Properties

Label 252.2.bf.d
Level 252252
Weight 22
Character orbit 252.bf
Analytic conductor 2.0122.012
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,2,Mod(19,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 252=22327 252 = 2^{2} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 252.bf (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,3,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.012230130942.01223013094
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{-7})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q2+(β2+β1+1)q4+(β22)q5+(β2+2β11)q7+(β3β2β1+3)q8+(2β3+β2+β11)q10++(7β2+7β17)q98+O(q100) q + \beta_{3} q^{2} + ( - \beta_{2} + \beta_1 + 1) q^{4} + (\beta_{2} - 2) q^{5} + (\beta_{2} + 2 \beta_1 - 1) q^{7} + (\beta_{3} - \beta_{2} - \beta_1 + 3) q^{8} + ( - 2 \beta_{3} + \beta_{2} + \beta_1 - 1) q^{10}+ \cdots + (7 \beta_{2} + 7 \beta_1 - 7) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q2+3q46q5+10q83q10+14q14q1624q17+14q224q25+6q26+7q2820q29+11q3215q40+7q4414q46+14q49+7q98+O(q100) 4 q + q^{2} + 3 q^{4} - 6 q^{5} + 10 q^{8} - 3 q^{10} + 14 q^{14} - q^{16} - 24 q^{17} + 14 q^{22} - 4 q^{25} + 6 q^{26} + 7 q^{28} - 20 q^{29} + 11 q^{32} - 15 q^{40} + 7 q^{44} - 14 q^{46} + 14 q^{49}+ \cdots - 7 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+ν2ν2)/2 ( \nu^{3} + \nu^{2} - \nu - 2 ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3+ν2+ν+2)/2 ( -\nu^{3} + \nu^{2} + \nu + 2 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2 \beta_{3} + \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β3+β2+β1+2 -\beta_{3} + \beta_{2} + \beta _1 + 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/252Z)×\left(\mathbb{Z}/252\mathbb{Z}\right)^\times.

nn 2929 7373 127127
χ(n)\chi(n) 11 β2\beta_{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−0.895644 + 1.09445i
1.39564 0.228425i
−0.895644 1.09445i
1.39564 + 0.228425i
−0.895644 1.09445i 0 −0.395644 + 1.96048i −1.50000 0.866025i 0 −2.29129 + 1.32288i 2.50000 1.32288i 0 0.395644 + 2.41733i
19.2 1.39564 + 0.228425i 0 1.89564 + 0.637600i −1.50000 0.866025i 0 2.29129 1.32288i 2.50000 + 1.32288i 0 −1.89564 1.55130i
199.1 −0.895644 + 1.09445i 0 −0.395644 1.96048i −1.50000 + 0.866025i 0 −2.29129 1.32288i 2.50000 + 1.32288i 0 0.395644 2.41733i
199.2 1.39564 0.228425i 0 1.89564 0.637600i −1.50000 + 0.866025i 0 2.29129 + 1.32288i 2.50000 1.32288i 0 −1.89564 + 1.55130i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.d odd 6 1 inner
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.2.bf.d yes 4
3.b odd 2 1 252.2.bf.a 4
4.b odd 2 1 inner 252.2.bf.d yes 4
7.c even 3 1 1764.2.b.b 4
7.d odd 6 1 inner 252.2.bf.d yes 4
7.d odd 6 1 1764.2.b.b 4
12.b even 2 1 252.2.bf.a 4
21.g even 6 1 252.2.bf.a 4
21.g even 6 1 1764.2.b.h 4
21.h odd 6 1 1764.2.b.h 4
28.f even 6 1 inner 252.2.bf.d yes 4
28.f even 6 1 1764.2.b.b 4
28.g odd 6 1 1764.2.b.b 4
84.j odd 6 1 252.2.bf.a 4
84.j odd 6 1 1764.2.b.h 4
84.n even 6 1 1764.2.b.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.bf.a 4 3.b odd 2 1
252.2.bf.a 4 12.b even 2 1
252.2.bf.a 4 21.g even 6 1
252.2.bf.a 4 84.j odd 6 1
252.2.bf.d yes 4 1.a even 1 1 trivial
252.2.bf.d yes 4 4.b odd 2 1 inner
252.2.bf.d yes 4 7.d odd 6 1 inner
252.2.bf.d yes 4 28.f even 6 1 inner
1764.2.b.b 4 7.c even 3 1
1764.2.b.b 4 7.d odd 6 1
1764.2.b.b 4 28.f even 6 1
1764.2.b.b 4 28.g odd 6 1
1764.2.b.h 4 21.g even 6 1
1764.2.b.h 4 21.h odd 6 1
1764.2.b.h 4 84.j odd 6 1
1764.2.b.h 4 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(252,[χ])S_{2}^{\mathrm{new}}(252, [\chi]):

T52+3T5+3 T_{5}^{2} + 3T_{5} + 3 Copy content Toggle raw display
T1147T112+49 T_{11}^{4} - 7T_{11}^{2} + 49 Copy content Toggle raw display
T19 T_{19} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T3T2++4 T^{4} - T^{3} - T^{2} + \cdots + 4 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+3T+3)2 (T^{2} + 3 T + 3)^{2} Copy content Toggle raw display
77 T47T2+49 T^{4} - 7T^{2} + 49 Copy content Toggle raw display
1111 T47T2+49 T^{4} - 7T^{2} + 49 Copy content Toggle raw display
1313 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
1717 (T2+12T+48)2 (T^{2} + 12 T + 48)^{2} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T428T2+784 T^{4} - 28T^{2} + 784 Copy content Toggle raw display
2929 (T+5)4 (T + 5)^{4} Copy content Toggle raw display
3131 T4+21T2+441 T^{4} + 21T^{2} + 441 Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
4343 (T2+112)2 (T^{2} + 112)^{2} Copy content Toggle raw display
4747 T4+84T2+7056 T^{4} + 84T^{2} + 7056 Copy content Toggle raw display
5353 (T27T+49)2 (T^{2} - 7 T + 49)^{2} Copy content Toggle raw display
5959 T4+189T2+35721 T^{4} + 189 T^{2} + 35721 Copy content Toggle raw display
6161 (T2+18T+108)2 (T^{2} + 18 T + 108)^{2} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 (T2+28)2 (T^{2} + 28)^{2} Copy content Toggle raw display
7373 (T2+12T+48)2 (T^{2} + 12 T + 48)^{2} Copy content Toggle raw display
7979 T463T2+3969 T^{4} - 63T^{2} + 3969 Copy content Toggle raw display
8383 (T221)2 (T^{2} - 21)^{2} Copy content Toggle raw display
8989 (T218T+108)2 (T^{2} - 18 T + 108)^{2} Copy content Toggle raw display
9797 (T2+75)2 (T^{2} + 75)^{2} Copy content Toggle raw display
show more
show less