Properties

Label 250.4.e.c.99.7
Level $250$
Weight $4$
Character 250.99
Analytic conductor $14.750$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [250,4,Mod(49,250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(250, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([7]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("250.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 250 = 2 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 250.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7504775014\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 99.7
Character \(\chi\) \(=\) 250.99
Dual form 250.4.e.c.149.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.90211 - 0.618034i) q^{2} +(2.58496 + 3.55790i) q^{3} +(3.23607 - 2.35114i) q^{4} +(7.11579 + 5.16993i) q^{6} -32.4633i q^{7} +(4.70228 - 6.47214i) q^{8} +(2.36687 - 7.28447i) q^{9} +(-13.6751 - 42.0875i) q^{11} +(16.7302 + 5.43598i) q^{12} +(-18.8504 - 6.12486i) q^{13} +(-20.0634 - 61.7488i) q^{14} +(4.94427 - 15.2169i) q^{16} +(-48.4207 + 66.6454i) q^{17} -15.3187i q^{18} +(8.36319 + 6.07621i) q^{19} +(115.501 - 83.9163i) q^{21} +(-52.0231 - 71.6036i) q^{22} +(184.908 - 60.0803i) q^{23} +35.1824 q^{24} -39.6409 q^{26} +(144.965 - 47.1019i) q^{27} +(-76.3257 - 105.053i) q^{28} +(-159.317 + 115.751i) q^{29} +(68.1740 + 49.5313i) q^{31} -32.0000i q^{32} +(114.394 - 157.449i) q^{33} +(-50.9126 + 156.693i) q^{34} +(-9.46747 - 29.1379i) q^{36} +(218.389 + 70.9588i) q^{37} +(19.6630 + 6.38891i) q^{38} +(-26.9359 - 82.9003i) q^{39} +(-6.39296 + 19.6755i) q^{41} +(167.833 - 231.002i) q^{42} -36.8678i q^{43} +(-143.207 - 104.046i) q^{44} +(314.584 - 228.559i) q^{46} +(249.612 + 343.561i) q^{47} +(66.9209 - 21.7439i) q^{48} -710.864 q^{49} -362.283 q^{51} +(-75.4016 + 24.4995i) q^{52} +(3.07504 + 4.23242i) q^{53} +(246.629 - 179.186i) q^{54} +(-210.107 - 152.651i) q^{56} +45.4621i q^{57} +(-231.502 + 318.635i) q^{58} +(-16.0299 + 49.3350i) q^{59} +(-38.3804 - 118.123i) q^{61} +(160.287 + 52.0803i) q^{62} +(-236.478 - 76.8363i) q^{63} +(-19.7771 - 60.8676i) q^{64} +(120.280 - 370.185i) q^{66} +(457.984 - 630.360i) q^{67} +329.513i q^{68} +(691.740 + 502.578i) q^{69} +(-496.268 + 360.560i) q^{71} +(-36.0164 - 49.5723i) q^{72} +(863.608 - 280.603i) q^{73} +459.255 q^{74} +41.3499 q^{76} +(-1366.30 + 443.937i) q^{77} +(-102.470 - 141.038i) q^{78} +(-500.100 + 363.344i) q^{79} +(375.005 + 272.457i) q^{81} +41.3761i q^{82} +(-265.719 + 365.730i) q^{83} +(176.470 - 543.118i) q^{84} +(-22.7855 - 70.1266i) q^{86} +(-823.659 - 267.623i) q^{87} +(-336.700 - 109.401i) q^{88} +(-266.987 - 821.703i) q^{89} +(-198.833 + 611.945i) q^{91} +(457.118 - 629.169i) q^{92} +370.592i q^{93} +(687.123 + 499.224i) q^{94} +(113.853 - 82.7188i) q^{96} +(384.094 + 528.660i) q^{97} +(-1352.14 + 439.338i) q^{98} -338.953 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 28 q^{6} + 166 q^{9} + 304 q^{11} - 104 q^{14} - 128 q^{16} + 40 q^{19} + 514 q^{21} + 128 q^{24} - 1432 q^{26} - 210 q^{29} + 354 q^{31} - 684 q^{34} - 664 q^{36} + 292 q^{39} + 924 q^{41}+ \cdots + 3572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/250\mathbb{Z}\right)^\times\).

\(n\) \(127\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.90211 0.618034i 0.672499 0.218508i
\(3\) 2.58496 + 3.55790i 0.497476 + 0.684717i 0.981745 0.190202i \(-0.0609143\pi\)
−0.484269 + 0.874919i \(0.660914\pi\)
\(4\) 3.23607 2.35114i 0.404508 0.293893i
\(5\) 0 0
\(6\) 7.11579 + 5.16993i 0.484168 + 0.351769i
\(7\) 32.4633i 1.75285i −0.481537 0.876426i \(-0.659921\pi\)
0.481537 0.876426i \(-0.340079\pi\)
\(8\) 4.70228 6.47214i 0.207813 0.286031i
\(9\) 2.36687 7.28447i 0.0876618 0.269795i
\(10\) 0 0
\(11\) −13.6751 42.0875i −0.374835 1.15362i −0.943590 0.331117i \(-0.892575\pi\)
0.568754 0.822507i \(-0.307425\pi\)
\(12\) 16.7302 + 5.43598i 0.402467 + 0.130769i
\(13\) −18.8504 6.12486i −0.402166 0.130672i 0.100948 0.994892i \(-0.467812\pi\)
−0.503114 + 0.864220i \(0.667812\pi\)
\(14\) −20.0634 61.7488i −0.383012 1.17879i
\(15\) 0 0
\(16\) 4.94427 15.2169i 0.0772542 0.237764i
\(17\) −48.4207 + 66.6454i −0.690809 + 0.950817i −1.00000 0.000182954i \(-0.999942\pi\)
0.309191 + 0.951000i \(0.399942\pi\)
\(18\) 15.3187i 0.200592i
\(19\) 8.36319 + 6.07621i 0.100981 + 0.0733673i 0.637130 0.770756i \(-0.280121\pi\)
−0.536149 + 0.844124i \(0.680121\pi\)
\(20\) 0 0
\(21\) 115.501 83.9163i 1.20021 0.872002i
\(22\) −52.0231 71.6036i −0.504152 0.693906i
\(23\) 184.908 60.0803i 1.67635 0.544678i 0.692151 0.721753i \(-0.256663\pi\)
0.984197 + 0.177075i \(0.0566634\pi\)
\(24\) 35.1824 0.299232
\(25\) 0 0
\(26\) −39.6409 −0.299009
\(27\) 144.965 47.1019i 1.03328 0.335732i
\(28\) −76.3257 105.053i −0.515150 0.709043i
\(29\) −159.317 + 115.751i −1.02016 + 0.741186i −0.966315 0.257363i \(-0.917146\pi\)
−0.0538405 + 0.998550i \(0.517146\pi\)
\(30\) 0 0
\(31\) 68.1740 + 49.5313i 0.394981 + 0.286970i 0.767493 0.641057i \(-0.221504\pi\)
−0.372513 + 0.928027i \(0.621504\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 114.394 157.449i 0.603435 0.830557i
\(34\) −50.9126 + 156.693i −0.256807 + 0.790370i
\(35\) 0 0
\(36\) −9.46747 29.1379i −0.0438309 0.134898i
\(37\) 218.389 + 70.9588i 0.970348 + 0.315285i 0.750956 0.660352i \(-0.229593\pi\)
0.219391 + 0.975637i \(0.429593\pi\)
\(38\) 19.6630 + 6.38891i 0.0839412 + 0.0272741i
\(39\) −26.9359 82.9003i −0.110595 0.340376i
\(40\) 0 0
\(41\) −6.39296 + 19.6755i −0.0243515 + 0.0749463i −0.962494 0.271304i \(-0.912545\pi\)
0.938142 + 0.346250i \(0.112545\pi\)
\(42\) 167.833 231.002i 0.616599 0.848675i
\(43\) 36.8678i 0.130751i −0.997861 0.0653753i \(-0.979176\pi\)
0.997861 0.0653753i \(-0.0208245\pi\)
\(44\) −143.207 104.046i −0.490666 0.356490i
\(45\) 0 0
\(46\) 314.584 228.559i 1.00832 0.732591i
\(47\) 249.612 + 343.561i 0.774673 + 1.06625i 0.995850 + 0.0910123i \(0.0290102\pi\)
−0.221177 + 0.975234i \(0.570990\pi\)
\(48\) 66.9209 21.7439i 0.201233 0.0653847i
\(49\) −710.864 −2.07249
\(50\) 0 0
\(51\) −362.283 −0.994702
\(52\) −75.4016 + 24.4995i −0.201083 + 0.0653358i
\(53\) 3.07504 + 4.23242i 0.00796960 + 0.0109692i 0.812983 0.582287i \(-0.197842\pi\)
−0.805014 + 0.593256i \(0.797842\pi\)
\(54\) 246.629 179.186i 0.621517 0.451558i
\(55\) 0 0
\(56\) −210.107 152.651i −0.501369 0.364266i
\(57\) 45.4621i 0.105642i
\(58\) −231.502 + 318.635i −0.524098 + 0.721359i
\(59\) −16.0299 + 49.3350i −0.0353715 + 0.108862i −0.967183 0.254079i \(-0.918228\pi\)
0.931812 + 0.362942i \(0.118228\pi\)
\(60\) 0 0
\(61\) −38.3804 118.123i −0.0805592 0.247936i 0.902663 0.430348i \(-0.141609\pi\)
−0.983222 + 0.182413i \(0.941609\pi\)
\(62\) 160.287 + 52.0803i 0.328329 + 0.106681i
\(63\) −236.478 76.8363i −0.472911 0.153658i
