −0.0233935 0.0719976i
\(837\) 3969.17 12215.8i 0.163912 0.504470i
\(838\) −2757.53 + 8486.82i −0.113672 + 0.349848i
\(839\) 5938.00 + 18275.3i 0.244341 + 0.752005i 0.995744 + 0.0921615i \(0.0293776\pi\)
−0.751403 + 0.659844i \(0.770622\pi\)
\(840\) 0 0
\(841\) 4447.16 13686.9i 0.182343 0.561193i
\(842\) −9234.81 6709.49i −0.377972 0.274613i
\(843\) 1935.04 0.0790584
\(844\) −14021.6 10187.3i −0.571852 0.415475i
\(845\) 0 0
\(846\) 5262.91 3823.73i 0.213880 0.155393i
\(847\) 16476.8 11971.1i 0.668416 0.485633i
\(848\) 25.8663 + 79.6082i 0.00104747 + 0.00322377i
\(849\) 15988.0 0.646296
\(850\) 0 0
\(851\) 44645.0 1.79837
\(852\) 3334.54 + 10262.7i 0.134084 + 0.412668i
\(853\) −20360.1 + 14792.5i −0.817253 + 0.593769i −0.915924 0.401351i \(-0.868541\pi\)
0.0986714 + 0.995120i \(0.468541\pi\)
\(854\) 6523.90 4739.89i 0.261409 0.189925i
\(855\) 0 0
\(856\) 6769.13 + 4918.06i 0.270285 + 0.196374i
\(857\) −32539.4 −1.29699 −0.648497 0.761217i \(-0.724602\pi\)
−0.648497 + 0.761217i \(0.724602\pi\)
\(858\) −6241.43 4534.67i −0.248344 0.180432i
\(859\) 14076.7 43323.7i 0.559129 1.72082i −0.125654 0.992074i \(-0.540103\pi\)
0.684783 0.728747i \(-0.259897\pi\)
\(860\) 0 0
\(861\) 912.704 + 2809.02i 0.0361265 + 0.111186i
\(862\) 4956.37 15254.1i 0.195841 0.602735i
\(863\) −1234.72 + 3800.08i −0.0487027 + 0.149892i −0.972450 0.233110i \(-0.925110\pi\)
0.923748 + 0.383002i \(0.125110\pi\)
\(864\) 1507.26 + 4638.87i 0.0593496 + 0.182659i
\(865\) 0 0
\(866\) 3574.25 11000.4i 0.140252 0.431650i
\(867\) −6664.58 4842.10i −0.261062 0.189673i
\(868\) 10942.4 0.427891
\(869\) −22131.2 16079.2i −0.863922 0.627676i
\(870\) 0 0
\(871\) −12494.0 + 9077.45i −0.486044 + 0.353132i
\(872\) −7459.57 + 5419.69i −0.289694 + 0.210475i
\(873\) 1546.65 + 4760.11i 0.0599614 + 0.184542i
\(874\) −4019.70 −0.155570
\(875\) 0 0
\(876\) 15973.7 0.616098
\(877\) 757.438 + 2331.16i 0.0291641 + 0.0897577i 0.964579 0.263794i \(-0.0849739\pi\)
−0.935415 + 0.353552i \(0.884974\pi\)
\(878\) 19010.5 13811.9i 0.730720 0.530899i
\(879\) 25049.1 18199.2i 0.961189 0.698345i
\(880\) 0 0
\(881\) −28818.0 20937.5i −1.10205 0.800684i −0.120654 0.992695i \(-0.538499\pi\)
−0.981393 + 0.192011i \(0.938499\pi\)
\(882\) 10889.5 0.415724
\(883\) 16992.6 + 12345.8i 0.647617 + 0.470521i 0.862459 0.506128i \(-0.168924\pi\)
−0.214842 + 0.976649i \(0.568924\pi\)
\(884\) −2018.22 + 6211.45i −0.0767875 + 0.236328i
\(885\) 0 0
\(886\) 2205.45 + 6787.69i 0.0836272 + 0.257378i
\(887\) −3762.96 + 11581.2i −0.142444 + 0.438398i −0.996673 0.0814984i \(-0.974029\pi\)
0.854229 + 0.519896i \(0.174029\pi\)
\(888\) −2496.50 + 7683.44i −0.0943435 + 0.290360i
\(889\) −16416.4 50524.5i −0.619335 1.90612i
\(890\) 0 0
\(891\) 6338.83 19508.9i 0.238338 0.733528i
\(892\) −16822.1 12221.9i −0.631440 0.458768i
\(893\) −4389.96 −0.164507
\(894\) −13025.1 9463.29i −0.487276 0.354027i
