gp: [N,k,chi] = [252,2,Mod(19,252)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(252, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 5]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("252.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,1,0,3,-6,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − x 2 − 2 x + 4 x^{4} - x^{3} - x^{2} - 2x + 4 x 4 − x 3 − x 2 − 2 x + 4
x^4 - x^3 - x^2 - 2*x + 4
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 + ν 2 − ν − 2 ) / 2 ( \nu^{3} + \nu^{2} - \nu - 2 ) / 2 ( ν 3 + ν 2 − ν − 2 ) / 2
(v^3 + v^2 - v - 2) / 2
β 3 \beta_{3} β 3 = = =
( − ν 3 + ν 2 + ν + 2 ) / 2 ( -\nu^{3} + \nu^{2} + \nu + 2 ) / 2 ( − ν 3 + ν 2 + ν + 2 ) / 2
(-v^3 + v^2 + v + 2) / 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + β 2 \beta_{3} + \beta_{2} β 3 + β 2
b3 + b2
ν 3 \nu^{3} ν 3 = = =
− β 3 + β 2 + β 1 + 2 -\beta_{3} + \beta_{2} + \beta _1 + 2 − β 3 + β 2 + β 1 + 2
-b3 + b2 + b1 + 2
Character values
We give the values of χ \chi χ on generators for ( Z / 252 Z ) × \left(\mathbb{Z}/252\mathbb{Z}\right)^\times ( Z / 2 5 2 Z ) × .
n n n
29 29 2 9
73 73 7 3
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
β 2 \beta_{2} β 2
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 252 , [ χ ] ) S_{2}^{\mathrm{new}}(252, [\chi]) S 2 n e w ( 2 5 2 , [ χ ] ) :
T 5 2 + 3 T 5 + 3 T_{5}^{2} + 3T_{5} + 3 T 5 2 + 3 T 5 + 3
T5^2 + 3*T5 + 3
T 11 4 − 7 T 11 2 + 49 T_{11}^{4} - 7T_{11}^{2} + 49 T 1 1 4 − 7 T 1 1 2 + 4 9
T11^4 - 7*T11^2 + 49
T 19 T_{19} T 1 9
T19
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − T 3 − T 2 + ⋯ + 4 T^{4} - T^{3} - T^{2} + \cdots + 4 T 4 − T 3 − T 2 + ⋯ + 4
T^4 - T^3 - T^2 - 2*T + 4
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
( T 2 + 3 T + 3 ) 2 (T^{2} + 3 T + 3)^{2} ( T 2 + 3 T + 3 ) 2
(T^2 + 3*T + 3)^2
7 7 7
T 4 − 7 T 2 + 49 T^{4} - 7T^{2} + 49 T 4 − 7 T 2 + 4 9
T^4 - 7*T^2 + 49
11 11 1 1
T 4 − 7 T 2 + 49 T^{4} - 7T^{2} + 49 T 4 − 7 T 2 + 4 9
T^4 - 7*T^2 + 49
13 13 1 3
( T 2 + 12 ) 2 (T^{2} + 12)^{2} ( T 2 + 1 2 ) 2
(T^2 + 12)^2
17 17 1 7
( T 2 + 12 T + 48 ) 2 (T^{2} + 12 T + 48)^{2} ( T 2 + 1 2 T + 4 8 ) 2
(T^2 + 12*T + 48)^2
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
T 4 − 28 T 2 + 784 T^{4} - 28T^{2} + 784 T 4 − 2 8 T 2 + 7 8 4
T^4 - 28*T^2 + 784
29 29 2 9
( T + 5 ) 4 (T + 5)^{4} ( T + 5 ) 4
(T + 5)^4
31 31 3 1
T 4 + 21 T 2 + 441 T^{4} + 21T^{2} + 441 T 4 + 2 1 T 2 + 4 4 1
T^4 + 21*T^2 + 441
37 37 3 7
T 4 T^{4} T 4
T^4
41 41 4 1
( T 2 + 12 ) 2 (T^{2} + 12)^{2} ( T 2 + 1 2 ) 2
(T^2 + 12)^2
43 43 4 3
( T 2 + 112 ) 2 (T^{2} + 112)^{2} ( T 2 + 1 1 2 ) 2
(T^2 + 112)^2
47 47 4 7
T 4 + 84 T 2 + 7056 T^{4} + 84T^{2} + 7056 T 4 + 8 4 T 2 + 7 0 5 6
T^4 + 84*T^2 + 7056
53 53 5 3
( T 2 − 7 T + 49 ) 2 (T^{2} - 7 T + 49)^{2} ( T 2 − 7 T + 4 9 ) 2
(T^2 - 7*T + 49)^2
59 59 5 9
T 4 + 189 T 2 + 35721 T^{4} + 189 T^{2} + 35721 T 4 + 1 8 9 T 2 + 3 5 7 2 1
T^4 + 189*T^2 + 35721
61 61 6 1
( T 2 + 18 T + 108 ) 2 (T^{2} + 18 T + 108)^{2} ( T 2 + 1 8 T + 1 0 8 ) 2
(T^2 + 18*T + 108)^2
67 67 6 7
T 4 T^{4} T 4
T^4
71 71 7 1
( T 2 + 28 ) 2 (T^{2} + 28)^{2} ( T 2 + 2 8 ) 2
(T^2 + 28)^2
73 73 7 3
( T 2 + 12 T + 48 ) 2 (T^{2} + 12 T + 48)^{2} ( T 2 + 1 2 T + 4 8 ) 2
(T^2 + 12*T + 48)^2
79 79 7 9
T 4 − 63 T 2 + 3969 T^{4} - 63T^{2} + 3969 T 4 − 6 3 T 2 + 3 9 6 9
T^4 - 63*T^2 + 3969
83 83 8 3
( T 2 − 21 ) 2 (T^{2} - 21)^{2} ( T 2 − 2 1 ) 2
(T^2 - 21)^2
89 89 8 9
( T 2 − 18 T + 108 ) 2 (T^{2} - 18 T + 108)^{2} ( T 2 − 1 8 T + 1 0 8 ) 2
(T^2 - 18*T + 108)^2
97 97 9 7
( T 2 + 75 ) 2 (T^{2} + 75)^{2} ( T 2 + 7 5 ) 2
(T^2 + 75)^2
show more
show less