\(64\) −19.7771 60.8676i −0.0386271 0.118882i
\(65\) 0 0
\(66\) 120.280 370.185i 0.224326 0.690404i
\(67\) 457.984 630.360i 0.835098 1.14941i −0.151854 0.988403i \(-0.548524\pi\)
0.986953 0.161011i \(-0.0514756\pi\)
\(68\) 329.513i 0.587637i
\(69\) 691.740 + 502.578i 1.20689 + 0.876860i
\(70\) 0 0
\(71\) −496.268 + 360.560i −0.829523 + 0.602684i −0.919424 0.393267i \(-0.871345\pi\)
0.0899013 + 0.995951i \(0.471345\pi\)
\(72\) −36.0164 49.5723i −0.0589524 0.0811411i
\(73\) 863.608 280.603i 1.38463 0.449892i 0.480439 0.877028i \(-0.340477\pi\)
0.904187 + 0.427136i \(0.140477\pi\)
\(74\) 459.255 0.721450
\(75\) 0 0
\(76\) 41.3499 0.0624099
\(77\) −1366.30 + 443.937i −2.02213 + 0.657031i
\(78\) −102.470 141.038i −0.148750 0.204737i
\(79\) −500.100 + 363.344i −0.712224 + 0.517461i −0.883890 0.467694i \(-0.845085\pi\)
0.171667 + 0.985155i \(0.445085\pi\)
\(80\) 0 0
\(81\) 375.005 + 272.457i 0.514411 + 0.373741i
\(82\) 41.3761i 0.0557223i
\(83\) −265.719 + 365.730i −0.351403 + 0.483664i −0.947728 0.319078i \(-0.896627\pi\)
0.596326 + 0.802743i \(0.296627\pi\)
\(84\) 176.470 543.118i 0.229219 0.705465i
\(85\) 0 0
\(86\) −22.7855 70.1266i −0.0285701 0.0879296i
\(87\) −823.659 267.623i −1.01501 0.329795i
\(88\) −336.700 109.401i −0.407868 0.132524i
\(89\) −266.987 821.703i −0.317984 0.978656i −0.974509 0.224350i \(-0.927974\pi\)
0.656524 0.754305i \(-0.272026\pi\)
\(90\) 0 0
\(91\) −198.833 + 611.945i −0.229048 + 0.704937i
\(92\) 457.118 629.169i 0.518020 0.712993i
\(93\) 370.592i 0.413211i
\(94\) 687.123 + 499.224i 0.753950 + 0.547777i
\(95\) 0 0
\(96\) 113.853 82.7188i 0.121042 0.0879422i
\(97\) 384.094 + 528.660i 0.402050 + 0.553374i 0.961257 0.275654i \(-0.0888944\pi\)
−0.559207 + 0.829028i \(0.688894\pi\)
\(98\) −1352.14 + 439.338i −1.39375 + 0.452856i
\(99\) −338.953 −0.344101
\(100\) 0 0
\(101\) 684.563 0.674421 0.337211 0.941429i \(-0.390517\pi\)
0.337211 + 0.941429i \(0.390517\pi\)
\(102\) −689.104 + 223.903i −0.668936 + 0.217350i
\(103\) −2.26783 3.12140i −0.00216948 0.00298603i 0.807931 0.589277i \(-0.200587\pi\)
−0.810100 + 0.586291i \(0.800587\pi\)
\(104\) −128.281 + 93.2015i −0.120952 + 0.0878765i
\(105\) 0 0
\(106\) 8.46485 + 6.15007i 0.00775640 + 0.00563536i
\(107\) 1045.89i 0.944951i 0.881344 + 0.472476i \(0.156640\pi\)
−0.881344 + 0.472476i \(0.843360\pi\)
\(108\) 358.372 493.257i 0.319300 0.439479i
\(109\) 356.163 1096.16i 0.312974 0.963236i −0.663606 0.748082i \(-0.730975\pi\)
0.976580 0.215153i \(-0.0690252\pi\)
\(110\) 0 0
\(111\) 312.063 + 960.430i 0.266844 + 0.821261i
\(112\) −493.990 160.507i −0.416765 0.135415i
\(113\) 129.218 + 41.9853i 0.107573 + 0.0349526i 0.362309 0.932058i \(-0.381989\pi\)
−0.254736 + 0.967011i \(0.581989\pi\)
\(114\) 28.0971 + 86.4741i 0.0230837 + 0.0710442i
\(115\) 0 0
\(116\) −243.415 + 749.155i −0.194832 + 0.599632i
\(117\) −89.2328 + 122.818i −0.0705092 + 0.0970476i
\(118\) 103.748i 0.0809387i
\(119\) 2163.53 + 1571.90i 1.66664 + 1.21089i
\(120\) 0 0
\(121\) −507.551 + 368.758i −0.381331 + 0.277053i
\(122\) −146.008 200.963i −0.108352 0.149134i
\(123\) −86.5290 + 28.1150i −0.0634314 + 0.0206101i
\(124\) 337.071 0.244112
\(125\) 0 0
\(126\) −497.295 −0.351608
\(127\) −1556.36 + 505.692i −1.08744 + 0.353330i −0.797256 0.603641i \(-0.793716\pi\)
−0.290182 + 0.956971i \(0.593716\pi\)
\(128\) −75.2365 103.554i −0.0519534 0.0715077i
\(129\) 131.172 95.3018i 0.0895273 0.0650454i
\(130\) 0 0
\(131\) 874.934 + 635.677i 0.583537 + 0.423964i 0.839997 0.542590i \(-0.182556\pi\)
−0.256461 + 0.966555i \(0.582556\pi\)
\(132\) 778.471i 0.513312i
\(133\) 197.254 271.496i 0.128602 0.177005i
\(134\) 481.552 1482.07i 0.310446 0.955455i
\(135\) 0 0
\(136\) 203.650 + 626.771i 0.128403 + 0.395185i
\(137\) 2204.47 + 716.275i 1.37475 + 0.446683i 0.900939 0.433945i \(-0.142879\pi\)
0.473809 + 0.880628i \(0.342879\pi\)
\(138\) 1626.38 + 528.442i 1.00324 + 0.325971i
\(139\) 327.762 + 1008.75i 0.200003 + 0.615546i 0.999882 + 0.0153844i \(0.00489720\pi\)
−0.799879 + 0.600162i \(0.795103\pi\)
\(140\) 0 0
\(141\) −577.118 + 1776.19i −0.344696 + 1.06086i
\(142\) −721.119 + 992.535i −0.426162 + 0.586561i
\(143\) 877.124i 0.512929i
\(144\) −99.1447 72.0328i −0.0573754 0.0416857i
\(145\) 0 0
\(146\) 1469.26 1067.48i 0.832854 0.605104i
\(147\) −1837.56 2529.18i −1.03101 1.41907i
\(148\) 873.554 283.835i 0.485174 0.157643i
\(149\) 1830.45 1.00642 0.503209 0.864165i \(-0.332152\pi\)
0.503209 + 0.864165i \(0.332152\pi\)
\(150\) 0 0
\(151\) −1585.52 −0.854491 −0.427246 0.904136i \(-0.640516\pi\)
−0.427246 + 0.904136i \(0.640516\pi\)
\(152\) 78.6521 25.5556i 0.0419706 0.0136371i
\(153\) 370.871 + 510.460i 0.195968 + 0.269727i
\(154\) −2324.49 + 1688.84i −1.21631 + 0.883704i
\(155\) 0 0
\(156\) −282.077 204.941i −0.144771 0.105182i
\(157\) 1535.51i 0.780554i 0.920698 + 0.390277i \(0.127621\pi\)
−0.920698 + 0.390277i \(0.872379\pi\)
\(158\) −726.688 + 1000.20i −0.365900 + 0.503618i
\(159\) −7.10967 + 21.8813i −0.00354612 + 0.0109138i
\(160\) 0 0
\(161\) −1950.40 6002.72i −0.954741 2.93839i
\(162\) 881.690 + 286.479i 0.427606 + 0.138938i
\(163\) −1593.69 517.820i −0.765811 0.248827i −0.100040 0.994983i \(-0.531897\pi\)
−0.665771 + 0.746156i \(0.731897\pi\)
\(164\) 25.5719 + 78.7021i 0.0121758 + 0.0374732i
\(165\) 0 0
\(166\) −279.393 + 859.884i −0.130633 + 0.402048i
\(167\) 1209.69 1664.99i 0.560530 0.771503i −0.430864 0.902417i \(-0.641791\pi\)
0.991394 + 0.130914i \(0.0417911\pi\)
\(168\) 1142.14i 0.524510i
\(169\) −1459.59 1060.45i −0.664355 0.482682i
\(170\) 0 0
\(171\) 64.0566 46.5398i 0.0286464 0.0208128i
\(172\) −86.6813 119.307i −0.0384267 0.0528898i
\(173\) −4099.10 + 1331.88i −1.80144 + 0.585323i −0.999920 0.0126483i \(-0.995974\pi\)
−0.801518 + 0.597971i \(0.795974\pi\)
\(174\) −1732.09 −0.754653
\(175\) 0 0
\(176\) −708.055 −0.303248
\(177\) −216.966 + 70.4964i −0.0921364 + 0.0299369i
\(178\) −1015.68 1397.96i −0.427688 0.588662i
\(179\) −2202.60 + 1600.28i −0.919719 + 0.668215i −0.943454 0.331503i \(-0.892444\pi\)
0.0237350 + 0.999718i \(0.492444\pi\)
\(180\) 0 0
\(181\) 1056.07 + 767.281i 0.433686 + 0.315091i 0.783121 0.621869i \(-0.213626\pi\)
−0.349435 + 0.936961i \(0.613626\pi\)
\(182\) 1286.87i 0.524118i
\(183\) 321.057 441.897i 0.129690 0.178502i
\(184\) 480.642 1479.26i 0.192573 0.592679i
\(185\) 0 0
\(186\) 229.039 + 704.909i 0.0902900 + 0.277884i
\(187\) 3467.10 + 1126.53i 1.35583 + 0.440534i
\(188\) 1615.52 + 524.915i 0.626724 + 0.203635i
\(189\) −1529.08 4706.03i −0.588488 1.81118i
\(190\) 0 0
\(191\) 1225.39 3771.37i 0.464221 1.42872i −0.395739 0.918363i \(-0.629511\pi\)
0.859960 0.510362i \(-0.170489\pi\)
\(192\) 165.438 227.705i 0.0621845 0.0855897i