\(895\) 0 0
\(896\) −3361.71 + 2442.42i −0.125342 + 0.0910666i
\(897\) −13710.6 + 9961.34i −0.510350 + 0.370791i
\(898\) 8880.60 + 27331.7i 0.330011 + 1.01567i
\(899\) 16594.6 0.615640
\(900\) 0 0
\(901\) −430.967 −0.0159352
\(902\) −565.821 1741.42i −0.0208867 0.0642826i
\(903\) 4258.26 3093.81i 0.156928 0.114015i
\(904\) −879.352 + 638.887i −0.0323527 + 0.0235056i
\(905\) 0 0
\(906\) −11282.3 8197.04i −0.413718 0.300583i
\(907\) 33352.4 1.22100 0.610501 0.792015i \(-0.290968\pi\)
0.610501 + 0.792015i \(0.290968\pi\)
\(908\) 12118.1 + 8804.31i 0.442900 + 0.321786i
\(909\) −1620.27 + 4986.68i −0.0591210 + 0.181956i
\(910\) 0 0
\(911\) 5604.85 + 17249.9i 0.203839 + 0.627350i 0.999759 + 0.0219494i \(0.00698727\pi\)
−0.795921 + 0.605401i \(0.793013\pi\)
\(912\) 224.777 691.793i 0.00816131 0.0251179i
\(913\) −6182.06 + 19026.4i −0.224092 + 0.689685i
\(914\) −248.495 764.789i −0.00899287 0.0276772i
\(915\) 0 0
\(916\) −5197.62 + 15996.6i −0.187483 + 0.577013i
\(917\) −28403.2 20636.1i −1.02285 0.743147i
\(918\) −25113.0 −0.902889
\(919\) 25633.4 + 18623.8i 0.920096 + 0.668489i 0.943548 0.331236i \(-0.107466\pi\)
−0.0234522 + 0.999725i \(0.507466\pi\)
\(920\) 0 0
\(921\) 14180.0 10302.4i 0.507325 0.368593i
\(922\) 11686.9 8491.02i 0.417448 0.303294i
\(923\) 3757.12 + 11563.2i 0.133984 + 0.412360i
\(924\) 25271.7 0.899761
\(925\) 0 0
\(926\) −6554.13 −0.232594
\(927\) 9.13201 + 28.1054i 0.000323554 + 0.000995797i
\(928\) −5098.16 + 3704.03i −0.180340 + 0.131024i
\(929\) 22563.0 16393.0i 0.796844 0.578941i −0.113143 0.993579i \(-0.536092\pi\)
0.909987 + 0.414638i \(0.136092\pi\)
\(930\) 0 0
\(931\) −5945.09 4319.36i −0.209283 0.152053i
\(932\) −24860.1 −0.873732
\(933\) −22848.8 16600.7i −0.801755 0.582509i
\(934\) −3574.71 + 11001.8i −0.125234 + 0.385429i
\(935\) 0 0
\(936\) 375.300 + 1155.05i 0.0131058 + 0.0403356i
\(937\) 12599.7 38777.9i 0.439290 1.35200i −0.449336 0.893363i \(-0.648339\pi\)
0.888626 0.458633i \(-0.151661\pi\)
\(938\) 15632.8 48112.7i 0.544166 1.67477i
\(939\) 9420.48 + 28993.3i 0.327397 + 1.00762i
\(940\) 0 0
\(941\) −7635.56 + 23499.8i −0.264519 + 0.814105i 0.727285 + 0.686335i \(0.240782\pi\)
−0.991804 + 0.127769i \(0.959218\pi\)
\(942\) 10926.4 + 7938.46i 0.377919 + 0.274574i
\(943\) −4022.25 −0.138900
\(944\) −671.470 487.852i −0.0231509 0.0168201i
\(945\) 0 0
\(946\) −2639.86 + 1917.97i −0.0907287 + 0.0659183i
\(947\) 26803.1 19473.6i 0.919730 0.668223i −0.0237270 0.999718i \(-0.507553\pi\)
0.943457 + 0.331496i \(0.107553\pi\)
\(948\) −3360.29 10341.9i −0.115124 0.354314i
\(949\) 17998.0 0.615638
\(950\) 0 0
\(951\) −29062.6 −0.990978
\(952\) −6611.15 20347.0i −0.225072 0.692701i
\(953\) 26148.8 18998.2i 0.888816 0.645763i −0.0467529 0.998906i \(-0.514887\pi\)
0.935569 + 0.353144i \(0.114887\pi\)
\(954\) −64.8352 + 47.1055i −0.00220033 + 0.00159864i