\(193\) 1941.18i 0.723986i −0.932181 0.361993i \(-0.882096\pi\)
0.932181 0.361993i \(-0.117904\pi\)
\(194\) 1057.32 + 768.188i 0.391295 + 0.284292i
\(195\) 0 0
\(196\) −2300.40 + 1671.34i −0.838340 + 0.609089i
\(197\) −1186.45 1633.01i −0.429092 0.590595i 0.538652 0.842528i \(-0.318934\pi\)
−0.967745 + 0.251933i \(0.918934\pi\)
\(198\) −644.726 + 209.484i −0.231408 + 0.0751889i
\(199\) −985.509 −0.351060 −0.175530 0.984474i \(-0.556164\pi\)
−0.175530 + 0.984474i \(0.556164\pi\)
\(200\) 0 0
\(201\) 3426.63 1.20247
\(202\) 1302.12 423.083i 0.453547 0.147366i
\(203\) 3757.65 + 5171.96i 1.29919 + 1.78818i
\(204\) −1172.37 + 851.779i −0.402365 + 0.292336i
\(205\) 0 0
\(206\) −6.24281 4.53567i −0.00211144 0.00153405i
\(207\) 1489.16i 0.500018i
\(208\) −186.403 + 256.562i −0.0621381 + 0.0855257i
\(209\) 141.366 435.079i 0.0467869 0.143995i
\(210\) 0 0
\(211\) 1338.94 + 4120.84i 0.436856 + 1.34450i 0.891173 + 0.453664i \(0.149884\pi\)
−0.454317 + 0.890840i \(0.650116\pi\)
\(212\) 19.9021 + 6.46657i 0.00644754 + 0.00209493i
\(213\) −2565.67 833.636i −0.825336 0.268168i
\(214\) 646.394 + 1989.40i 0.206479 + 0.635478i
\(215\) 0 0
\(216\) 376.815 1159.72i 0.118699 0.365318i
\(217\) 1607.95 2213.15i 0.503017 0.692343i
\(218\) 2305.13i 0.716162i
\(219\) 3230.75 + 2347.28i 0.996868 + 0.724267i
\(220\) 0 0
\(221\) 1320.94 959.722i 0.402065 0.292117i
\(222\) 1187.16 + 1633.98i 0.358904 + 0.493989i
\(223\) 4943.88 1606.36i 1.48460 0.482377i 0.549119 0.835744i \(-0.314963\pi\)
0.935485 + 0.353367i \(0.114963\pi\)
\(224\) −1038.82 −0.309863
\(225\) 0 0
\(226\) 271.735 0.0799802
\(227\) 3561.42 1157.17i 1.04132 0.338345i 0.262064 0.965051i \(-0.415597\pi\)
0.779256 + 0.626705i \(0.215597\pi\)
\(228\) 106.888 + 147.119i 0.0310475 + 0.0427332i
\(229\) −3401.89 + 2471.62i −0.981673 + 0.713227i −0.958082 0.286494i \(-0.907510\pi\)
−0.0235912 + 0.999722i \(0.507510\pi\)
\(230\) 0 0
\(231\) −5111.31 3713.59i −1.45584 1.05773i
\(232\) 1575.42i 0.445824i
\(233\) 3653.09 5028.05i 1.02713 1.41373i 0.120055 0.992767i \(-0.461693\pi\)
0.907079 0.420961i \(-0.138307\pi\)
\(234\) −93.8249 + 288.763i −0.0262116 + 0.0806712i
\(235\) 0 0
\(236\) 64.1197 + 197.340i 0.0176857 + 0.0544311i
\(237\) −2585.48 840.073i −0.708629 0.230247i
\(238\) 5086.76 + 1652.79i 1.38540 + 0.450144i
\(239\) −262.864 809.011i −0.0711432 0.218956i 0.909163 0.416441i \(-0.136723\pi\)
−0.980306 + 0.197485i \(0.936723\pi\)
\(240\) 0 0
\(241\) 1457.32 4485.16i 0.389518 1.19881i −0.543631 0.839325i \(-0.682951\pi\)
0.933149 0.359490i \(-0.117049\pi\)
\(242\) −737.515 + 1015.10i −0.195906 + 0.269642i
\(243\) 2076.95i 0.548298i
\(244\) −401.925 292.016i −0.105453 0.0766164i
\(245\) 0 0
\(246\) −147.212 + 106.956i −0.0381540 + 0.0277205i
\(247\) −120.433 165.762i −0.0310243 0.0427012i
\(248\) 641.146 208.321i 0.164165 0.0533403i
\(249\) −1988.10 −0.505988
\(250\) 0 0
\(251\) 619.865 0.155879 0.0779393 0.996958i \(-0.475166\pi\)
0.0779393 + 0.996958i \(0.475166\pi\)
\(252\) −945.911 + 307.345i −0.236456 + 0.0768291i
\(253\) −5057.26 6960.72i −1.25671 1.72971i
\(254\) −2647.84 + 1923.77i −0.654095 + 0.475228i
\(255\) 0 0
\(256\) −207.108 150.473i −0.0505636 0.0367366i
\(257\) 3006.52i 0.729733i 0.931060 + 0.364867i \(0.118885\pi\)
−0.931060 + 0.364867i \(0.881115\pi\)
\(258\) 190.604 262.343i 0.0459940 0.0633053i
\(259\) 2303.55 7089.61i 0.552648 1.70088i
\(260\) 0 0
\(261\) 466.101 + 1434.51i 0.110540 + 0.340207i
\(262\) 2057.09 + 668.390i 0.485067 + 0.157608i
\(263\) 458.796 + 149.072i 0.107569 + 0.0349512i 0.362307 0.932059i \(-0.381989\pi\)
−0.254738 + 0.967010i \(0.581989\pi\)
\(264\) −481.122 1480.74i −0.112163 0.345202i
\(265\) 0 0
\(266\) 207.405 638.326i 0.0478075 0.147136i
\(267\) 2233.38 3073.99i 0.511913 0.704587i
\(268\) 3116.67i 0.710377i
\(269\) 4209.63 + 3058.48i 0.954148 + 0.693229i 0.951784 0.306768i \(-0.0992476\pi\)
0.00236368 + 0.999997i \(0.499248\pi\)
\(270\) 0 0
\(271\) 1750.36 1271.71i 0.392351 0.285059i −0.374067 0.927402i \(-0.622037\pi\)
0.766418 + 0.642342i \(0.222037\pi\)
\(272\) 774.732 + 1066.33i 0.172702 + 0.237704i
\(273\) −2691.21 + 874.428i −0.596629 + 0.193856i
\(274\) 4635.83 1.02212
\(275\) 0 0
\(276\) 3420.15 0.745902
\(277\) −4746.99 + 1542.39i −1.02967 + 0.334561i −0.774660 0.632377i \(-0.782079\pi\)
−0.255011 + 0.966938i \(0.582079\pi\)
\(278\) 1246.88 + 1716.19i 0.269004 + 0.370252i
\(279\) 522.168 379.377i 0.112048 0.0814076i
\(280\) 0 0
\(281\) −355.968 258.626i −0.0755704 0.0549051i 0.549359 0.835587i \(-0.314872\pi\)
−0.624929 + 0.780682i \(0.714872\pi\)
\(282\) 3735.19i 0.788748i
\(283\) −2136.86 + 2941.14i −0.448845 + 0.617783i −0.972149 0.234364i \(-0.924699\pi\)
0.523304 + 0.852146i \(0.324699\pi\)
\(284\) −758.229 + 2333.59i −0.158425 + 0.487581i
\(285\) 0 0
\(286\) 542.093 + 1668.39i 0.112079 + 0.344944i
\(287\) 638.732 + 207.537i 0.131370 + 0.0426846i
\(288\) −233.103 75.7398i −0.0476935 0.0154966i
\(289\) −578.844 1781.50i −0.117819 0.362609i
\(290\) 0 0
\(291\) −888.049 + 2733.13i −0.178895 + 0.550581i
\(292\) 2134.96 2938.52i 0.427873 0.588917i
\(293\) 7040.42i 1.40377i 0.712288 + 0.701887i \(0.247659\pi\)
−0.712288 + 0.701887i \(0.752341\pi\)
\(294\) −5058.36 3675.11i −1.00343 0.729037i
\(295\) 0 0
\(296\) 1486.18 1079.77i 0.291833 0.212029i
\(297\) −3964.80 5457.09i −0.774617 1.06617i
\(298\) 3481.72 1131.28i 0.676815 0.219911i
\(299\) −3853.57 −0.745344
\(300\) 0 0
\(301\) −1196.85 −0.229187
\(302\) −3015.85 + 979.908i −0.574644 + 0.186713i
\(303\) 1769.57 + 2435.60i 0.335509 + 0.461788i
\(304\) 133.811 97.2194i 0.0252454 0.0183418i
\(305\) 0 0
\(306\) 1020.92 + 741.742i 0.190726 + 0.138571i
\(307\) 3985.50i 0.740927i −0.928847 0.370463i \(-0.879199\pi\)
0.928847 0.370463i \(-0.120801\pi\)
\(308\) −3377.68 + 4648.97i −0.624873 + 0.860064i
\(309\) 5.24337 16.1374i 0.000965323 0.00297096i
\(310\) 0 0
\(311\) 1984.51 + 6107.70i 0.361837 + 1.11362i 0.951938 + 0.306290i \(0.0990878\pi\)
−0.590101 + 0.807329i \(0.700912\pi\)
\(312\) −663.202 215.487i −0.120341 0.0391012i
\(313\) −6592.67 2142.09i −1.19054 0.386831i −0.354269 0.935143i \(-0.615270\pi\)
−0.836273 + 0.548313i \(0.815270\pi\)
\(314\) 948.996 + 2920.71i 0.170557 + 0.524921i
\(315\) 0 0
\(316\) −764.085 + 2351.61i −0.136023 + 0.418634i
\(317\) −3884.35 + 5346.35i −0.688223 + 0.947258i −0.999996 0.00289895i \(-0.999077\pi\)
0.311773 + 0.950157i \(0.399077\pi\)
\(318\) 46.0148i 0.00811440i
\(319\) 7050.35 + 5122.38i 1.23744 + 0.899053i
\(320\) 0 0
\(321\) −3721.16 + 2703.58i −0.647024 + 0.470091i
\(322\) −7419.77 10212.4i −1.28412 1.76744i
\(323\) −809.903 + 263.154i −0.139518 + 0.0453321i
\(324\) 1854.13 0.317923
\(325\) 0 0
\(326\) −3351.40 −0.569378
\(327\) 4820.68 1566.33i 0.815241 0.264888i
\(328\) 97.2811 + 133.896i 0.0163764 + 0.0225401i
\(329\) 11153.1 8103.22i 1.86897 1.35789i
\(330\) 0 0
\(331\) 3033.15 + 2203.71i 0.503676 + 0.365942i 0.810420 0.585850i \(-0.199239\pi\)
−0.306743 + 0.951792i \(0.599239\pi\)
\(332\) 1808.27i 0.298921i
\(333\) 1033.79 1422.90i 0.170125 0.234157i
\(334\) 1271.94 3914.63i 0.208376 0.641315i
\(335\) 0 0
\(336\) −705.879 2172.47i −0.114610 0.352732i
\(337\) −300.782 97.7299i −0.0486191 0.0157973i 0.284606 0.958644i \(-0.408137\pi\)
−0.333226 + 0.942847i \(0.608137\pi\)
\(338\) −3431.70 1115.03i −0.552247 0.179436i
\(339\) 184.643 + 568.273i 0.0295824 + 0.0910453i
\(340\) 0 0
\(341\) 1152.37 3546.62i 0.183003 0.563226i
\(342\) 93.0796 128.113i 0.0147169 0.0202560i
\(343\) 11942.1i 1.87992i
\(344\) −238.613 173.363i −0.0373987 0.0271718i
\(345\) 0 0
\(346\) −6973.80 + 5066.77i −1.08357 + 0.787257i
\(347\) 3486.20 + 4798.35i 0.539335 + 0.742331i 0.988517 0.151109i \(-0.0482845\pi\)
−0.449182 + 0.893440i \(0.648285\pi\)
\(348\) −3294.64 + 1070.49i −0.507503 + 0.164898i
\(349\) −8313.16 −1.27505 −0.637526 0.770429i \(-0.720042\pi\)
−0.637526 + 0.770429i \(0.720042\pi\)
\(350\) 0 0
\(351\) −3021.13 −0.459419
\(352\) −1346.80 + 437.602i −0.203934 + 0.0662621i
\(353\) 2118.46 + 2915.82i 0.319418 + 0.439641i 0.938289 0.345851i \(-0.112410\pi\)
−0.618872 + 0.785492i \(0.712410\pi\)
\(354\) −369.124 + 268.184i −0.0554201 + 0.0402651i
\(355\) 0 0
\(356\) −2795.93 2031.36i −0.416247 0.302421i
\(357\) 11760.9i 1.74357i
\(358\) −3200.56 + 4405.19i −0.472499 + 0.650340i
\(359\) −2483.37 + 7643.04i −0.365090 + 1.12363i 0.584834 + 0.811153i \(0.301160\pi\)
−0.949924 + 0.312480i \(0.898840\pi\)
\(360\) 0 0
\(361\) −2086.53 6421.66i −0.304203 0.936239i
\(362\) 2482.97 + 806.767i 0.360503 + 0.117135i
\(363\) −2624.00 852.590i −0.379406 0.123277i
\(364\) 795.332 + 2447.78i 0.114524 + 0.352469i
\(365\) 0 0
\(366\) 337.579 1038.96i 0.0482119 0.148381i
\(367\) −7641.29 + 10517.3i −1.08684 + 1.49591i −0.235090 + 0.971974i \(0.575538\pi\)
−0.851755 + 0.523940i \(0.824462\pi\)
\(368\) 3110.78i 0.440654i
\(369\) 128.194 + 93.1387i 0.0180855 + 0.0131399i
\(370\) 0 0
\(371\) 137.398 99.8257i 0.0192274 0.0139695i
\(372\) 871.315 + 1199.26i 0.121440 + 0.167147i
\(373\) 6641.04 2157.81i 0.921877 0.299536i 0.190641 0.981660i \(-0.438944\pi\)
0.731237 + 0.682124i \(0.238944\pi\)
\(374\) 7291.05 1.00805
\(375\) 0 0
\(376\) 3397.32 0.465967
\(377\) 3712.15 1206.15i 0.507124 0.164774i
\(378\) −5816.97 8006.37i −0.791515 1.08943i
\(379\) −741.524 + 538.749i −0.100500 + 0.0730176i −0.636900 0.770946i \(-0.719784\pi\)
0.536400 + 0.843964i \(0.319784\pi\)
\(380\) 0 0
\(381\) −5822.33 4230.17i −0.782906 0.568814i
\(382\) 7930.90i 1.06225i
\(383\) 329.322 453.273i 0.0439362 0.0604730i −0.786484 0.617611i \(-0.788101\pi\)
0.830420 + 0.557138i \(0.188101\pi\)
\(384\) 173.951 535.367i 0.0231170 0.0711467i
\(385\) 0 0
\(386\) −1199.72 3692.35i −0.158197 0.486880i
\(387\) −268.562 87.2611i −0.0352759 0.0114618i
\(388\) 2485.91 + 807.721i 0.325265 + 0.105685i
\(389\) 917.355 + 2823.33i 0.119567 + 0.367991i 0.992872 0.119183i \(-0.0380277\pi\)
−0.873305 + 0.487174i \(0.838028\pi\)
\(390\) 0 0
\(391\) −4949.31 + 15232.4i −0.640147 + 1.97017i
\(392\) −3342.68 + 4600.81i −0.430691 + 0.592796i
\(393\) 4756.12i 0.610470i
\(394\) −3266.02 2372.90i −0.417613 0.303414i
\(395\) 0 0
\(396\) −1096.87 + 796.925i −0.139192 + 0.101129i
\(397\) −3716.55 5115.40i −0.469845 0.646686i 0.506669 0.862141i \(-0.330877\pi\)
−0.976514 + 0.215455i \(0.930877\pi\)
\(398\) −1874.55 + 609.078i −0.236087 + 0.0767094i
\(399\) 1475.85 0.185175
\(400\) 0 0
\(401\) −3008.68 −0.374679 −0.187339 0.982295i \(-0.559986\pi\)
−0.187339 + 0.982295i \(0.559986\pi\)
\(402\) 6517.83 2117.77i 0.808656 0.262748i
\(403\) −981.734 1351.24i −0.121349 0.167023i
\(404\) 2215.29 1609.50i 0.272809 0.198207i
\(405\) 0 0
\(406\) 10343.9 + 7515.30i 1.26443 + 0.918666i
\(407\) 10161.8i 1.23760i
\(408\) −1703.56 + 2344.75i −0.206712 + 0.284515i
\(409\) −3472.20 + 10686.3i −0.419778 + 1.29194i 0.488129 + 0.872771i \(0.337680\pi\)
−0.907907 + 0.419172i \(0.862320\pi\)
\(410\) 0 0
\(411\) 3150.04 + 9694.82i 0.378053 + 1.16353i
\(412\) −14.6777 4.76908i −0.00175514 0.000570281i
\(413\) 1601.58 + 520.384i 0.190819 + 0.0620010i
\(414\) −920.352 2832.55i −0.109258 0.336262i
\(415\) 0 0
\(416\) −195.996 + 603.212i −0.0230997 + 0.0710936i
\(417\) −2741.77 + 3773.72i −0.321978 + 0.443165i
\(418\) 914.937i 0.107060i
\(419\) 3609.66 + 2622.57i 0.420867 + 0.305778i 0.777987 0.628281i \(-0.216241\pi\)
−0.357119 + 0.934059i \(0.616241\pi\)
\(420\) 0 0
\(421\) 4617.41 3354.74i 0.534534 0.388361i −0.287517 0.957775i \(-0.592830\pi\)
0.822051 + 0.569414i \(0.192830\pi\)
\(422\) 5093.64 + 7010.80i 0.587570 + 0.808721i
\(423\) 3093.46 1005.13i 0.355577 0.115534i
\(424\) 41.8525 0.00479372
\(425\) 0 0
\(426\) −5395.40 −0.613634
\(427\) −3834.65 + 1245.95i −0.434595 + 0.141208i
\(428\) 2459.03 + 3384.56i 0.277714 + 0.382241i
\(429\) −3120.72 + 2267.33i −0.351211 + 0.255170i
\(430\) 0 0
\(431\) 6487.97 + 4713.79i 0.725092 + 0.526810i 0.888007 0.459830i \(-0.152090\pi\)
−0.162915 + 0.986640i \(0.552090\pi\)
\(432\) 2438.80i 0.271613i
\(433\) 3399.31 4678.75i 0.377276 0.519276i −0.577584 0.816331i \(-0.696005\pi\)
0.954860 + 0.297055i \(0.0960046\pi\)
\(434\) 1690.70 5203.43i 0.186995 0.575513i
\(435\) 0 0
\(436\) −1424.65 4384.62i −0.156487 0.481618i
\(437\) 1911.48 + 621.078i 0.209242 + 0.0679867i
\(438\) 7595.95 + 2468.08i 0.828650 + 0.269245i
\(439\) −3630.68 11174.1i −0.394721 1.21483i −0.929178 0.369632i \(-0.879484\pi\)
0.534457 0.845196i \(-0.320516\pi\)
\(440\) 0 0
\(441\) −1682.52 + 5178.27i −0.181678 + 0.559148i
\(442\) 1919.44 2641.89i 0.206558 0.284303i
\(443\) 3568.50i 0.382719i 0.981520 + 0.191360i \(0.0612897\pi\)
−0.981520 + 0.191360i \(0.938710\pi\)
\(444\) 3267.96 + 2374.31i 0.349303 + 0.253784i
\(445\) 0 0
\(446\) 8411.03 6110.97i 0.892990 0.648795i
\(447\) 4731.65 + 6512.55i 0.500669 + 0.689112i
\(448\) −1975.96 + 642.029i −0.208383 + 0.0677076i
\(449\) 14369.1 1.51029 0.755145 0.655558i \(-0.227566\pi\)
0.755145 + 0.655558i \(0.227566\pi\)
\(450\) 0 0
\(451\) 915.518 0.0955878
\(452\) 516.870 167.941i 0.0537866 0.0174763i
\(453\) −4098.52 5641.13i −0.425089 0.585085i
\(454\) 6059.05 4402.15i 0.626355 0.455073i
\(455\) 0 0
\(456\) 294.237 + 213.776i 0.0302169 + 0.0219539i
\(457\) 402.073i 0.0411558i 0.999788 + 0.0205779i \(0.00655061\pi\)
−0.999788 + 0.0205779i \(0.993449\pi\)
\(458\) −4943.23 + 6803.78i −0.504328 + 0.694148i
\(459\) −3880.17 + 11941.9i −0.394577 + 1.21438i
\(460\) 0 0
\(461\) 2232.00 + 6869.38i 0.225498 + 0.694010i 0.998241 + 0.0592914i \(0.0188841\pi\)