\(955\) 0 0
\(956\) −2752.74 1999.98i −0.0931277 0.0676612i
\(957\) 38325.5 1.29455
\(958\) 3792.33 + 2755.29i 0.127896 + 0.0929221i
\(959\) −23252.6 + 71564.3i −0.782969 + 2.40973i
\(960\) 0 0
\(961\) −7011.58 21579.4i −0.235359 0.724361i
\(962\) −2812.87 + 8657.13i −0.0942730 + 0.290143i
\(963\) −2475.48 + 7618.74i −0.0828361 + 0.254943i
\(964\) 5829.26 + 17940.6i 0.194759 + 0.599407i
\(965\) 0 0
\(966\) 17155.0 52797.6i 0.571379 1.75852i
\(967\) 10355.3 + 7523.54i 0.344367 + 0.250197i 0.746502 0.665383i \(-0.231732\pi\)
−0.402135 + 0.915580i \(0.631732\pi\)
\(968\) −5018.94 −0.166648
\(969\) 3029.84 + 2201.31i 0.100446 + 0.0729786i
\(970\) 0 0
\(971\) 30611.3 22240.4i 1.01170 0.735046i 0.0471385 0.998888i \(-0.484990\pi\)
0.964566 + 0.263842i \(0.0849898\pi\)
\(972\) −6721.15 + 4883.20i −0.221791 + 0.161141i
\(973\) 10640.2 + 32747.3i 0.350576 + 1.07896i
\(974\) 23527.9 0.774006
\(975\) 0 0
\(976\) −1987.23 −0.0651738
\(977\) −9126.82 28089.5i −0.298867 0.919817i −0.981895 0.189425i \(-0.939337\pi\)
0.683028 0.730392i \(-0.260663\pi\)
\(978\) 11923.9 8663.25i 0.389863 0.283252i
\(979\) 30932.4 22473.7i 1.00981 0.733669i
\(980\) 0 0
\(981\) −7141.93 5188.91i −0.232441 0.168878i
\(982\) −21996.0 −0.714788
\(983\) −859.475 624.445i −0.0278871 0.0202611i 0.573754 0.819027i \(-0.305486\pi\)
−0.601641 + 0.798766i \(0.705486\pi\)
\(984\) 224.920 692.232i 0.00728677 0.0224264i
\(985\) 0 0
\(986\) −10026.1 30857.1i −0.323829 0.996642i
\(987\) 18735.1 57660.8i 0.604200 1.85954i
\(988\) 253.262 779.461i 0.00815521 0.0250992i
\(989\) 2215.03 + 6817.15i 0.0712171 + 0.219184i
\(990\) 0 0
\(991\) 15803.1 48637.0i 0.506561 1.55904i −0.291568 0.956550i \(-0.594177\pi\)
0.798130 0.602486i \(-0.205823\pi\)
\(992\) −2181.57 1585.00i −0.0698234 0.0507297i
\(993\) −16488.1 −0.526924
\(994\) −32220.9 23409.9i −1.02816 0.746998i
\(995\) 0 0
\(996\) −6433.64 + 4674.31i −0.204676 + 0.148706i
\(997\) −38107.1 + 27686.5i −1.21050 + 0.879477i −0.995276 0.0970879i \(-0.969047\pi\)
−0.215221 + 0.976565i \(0.569047\pi\)
\(998\) −7792.21 23982.0i −0.247152 0.760657i
\(999\) −35000.9 −1.10849
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 250.4.d.b.151.2 16
5.2 odd 4 250.4.e.c.99.7 32
5.3 odd 4 250.4.e.c.99.2 32
5.4 even 2 50.4.d.b.31.3 yes 16
25.3 odd 20 250.4.e.c.149.7 32
25.4 even 10 50.4.d.b.21.3 16
25.11 even 5 1250.4.a.g.1.6 8
25.14 even 10 1250.4.a.j.1.3 8
25.21 even 5 inner 250.4.d.b.101.2 16
25.22 odd 20 250.4.e.c.149.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.4.d.b.21.3 16 25.4 even 10
50.4.d.b.31.3 yes 16 5.4 even 2
250.4.d.b.101.2 16 25.21 even 5 inner
250.4.d.b.151.2 16 1.1 even 1 trivial
250.4.e.c.99.2 32 5.3 odd 4
250.4.e.c.99.7 32 5.2 odd 4
250.4.e.c.149.2 32 25.22 odd 20
250.4.e.c.149.7 32 25.3 odd 20
1250.4.a.g.1.6 8 25.11 even 5
1250.4.a.j.1.3 8 25.14 even 10