−0.772743 + 0.634719i \(0.781116\pi\)
\(462\) −12017.4 3904.70i −1.21018 0.393210i
\(463\) −3116.67 1012.67i −0.312838 0.101647i 0.148390 0.988929i \(-0.452591\pi\)
−0.461228 + 0.887282i \(0.652591\pi\)
\(464\) 973.661 + 2996.62i 0.0974162 + 0.299816i
\(465\) 0 0
\(466\) 3841.09 11821.7i 0.381835 1.17517i
\(467\) 3399.75 4679.36i 0.336877 0.463672i −0.606649 0.794970i \(-0.707487\pi\)
0.943526 + 0.331298i \(0.107487\pi\)
\(468\) 607.248i 0.0599787i
\(469\) −20463.6 14867.6i −2.01475 1.46380i
\(470\) 0 0
\(471\) −5463.18 + 3969.23i −0.534459 + 0.388307i
\(472\) 243.926 + 335.735i 0.0237873 + 0.0327404i
\(473\) −1551.67 + 504.169i −0.150837 + 0.0490100i
\(474\) −5437.07 −0.526863
\(475\) 0 0
\(476\) 10697.1 1.03004
\(477\) 38.1092 12.3824i 0.00365807 0.00118858i
\(478\) −999.992 1376.37i −0.0956874 0.131702i
\(479\) 1896.17 1377.64i 0.180873 0.131412i −0.493665 0.869652i \(-0.664343\pi\)
0.674538 + 0.738241i \(0.264343\pi\)
\(480\) 0 0
\(481\) −3682.10 2675.20i −0.349042 0.253594i
\(482\) 9431.94i 0.891314i
\(483\) 16315.3 22456.1i 1.53701 2.11551i
\(484\) −775.469 + 2386.65i −0.0728277 + 0.224141i
\(485\) 0 0
\(486\) −1283.63 3950.60i −0.119808 0.368730i
\(487\) −11188.2 3635.26i −1.04104 0.338253i −0.261892 0.965097i \(-0.584346\pi\)
−0.779145 + 0.626844i \(0.784346\pi\)
\(488\) −944.983 307.044i −0.0876585 0.0284820i
\(489\) −2277.27 7008.72i −0.210597 0.648150i
\(490\) 0 0
\(491\) 3398.57 10459.7i 0.312374 0.961387i −0.664448 0.747334i \(-0.731333\pi\)
0.976822 0.214053i \(-0.0686666\pi\)
\(492\) −213.912 + 294.424i −0.0196014 + 0.0269790i
\(493\) 16222.5i 1.48200i
\(494\) −331.525 240.867i −0.0301943 0.0219375i
\(495\) 0 0
\(496\) 1090.78 792.501i 0.0987452 0.0717426i
\(497\) 11704.9 + 16110.5i 1.05642 + 1.45403i
\(498\) −3781.60 + 1228.72i −0.340276 + 0.110562i
\(499\) −12608.1 −1.13109 −0.565545 0.824717i \(-0.691334\pi\)
−0.565545 + 0.824717i \(0.691334\pi\)
\(500\) 0 0
\(501\) 9050.87 0.807112
\(502\) 1179.05 383.098i 0.104828 0.0340607i
\(503\) 1904.41 + 2621.20i 0.168814 + 0.232353i 0.885039 0.465517i \(-0.154131\pi\)
−0.716225 + 0.697870i \(0.754131\pi\)
\(504\) −1609.28 + 1169.21i −0.142228 + 0.103335i
\(505\) 0 0
\(506\) −13921.4 10114.5i −1.22309 0.888627i
\(507\) 7934.29i 0.695018i
\(508\) −3847.53 + 5295.68i −0.336037 + 0.462515i
\(509\) −1458.15 + 4487.74i −0.126977 + 0.390797i −0.994256 0.107026i \(-0.965867\pi\)
0.867279 + 0.497823i \(0.165867\pi\)
\(510\) 0 0
\(511\) −9109.30 28035.6i −0.788595 2.42704i
\(512\) −486.941 158.217i −0.0420312 0.0136568i
\(513\) 1498.57 + 486.914i 0.128973 + 0.0419060i
\(514\) 1858.13 + 5718.74i 0.159453 + 0.490744i
\(515\) 0 0
\(516\) 200.412 616.806i 0.0170982 0.0526228i
\(517\) 11046.2 15203.8i 0.939673 1.29335i
\(518\) 14908.9i 1.26459i
\(519\) −15334.7 11141.3i −1.29695 0.942292i
\(520\) 0 0
\(521\) 7016.16 5097.54i 0.589987 0.428651i −0.252324 0.967643i \(-0.581195\pi\)
0.842311 + 0.538992i \(0.181195\pi\)
\(522\) 1773.15 + 2440.53i 0.148676 + 0.204635i
\(523\) −4454.00 + 1447.19i −0.372390 + 0.120997i −0.489232 0.872154i \(-0.662723\pi\)
0.116842 + 0.993150i \(0.462723\pi\)
\(524\) 4325.91 0.360646
\(525\) 0 0
\(526\) 964.814 0.0799769
\(527\) −6602.07 + 2145.14i −0.545713 + 0.177313i
\(528\) −1830.30 2519.19i −0.150859 0.207639i
\(529\) 20738.1 15067.1i 1.70445 1.23836i
\(530\) 0 0
\(531\) 321.439 + 233.539i 0.0262698 + 0.0190861i
\(532\) 1342.35i 0.109395i
\(533\) 241.020 331.735i 0.0195867 0.0269588i
\(534\) 2348.32 7227.37i 0.190303 0.585691i
\(535\) 0 0
\(536\) −1926.21 5928.26i −0.155223 0.477728i
\(537\) −11387.3 3699.94i −0.915077 0.297327i
\(538\) 9897.44 + 3215.87i 0.793139 + 0.257707i
\(539\) 9721.11 + 29918.5i 0.776842 + 2.39087i
\(540\) 0 0
\(541\) 1143.80 3520.25i 0.0908980 0.279755i −0.895265 0.445534i \(-0.853014\pi\)
0.986163 + 0.165779i \(0.0530138\pi\)
\(542\) 2543.43 3500.73i 0.201567 0.277434i
\(543\) 5740.78i 0.453703i
\(544\) 2132.65 + 1549.46i 0.168082 + 0.122119i
\(545\) 0 0
\(546\) −4578.57 + 3326.52i −0.358873 + 0.260736i
\(547\) 11392.7 + 15680.7i 0.890524 + 1.22570i 0.973393 + 0.229141i \(0.0735917\pi\)
−0.0828689 + 0.996560i \(0.526408\pi\)
\(548\) 8817.88 2865.10i 0.687374 0.223341i
\(549\) −951.304 −0.0739539
\(550\) 0 0
\(551\) −2035.73 −0.157396
\(552\) 6505.51 2113.77i 0.501618 0.162985i
\(553\) 11795.3 + 16234.9i 0.907032 + 1.24842i
\(554\) −8076.06 + 5867.60i −0.619348 + 0.449983i
\(555\) 0 0
\(556\) 3432.37 + 2493.76i 0.261807 + 0.190214i
\(557\) 4428.74i 0.336897i 0.985710 + 0.168448i \(0.0538757\pi\)
−0.985710 + 0.168448i \(0.946124\pi\)
\(558\) 758.755 1044.34i 0.0575639 0.0792299i
\(559\) −225.810 + 694.972i −0.0170854 + 0.0525835i
\(560\) 0 0
\(561\) 4954.25 + 15247.6i 0.372849 + 1.14751i
\(562\) −836.932 271.936i −0.0628182 0.0204109i
\(563\) 10531.5 + 3421.90i 0.788367 + 0.256156i 0.675409 0.737444i \(-0.263967\pi\)
0.112959 + 0.993600i \(0.463967\pi\)
\(564\) 2308.47 + 7104.74i 0.172348 + 0.530432i
\(565\) 0 0
\(566\) −2246.83 + 6915.03i −0.166857 + 0.513534i
\(567\) 8844.85 12173.9i 0.655113 0.901685i
\(568\) 4907.36i 0.362515i
\(569\) −21829.5 15860.1i −1.60833 1.16852i −0.868432 0.495809i \(-0.834872\pi\)
−0.739903 0.672714i \(-0.765128\pi\)
\(570\) 0 0
\(571\) −10821.3 + 7862.17i −0.793099 + 0.576220i −0.908881 0.417055i \(-0.863062\pi\)
0.115783 + 0.993275i \(0.463062\pi\)
\(572\) 2062.24 + 2838.43i 0.150746 + 0.207484i
\(573\) 16585.7 5389.03i 1.20921 0.392897i
\(574\) 1343.20 0.0976730
\(575\) 0 0
\(576\) −490.198 −0.0354599
\(577\) 9915.34 3221.69i 0.715391 0.232445i 0.0713674 0.997450i \(-0.477264\pi\)
0.644024 + 0.765005i \(0.277264\pi\)
\(578\) −2202.05 3030.87i −0.158466 0.218110i
\(579\) 6906.52 5017.88i 0.495726 0.360166i
\(580\) 0 0
\(581\) 11872.8 + 8626.10i 0.847792 + 0.615957i
\(582\) 5747.57i 0.409355i
\(583\) 136.081 187.299i 0.00966706 0.0133056i
\(584\) 2244.83 6908.87i 0.159061 0.489539i
\(585\) 0 0
\(586\) 4351.22 + 13391.7i 0.306736 + 0.944036i
\(587\) 12717.0 + 4132.00i 0.894184 + 0.290538i 0.719835 0.694146i \(-0.244218\pi\)
0.174350 + 0.984684i \(0.444218\pi\)
\(588\) −11892.9 3864.24i −0.834108 0.271018i
\(589\) 269.189 + 828.479i 0.0188315 + 0.0579573i
\(590\) 0 0
\(591\) 2743.15 8442.54i 0.190927 0.587614i
\(592\) 2159.55 2972.36i 0.149927 0.206357i
\(593\) 2768.13i 0.191693i −0.995396 0.0958463i \(-0.969444\pi\)
0.995396 0.0958463i \(-0.0305557\pi\)
\(594\) −10914.2 7929.61i −0.753895 0.547737i
\(595\) 0 0
\(596\) 5923.46 4303.65i 0.407105 0.295779i
\(597\) −2547.50 3506.34i −0.174644 0.240377i
\(598\) −7329.93 + 2381.64i −0.501243 + 0.162864i
\(599\) −4098.71 −0.279580 −0.139790 0.990181i \(-0.544643\pi\)
−0.139790 + 0.990181i \(0.544643\pi\)
\(600\) 0 0
\(601\) −17523.5 −1.18935 −0.594673 0.803968i \(-0.702718\pi\)
−0.594673 + 0.803968i \(0.702718\pi\)
\(602\) −2276.54 + 739.693i −0.154128 + 0.0500791i
\(603\) −3507.85 4828.15i −0.236900 0.326065i
\(604\) −5130.87 + 3727.79i −0.345649 + 0.251129i
\(605\) 0 0
\(606\) 4871.21 + 3539.14i 0.326533 + 0.237240i
\(607\) 14982.0i 1.00182i −0.865501 0.500908i \(-0.833000\pi\)
0.865501 0.500908i \(-0.167000\pi\)
\(608\) 194.439 267.622i 0.0129696 0.0178512i
\(609\) −8687.92 + 26738.7i −0.578083 + 1.77916i
\(610\) 0 0
\(611\) −2601.02 8005.10i −0.172219 0.530036i
\(612\) 2400.33 + 779.914i 0.158542 + 0.0515133i
\(613\) −28387.1 9223.52i −1.87038 0.607723i −0.991400 0.130864i \(-0.958225\pi\)
−0.878980 0.476859i \(-0.841775\pi\)
\(614\) −2463.17 7580.87i −0.161898 0.498272i
\(615\) 0 0
\(616\) −3551.50 + 10930.4i −0.232295 + 0.714932i
\(617\) −11272.8 + 15515.7i −0.735538 + 1.01238i 0.263325 + 0.964707i \(0.415181\pi\)
−0.998863 + 0.0476742i \(0.984819\pi\)
\(618\) 33.9358i 0.00220890i
\(619\) 12120.6 + 8806.12i 0.787023 + 0.571806i 0.907079 0.420961i \(-0.138307\pi\)
−0.120055 + 0.992767i \(0.538307\pi\)
\(620\) 0 0
\(621\) 23975.3 17419.0i 1.54927 1.12561i
\(622\) 7549.53 + 10391.0i 0.486670 + 0.669843i
\(623\) −26675.2 + 8667.29i −1.71544 + 0.557380i
\(624\) −1394.66 −0.0894731
\(625\) 0 0
\(626\) −13863.9 −0.885164
\(627\) 1913.39 621.698i 0.121871 0.0395984i
\(628\) 3610.20 + 4969.01i 0.229399 + 0.315741i
\(629\) −15303.6 + 11118.7i −0.970103 + 0.704821i
\(630\) 0 0
\(631\) −15151.7 11008.3i −0.955908 0.694508i −0.00371118 0.999993i \(-0.501181\pi\)
−0.952197 + 0.305485i \(0.901181\pi\)
\(632\) 4945.26i 0.311253i
\(633\) −11200.4 + 15416.0i −0.703280 + 0.967982i
\(634\) −4084.24 + 12570.0i −0.255846 + 0.787412i
\(635\) 0 0
\(636\) 28.4387 + 87.5253i 0.00177306 + 0.00545692i
\(637\) 13400.1 + 4353.94i 0.833485 + 0.270816i
\(638\) 16576.4 + 5385.98i 1.02863 + 0.334221i
\(639\) 1451.89 + 4468.44i 0.0898837 + 0.276634i
\(640\) 0 0
\(641\) −5889.14 + 18124.9i −0.362881 + 1.11683i 0.588416 + 0.808558i \(0.299752\pi\)
−0.951297 + 0.308275i \(0.900248\pi\)
\(642\) −5407.16 + 7442.32i −0.332404 + 0.457515i
\(643\) 10953.1i 0.671768i −0.941903 0.335884i \(-0.890965\pi\)
0.941903 0.335884i \(-0.109035\pi\)
\(644\) −20424.9 14839.5i −1.24977 0.908012i
\(645\) 0 0
\(646\) −1377.89 + 1001.10i −0.0839201 + 0.0609715i
\(647\) −6308.42 8682.80i −0.383323 0.527598i 0.573138 0.819459i \(-0.305726\pi\)
−0.956461 + 0.291860i \(0.905726\pi\)
\(648\) 3526.76 1145.91i 0.213803 0.0694688i
\(649\) 2295.60 0.138845
\(650\) 0 0
\(651\) 12030.6 0.724298
\(652\) −6374.75 + 2071.28i −0.382906 + 0.124414i
\(653\) 4644.00 + 6391.92i 0.278306 + 0.383055i 0.925172 0.379548i \(-0.123921\pi\)
−0.646866 + 0.762604i \(0.723921\pi\)
\(654\) 8201.42 5958.68i 0.490368 0.356274i
\(655\) 0 0
\(656\) 267.792 + 194.562i 0.0159383 + 0.0115798i
\(657\) 6955.08i 0.413004i
\(658\) 16206.4 22306.2i 0.960171 1.32156i
\(659\) 4537.13 13963.8i 0.268196 0.825423i −0.722743 0.691116i \(-0.757119\pi\)
0.990940 0.134307i \(-0.0428808\pi\)
\(660\) 0 0
\(661\) −3412.01 10501.1i −0.200774 0.617919i −0.999860 0.0167028i \(-0.994683\pi\)
0.799086 0.601216i \(-0.205317\pi\)
\(662\) 7131.36 + 2317.12i 0.418683 + 0.136038i
\(663\) 6829.18 + 2218.94i 0.400035 + 0.129979i
\(664\) 1117.57 + 3439.54i 0.0653166 + 0.201024i
\(665\) 0 0
\(666\) 1087.00 3345.43i 0.0632436 0.194644i
\(667\) −22504.7 + 30975.1i −1.30643 + 1.79814i
\(668\) 8232.18i 0.476815i
\(669\) 18495.0 + 13437.4i 1.06885 + 0.776563i
\(670\) 0 0
\(671\) −4446.64 + 3230.68i −0.255828 + 0.185870i
\(672\) −2685.32 3696.03i −0.154150 0.212169i
\(673\) −13104.2 + 4257.81i −0.750564 + 0.243873i −0.659224 0.751947i \(-0.729115\pi\)
−0.0913399 + 0.995820i \(0.529115\pi\)
\(674\) −632.521 −0.0361481
\(675\) 0 0
\(676\) −7216.60 −0.410594
\(677\) 6144.11 1996.34i 0.348799 0.113332i −0.129377 0.991595i \(-0.541298\pi\)
0.478177 + 0.878264i \(0.341298\pi\)
\(678\) 702.424 + 966.804i 0.0397882 + 0.0547638i
\(679\) 17162.0 12468.9i 0.969983 0.704734i
\(680\) 0 0
\(681\) 13323.2 + 9679.90i 0.749703 + 0.544691i
\(682\) 7458.27i 0.418756i
\(683\) −6638.66 + 9137.33i −0.371920 + 0.511904i −0.953421 0.301641i \(-0.902465\pi\)
0.581501 + 0.813545i \(0.302465\pi\)
\(684\) 97.8697 301.212i 0.00547097 0.0168379i
\(685\) 0 0
\(686\) 7380.60 + 22715.2i 0.410777 + 1.26424i
\(687\) −17587.5 5714.53i −0.976718 0.317355i
\(688\) −561.013 182.284i −0.0310878 0.0101010i
\(689\) −32.0426 98.6170i −0.00177174 0.00545284i
\(690\) 0 0
\(691\) 828.470 2549.77i 0.0456100 0.140373i −0.925658 0.378361i \(-0.876488\pi\)
0.971268 + 0.237988i \(0.0764878\pi\)
\(692\) −10133.5 + 13947.6i −0.556675 + 0.766197i
\(693\) 11003.5i 0.603158i
\(694\) 9596.70 + 6972.41i 0.524907 + 0.381367i
\(695\) 0 0
\(696\) −5605.17 + 4072.39i −0.305264 + 0.221787i
\(697\) −1001.73 1378.76i −0.0544380 0.0749275i
\(698\) −15812.6 + 5137.82i −0.857471 + 0.278609i
\(699\) 27332.4 1.47898
\(700\) 0 0
\(701\) −34520.6 −1.85995 −0.929976 0.367620i \(-0.880173\pi\)
−0.929976 + 0.367620i \(0.880173\pi\)
\(702\) −5746.54 + 1867.16i −0.308959 + 0.100387i
\(703\) 1395.26 + 1920.42i 0.0748555 + 0.103030i
\(704\) −2291.31 + 1664.74i −0.122666 + 0.0891224i
\(705\) 0 0
\(706\) 5831.63 + 4236.93i 0.310873 + 0.225862i
\(707\) 22223.1i 1.18216i
\(708\) −536.369 + 738.248i −0.0284717 + 0.0391879i
\(709\) 6361.25 19577.9i 0.336956 1.03704i −0.628794 0.777572i \(-0.716451\pi\)
0.965751 0.259472i \(-0.0835487\pi\)
\(710\) 0 0
\(711\) 1463.10 + 4502.95i 0.0771736 + 0.237516i
\(712\) −6573.62 2135.90i −0.346007 0.112424i
\(713\) 15581.8 + 5062.82i 0.818432 + 0.265925i
\(714\) 7268.64 + 22370.6i 0.380983 + 1.17255i
\(715\) 0 0
\(716\) −3365.27 + 10357.2i −0.175651 + 0.540597i
\(717\) 2198.88 3026.50i 0.114531 0.157639i
\(718\) 16072.7i 0.835417i
\(719\) −8049.33 5848.18i −0.417510 0.303339i 0.359125 0.933289i \(-0.383075\pi\)
−0.776635 + 0.629951i \(0.783075\pi\)
\(720\) 0 0
\(721\) −101.331 + 73.6213i −0.00523407 + 0.00380277i
\(722\) −7937.61 10925.2i −0.409151 0.563149i
\(723\) 19724.8 6408.98i 1.01463 0.329672i
\(724\) 5221.50 0.268033
\(725\) 0 0
\(726\) −5518.08 −0.282087
\(727\) −9111.21 + 2960.41i −0.464809 + 0.151026i −0.532053 0.846711i \(-0.678579\pi\)
0.0672442 + 0.997737i \(0.478579\pi\)
\(728\) 3025.62 + 4164.41i 0.154034 + 0.212010i
\(729\) 17514.7 12725.2i 0.889840 0.646506i
\(730\) 0 0
\(731\) 2457.07 + 1785.16i 0.124320 + 0.0903238i
\(732\) 2184.86i 0.110321i
\(733\) −18669.8 + 25696.8i −0.940772 + 1.29486i 0.0147351 + 0.999891i \(0.495310\pi\)
−0.955507 + 0.294970i \(0.904690\pi\)
\(734\) −8034.53 + 24727.7i −0.404032 + 1.24348i
\(735\) 0 0
\(736\) −1922.57 5917.06i −0.0962865 0.296339i
\(737\) −32793.3 10655.2i −1.63902 0.532549i
\(738\) 301.403 + 97.9319i 0.0150336 + 0.00488472i
\(739\) −4249.28 13077.9i −0.211519 0.650987i −0.999382 0.0351378i \(-0.988813\pi\)
0.787864 0.615849i \(-0.211187\pi\)
\(740\) 0 0
\(741\) 278.449 856.979i 0.0138044 0.0424857i
\(742\) 199.651 274.797i 0.00987795 0.0135958i
\(743\) 6312.16i 0.311670i −0.987783 0.155835i \(-0.950193\pi\)
0.987783 0.155835i \(-0.0498068\pi\)
\(744\) 2398.52 + 1742.63i 0.118191 + 0.0858708i
\(745\) 0 0
\(746\) 11298.4 8208.78i 0.554510 0.402875i
\(747\) 2035.23 + 2801.26i 0.0996857 + 0.137206i
\(748\) 13868.4 4506.11i 0.677913 0.220267i
\(749\) 33952.9 1.65636
\(750\) 0 0
\(751\) 40114.6 1.94914 0.974569 0.224087i \(-0.0719400\pi\)
0.974569 + 0.224087i \(0.0719400\pi\)
\(752\) 6462.09 2099.66i 0.313362 0.101817i
\(753\) 1602.33 + 2205.42i 0.0775459 + 0.106733i
\(754\) 6315.49 4588.47i 0.305035 0.221621i
\(755\) 0 0
\(756\) −16012.7 11633.9i −0.770341 0.559686i
\(757\) 8151.37i 0.391369i 0.980667 + 0.195685i \(0.0626929\pi\)
−0.980667 + 0.195685i \(0.937307\pi\)
\(758\) −1077.50 + 1483.05i −0.0516312 + 0.0710643i
\(759\) 11692.7 35986.4i 0.559181 1.72098i
\(760\) 0 0
\(761\) −1730.96 5327.36i −0.0824538 0.253767i 0.901328 0.433138i \(-0.142594\pi\)
−0.983781 + 0.179371i \(0.942594\pi\)
\(762\) −13689.1 4447.87i −0.650793 0.211456i
\(763\) −35584.8 11562.2i −1.68841 0.548597i
\(764\) −4901.56 15085.5i −0.232110 0.714362i
\(765\) 0 0
\(766\) 346.270 1065.71i 0.0163332 0.0502684i
\(767\) 604.341 831.804i 0.0284504 0.0391587i
\(768\) 1125.84i 0.0528973i
\(769\) 2973.61 + 2160.45i 0.139442 + 0.101311i 0.655320 0.755352i \(-0.272534\pi\)
−0.515877 + 0.856662i \(0.672534\pi\)
\(770\) 0 0
\(771\) −10696.9 + 7771.73i −0.499661 + 0.363025i
\(772\) −4563.99 6281.80i −0.212774 0.292859i
\(773\) 6444.75 2094.03i 0.299873 0.0974345i −0.155216 0.987881i \(-0.549607\pi\)
0.455089 + 0.890446i \(0.349607\pi\)
\(774\) −564.766 −0.0262275
\(775\) 0 0
\(776\) 5227.68 0.241833
\(777\) 31178.7 10130.6i 1.43955 0.467738i
\(778\) 3489.83 + 4803.33i 0.160818 + 0.221347i
\(779\) −173.018 + 125.705i −0.00795766 + 0.00578158i
\(780\) 0 0
\(781\) 21961.6 + 15956.0i 1.00621 + 0.731051i
\(782\) 32032.6i 1.46481i
\(783\) −17643.3 + 24283.9i −0.805263 + 1.10835i
\(784\) −3514.70 + 10817.1i −0.160109 + 0.492764i
\(785\) 0 0
\(786\) 2939.45 + 9046.69i 0.133393 + 0.410540i
\(787\) −4951.65 1608.89i −0.224278 0.0728725i 0.194722 0.980858i \(-0.437619\pi\)
−0.419001 + 0.907986i \(0.637619\pi\)
\(788\) −7678.87 2495.02i −0.347143 0.112794i
\(789\) 655.588 + 2017.69i 0.0295812 + 0.0910416i
\(790\) 0 0
\(791\) 1362.98 4194.82i 0.0612668 0.188560i
\(792\) −1593.85 + 2193.75i −0.0715089 + 0.0984235i
\(793\) 2461.74i 0.110238i
\(794\) −10230.8 7433.11i −0.457276 0.332231i
\(795\) 0 0
\(796\) −3189.17 + 2317.07i −0.142007 + 0.103174i
\(797\) −19082.9 26265.4i −0.848121 1.16734i −0.984274 0.176650i \(-0.943474\pi\)
0.136153 0.990688i \(-0.456526\pi\)
\(798\) 2807.23 912.125i 0.124530 0.0404623i
\(799\) −34983.2 −1.54896
\(800\) 0 0
\(801\) −6617.60 −0.291912
\(802\) −5722.85 + 1859.47i −0.251971 + 0.0818703i
\(803\) −23619.8 32509.9i −1.03801 1.42870i
\(804\) 11088.8 8056.48i 0.486408 0.353396i
\(805\) 0 0
\(806\) −2702.48 1963.47i −0.118103 0.0858067i
\(807\) 22883.5i 0.998187i
\(808\) 3219.01 4430.58i 0.140154 0.192905i
\(809\) −4880.74 + 15021.4i −0.212111 + 0.652811i 0.787235 + 0.616653i \(0.211512\pi\)
−0.999346 + 0.0361575i \(0.988488\pi\)
\(810\) 0 0
\(811\) 1468.40 + 4519.27i 0.0635789 + 0.195676i 0.977800 0.209540i \(-0.0671965\pi\)
−0.914221 + 0.405215i \(0.867197\pi\)
\(812\) 24320.0 + 7902.06i 1.05107 + 0.341512i
\(813\) 9049.25 + 2940.28i 0.390370 + 0.126839i
\(814\) −6280.34 19328.9i −0.270425 0.832282i
\(815\) 0 0
\(816\) −1791.23 + 5512.83i −0.0768450 + 0.236504i
\(817\) 224.016 308.332i 0.00959282 0.0132034i
\(818\) 22472.5i 0.960555i
\(819\) 3987.09 + 2896.79i 0.170110 + 0.123592i
\(820\) 0 0
\(821\) −33068.5 + 24025.6i −1.40572 + 1.02132i −0.411794 + 0.911277i \(0.635098\pi\)
−0.993927 + 0.110039i \(0.964902\pi\)
\(822\) 11983.5 + 16493.8i 0.508480 + 0.699863i
\(823\) −14439.2 + 4691.60i −0.611568 + 0.198710i −0.598393 0.801203i \(-0.704194\pi\)
−0.0131750 + 0.999913i \(0.504194\pi\)
\(824\) −30.8661 −0.00130494
\(825\) 0 0
\(826\) 3367.99 0.141874
\(827\) −15044.7 + 4888.31i −0.632593 + 0.205542i −0.607723 0.794149i \(-0.707917\pi\)
−0.0248693 + 0.999691i \(0.507917\pi\)
\(828\) −3501.23 4819.02i −0.146952 0.202262i
\(829\) 1.67554 1.21735i 7.01976e−5 5.10015e-5i −0.587750 0.809042i \(-0.699986\pi\)
0.587820 + 0.808991i \(0.299986\pi\)
\(830\) 0 0
\(831\) −17758.5 12902.3i −0.741317 0.538598i
\(832\) 1268.51i 0.0528578i
\(833\) 34420.6 47375.8i 1.43169 1.97056i
\(834\) −2882.87 + 8872.55i −0.119695 + 0.368383i
\(835\) 0 0
\(836\) −565.462 1740.31i −0.0233935 0.0719976i
\(837\) 12215.8 + 3969.17i 0.504470 + 0.163912i
\(838\) 8486.82 + 2757.53i 0.349848 + 0.113672i
\(839\) −5938.00 18275.3i −0.244341 0.752005i −0.995744 0.0921615i \(-0.970622\pi\)
0.751403 0.659844i \(-0.229378\pi\)
\(840\) 0 0
\(841\) 4447.16 13686.9i 0.182343 0.561193i
\(842\) 6709.49 9234.81i 0.274613 0.377972i
\(843\) 1935.04i 0.0790584i
\(844\) 14021.6 + 10187.3i 0.571852 + 0.415475i
\(845\) 0 0
\(846\) 5262.91 3823.73i 0.213880 0.155393i
\(847\) 11971.1 + 16476.8i 0.485633 + 0.668416i
\(848\) 79.6082 25.8663i 0.00322377 0.00104747i
\(849\) −15988.0 −0.646296
\(850\) 0 0
\(851\) 44645.0 1.79837
\(852\) −10262.7 + 3334.54i −0.412668 + 0.134084i
\(853\) 14792.5 + 20360.1i 0.593769 + 0.817253i 0.995120 0.0986714i \(-0.0314593\pi\)
−0.401351 + 0.915924i \(0.631459\pi\)
\(854\) −6523.90 + 4739.89i −0.261409 + 0.189925i
\(855\) 0 0
\(856\) 6769.13 + 4918.06i 0.270285 + 0.196374i
\(857\) 32539.4i 1.29699i −0.761217 0.648497i \(-0.775398\pi\)
0.761217 0.648497i \(-0.224602\pi\)
\(858\) −4534.67 + 6241.43i −0.180432 + 0.248344i
\(859\) −14076.7 + 43323.7i −0.559129 + 1.72082i 0.125654 + 0.992074i \(0.459897\pi\)
−0.684783 + 0.728747i \(0.740103\pi\)
\(860\) 0 0
\(861\) 912.704 + 2809.02i 0.0361265 + 0.111186i
\(862\) 15254.1 + 4956.37i 0.602735 + 0.195841i
\(863\) 3800.08 + 1234.72i 0.149892 + 0.0487027i 0.383002 0.923748i \(-0.374890\pi\)
−0.233110 + 0.972450i \(0.574890\pi\)
\(864\) −1507.26 4638.87i −0.0593496 0.182659i
\(865\) 0 0
\(866\) 3574.25 11000.4i 0.140252 0.431650i
\(867\) 4842.10 6664.58i 0.189673 0.261062i
\(868\) 10942.4i 0.427891i
\(869\) 22131.2 + 16079.2i 0.863922 + 0.627676i
\(870\) 0 0
\(871\) −12494.0 + 9077.45i −0.486044 + 0.353132i
\(872\) −5419.69 7459.57i −0.210475 0.289694i
\(873\) 4760.11 1546.65i 0.184542 0.0599614i
\(874\) 4019.70 0.155570
\(875\) 0 0
\(876\) 15973.7 0.616098
\(877\) −2331.16 + 757.438i −0.0897577 + 0.0291641i −0.353552 0.935415i \(-0.615026\pi\)
0.263794 + 0.964579i \(0.415026\pi\)
\(878\) −13811.9 19010.5i −0.530899 0.730720i
\(879\) −25049.1 + 18199.2i −0.961189 + 0.698345i
\(880\) 0 0
\(881\) −28818.0 20937.5i −1.10205 0.800684i −0.120654 0.992695i \(-0.538499\pi\)
−0.981393 + 0.192011i \(0.938499\pi\)
\(882\) 10889.5i 0.415724i
\(883\) 12345.8 16992.6i 0.470521 0.647617i −0.506128 0.862459i \(-0.668924\pi\)
0.976649 + 0.214842i \(0.0689236\pi\)
\(884\) 2018.22 6211.45i 0.0767875 0.236328i
\(885\) 0 0
\(886\) 2205.45 + 6787.69i 0.0836272 + 0.257378i
\(887\) −11581.2 3762.96i −0.438398 0.142444i 0.0814984 0.996673i \(-0.474029\pi\)
−0.519896 + 0.854229i \(0.674029\pi\)
\(888\) 7683.44 + 2496.50i 0.290360 + 0.0943435i
\(889\) 16416.4 + 50524.5i 0.619335 + 1.90612i
\(890\) 0 0
\(891\) 6338.83 19508.9i 0.238338 0.733528i
\(892\) 12221.9 16822.1i 0.458768 0.631440i
\(893\) 4389.96i 0.164507i
\(894\) 13025.1 + 9463.29i 0.487276 + 0.354027i
\(895\) 0 0
\(896\) −3361.71 + 2442.42i −0.125342 + 0.0910666i
\(897\) −9961.34 13710.6i −0.370791 0.510350i
\(898\) 27331.7 8880.60i 1.01567 0.330011i
\(899\) −16594.6 −0.615640
\(900\) 0 0
\(901\) −430.967 −0.0159352
\(902\) 1741.42 565.821i 0.0642826 0.0208867i
\(903\) −3093.81 4258.26i −0.114015 0.156928i
\(904\) 879.352 638.887i 0.0323527 0.0235056i
\(905\) 0 0
\(906\) −11282.3 8197.04i −0.413718 0.300583i
\(907\) 33352.4i 1.22100i 0.792015 + 0.610501i \(0.209032\pi\)
−0.792015 + 0.610501i \(0.790968\pi\)
\(908\) 8804.31 12118.1i 0.321786 0.442900i
\(909\) 1620.27 4986.68i 0.0591210 0.181956i
\(910\) 0 0
\(911\) 5604.85 + 17249.9i 0.203839 + 0.627350i 0.999759 + 0.0219494i \(0.00698727\pi\)
−0.795921 + 0.605401i \(0.793013\pi\)
\(912\) 691.793 + 224.777i 0.0251179 + 0.00816131i
\(913\) 19026.4 + 6182.06i 0.689685 + 0.224092i
\(914\) 248.495 + 764.789i 0.00899287 + 0.0276772i
\(915\) 0 0
\(916\) −5197.62 + 15996.6i −0.187483 + 0.577013i
\(917\) 20636.1 28403.2i 0.743147 1.02285i
\(918\) 25113.0i 0.902889i
\(919\) −25633.4 18623.8i −0.920096 0.668489i 0.0234522 0.999725i \(-0.492534\pi\)
−0.943548 + 0.331236i \(0.892534\pi\)
\(920\) 0 0
\(921\) 14180.0 10302.4i 0.507325 0.368593i
\(922\) 8491.02 + 11686.9i 0.303294 + 0.417448i
\(923\) 11563.2 3757.12i 0.412360 0.133984i
\(924\) −25271.7 −0.899761
\(925\) 0 0
\(926\) −6554.13 −0.232594
\(927\) −28.1054 + 9.13201i −0.000995797 + 0.000323554i
\(928\) 3704.03 + 5098.16i 0.131024 + 0.180340i
\(929\) −22563.0 + 16393.0i −0.796844 + 0.578941i −0.909987 0.414638i \(-0.863908\pi\)
0.113143 + 0.993579i \(0.463908\pi\)
\(930\) 0 0
\(931\) −5945.09 4319.36i −0.209283 0.152053i
\(932\) 24860.1i 0.873732i
\(933\) −16600.7 + 22848.8i −0.582509 + 0.801755i
\(934\) 3574.71 11001.8i 0.125234 0.385429i
\(935\) 0 0
\(936\) 375.300 + 1155.05i 0.0131058 + 0.0403356i
\(937\) 38777.9 + 12599.7i 1.35200 + 0.439290i 0.893363 0.449336i \(-0.148339\pi\)
0.458633 + 0.888626i \(0.348339\pi\)
\(938\) −48112.7 15632.8i −1.67477 0.544166i
\(939\) −9420.48 28993.3i −0.327397 1.00762i
\(940\) 0 0
\(941\) −7635.56 + 23499.8i −0.264519 + 0.814105i 0.727285 + 0.686335i \(0.240782\pi\)
−0.991804 + 0.127769i \(0.959218\pi\)
\(942\) −7938.46 + 10926.4i −0.274574 + 0.377919i
\(943\) 4022.25i 0.138900i
\(944\) 671.470 + 487.852i 0.0231509 + 0.0168201i
\(945\) 0 0
\(946\) −2639.86 + 1917.97i −0.0907287 + 0.0659183i
\(947\) 19473.6 + 26803.1i 0.668223 + 0.919730i 0.999718 0.0237270i \(-0.00755325\pi\)
−0.331496 + 0.943457i \(0.607553\pi\)
\(948\) −10341.9 + 3360.29i −0.354314 + 0.115124i
\(949\) −17998.0 −0.615638
\(950\) 0 0
\(951\) −29062.6 −0.990978
\(952\) 20347.0 6611.15i 0.692701 0.225072i
\(953\) −18998.2 26148.8i −0.645763 0.888816i 0.353144 0.935569i \(-0.385113\pi\)
−0.998906 + 0.0467529i \(0.985113\pi\)
\(954\) 64.8352 47.1055i 0.00220033 0.00159864i
\(955\) 0 0
\(956\) −2752.74 1999.98i −0.0931277 0.0676612i
\(957\) 38325.5i 1.29455i
\(958\) 2755.29 3792.33i 0.0929221 0.127896i
\(959\) 23252.6 71564.3i 0.782969 2.40973i
\(960\) 0 0
\(961\) −7011.58 21579.4i −0.235359 0.724361i
\(962\) −8657.13 2812.87i −0.290143 0.0942730i
\(963\) 7618.74 + 2475.48i 0.254943 + 0.0828361i
\(964\) −5829.26 17940.6i −0.194759 0.599407i
\(965\) 0 0
\(966\) 17155.0 52797.6i 0.571379 1.75852i
\(967\) −7523.54 + 10355.3i −0.250197 + 0.344367i −0.915580 0.402135i \(-0.868268\pi\)
0.665383 + 0.746502i \(0.268268\pi\)
\(968\) 5018.94i 0.166648i
\(969\) −3029.84 2201.31i −0.100446 0.0729786i
\(970\) 0 0
\(971\) 30611.3 22240.4i 1.01170 0.735046i 0.0471385 0.998888i \(-0.484990\pi\)
0.964566 + 0.263842i \(0.0849898\pi\)
\(972\) −4883.20 6721.15i −0.161141 0.221791i
\(973\) 32747.3 10640.2i 1.07896 0.350576i
\(974\) −23527.9 −0.774006
\(975\) 0 0
\(976\) −1987.23 −0.0651738
\(977\) 28089.5 9126.82i 0.919817 0.298867i 0.189425 0.981895i \(-0.439337\pi\)
0.730392 + 0.683028i \(0.239337\pi\)
\(978\) −8663.25 11923.9i −0.283252 0.389863i
\(979\) −30932.4 + 22473.7i −1.00981 + 0.733669i
\(980\) 0 0
\(981\) −7141.93 5188.91i −0.232441 0.168878i
\(982\) 21996.0i 0.714788i
\(983\) −624.445 + 859.475i −0.0202611 + 0.0278871i −0.819027 0.573754i \(-0.805486\pi\)
0.798766 + 0.601641i \(0.205486\pi\)
\(984\) −224.920 + 692.232i −0.00728677 + 0.0224264i
\(985\) 0 0
\(986\) −10026.1 30857.1i −0.323829 0.996642i
\(987\) 57660.8 + 18735.1i 1.85954 + 0.604200i
\(988\) −779.461 253.262i −0.0250992 0.00815521i
\(989\) −2215.03 6817.15i −0.0712171 0.219184i
\(990\) 0 0
\(991\) 15803.1 48637.0i 0.506561 1.55904i −0.291568 0.956550i \(-0.594177\pi\)
0.798130 0.602486i \(-0.205823\pi\)
\(992\) 1585.00 2181.57i 0.0507297 0.0698234i
\(993\) 16488.1i 0.526924i
\(994\) 32220.9 + 23409.9i 1.02816 + 0.746998i
\(995\) 0 0
\(996\) −6433.64 + 4674.31i −0.204676 + 0.148706i
\(997\) −27686.5 38107.1i −0.879477 1.21050i −0.976565 0.215221i \(-0.930953\pi\)
0.0970879 0.995276i \(-0.469047\pi\)
\(998\) −23982.0 + 7792.21i −0.760657 + 0.247152i
\(999\) 35000.9 1.10849
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 250.4.e.c.99.7 32
5.2 odd 4 50.4.d.b.31.3 yes 16
5.3 odd 4 250.4.d.b.151.2 16
5.4 even 2 inner 250.4.e.c.99.2 32
25.2 odd 20 1250.4.a.j.1.3 8
25.3 odd 20 250.4.d.b.101.2 16
25.4 even 10 inner 250.4.e.c.149.7 32
25.21 even 5 inner 250.4.e.c.149.2 32
25.22 odd 20 50.4.d.b.21.3 16
25.23 odd 20 1250.4.a.g.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.4.d.b.21.3 16 25.22 odd 20
50.4.d.b.31.3 yes 16 5.2 odd 4
250.4.d.b.101.2 16 25.3 odd 20
250.4.d.b.151.2 16 5.3 odd 4
250.4.e.c.99.2 32 5.4 even 2 inner
250.4.e.c.99.7 32 1.1 even 1 trivial
250.4.e.c.149.2 32 25.21 even 5 inner
250.4.e.c.149.7 32 25.4 even 10 inner
1250.4.a.g.1.6 8 25.23 odd 20
1250.4.a.j.1.3 8 25.2 odd 20