Properties

Label 252.2.k.c
Level $252$
Weight $2$
Character orbit 252.k
Analytic conductor $2.012$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,2,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \zeta_{6} + 3) q^{5} + ( - 2 \zeta_{6} - 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 3 \zeta_{6} + 3) q^{5} + ( - 2 \zeta_{6} - 1) q^{7} - 3 \zeta_{6} q^{11} + 2 q^{13} + 3 \zeta_{6} q^{17} + ( - \zeta_{6} + 1) q^{19} + ( - 3 \zeta_{6} + 3) q^{23} - 4 \zeta_{6} q^{25} + 6 q^{29} + 7 \zeta_{6} q^{31} + (3 \zeta_{6} - 9) q^{35} + ( - \zeta_{6} + 1) q^{37} - 6 q^{41} - 4 q^{43} + (9 \zeta_{6} - 9) q^{47} + (8 \zeta_{6} - 3) q^{49} + 3 \zeta_{6} q^{53} - 9 q^{55} + 9 \zeta_{6} q^{59} + ( - \zeta_{6} + 1) q^{61} + ( - 6 \zeta_{6} + 6) q^{65} + 7 \zeta_{6} q^{67} + \zeta_{6} q^{73} + (9 \zeta_{6} - 6) q^{77} + ( - 13 \zeta_{6} + 13) q^{79} - 12 q^{83} + 9 q^{85} + ( - 15 \zeta_{6} + 15) q^{89} + ( - 4 \zeta_{6} - 2) q^{91} - 3 \zeta_{6} q^{95} - 10 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{5} - 4 q^{7} - 3 q^{11} + 4 q^{13} + 3 q^{17} + q^{19} + 3 q^{23} - 4 q^{25} + 12 q^{29} + 7 q^{31} - 15 q^{35} + q^{37} - 12 q^{41} - 8 q^{43} - 9 q^{47} + 2 q^{49} + 3 q^{53} - 18 q^{55} + 9 q^{59} + q^{61} + 6 q^{65} + 7 q^{67} + q^{73} - 3 q^{77} + 13 q^{79} - 24 q^{83} + 18 q^{85} + 15 q^{89} - 8 q^{91} - 3 q^{95} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.50000 2.59808i 0 −2.00000 1.73205i 0 0 0
109.1 0 0 0 1.50000 + 2.59808i 0 −2.00000 + 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.2.k.c 2
3.b odd 2 1 28.2.e.a 2
4.b odd 2 1 1008.2.s.p 2
7.b odd 2 1 1764.2.k.b 2
7.c even 3 1 inner 252.2.k.c 2
7.c even 3 1 1764.2.a.a 1
7.d odd 6 1 1764.2.a.j 1
7.d odd 6 1 1764.2.k.b 2
9.c even 3 1 2268.2.i.h 2
9.c even 3 1 2268.2.l.a 2
9.d odd 6 1 2268.2.i.a 2
9.d odd 6 1 2268.2.l.h 2
12.b even 2 1 112.2.i.b 2
15.d odd 2 1 700.2.i.c 2
15.e even 4 2 700.2.r.b 4
21.c even 2 1 196.2.e.a 2
21.g even 6 1 196.2.a.a 1
21.g even 6 1 196.2.e.a 2
21.h odd 6 1 28.2.e.a 2
21.h odd 6 1 196.2.a.b 1
24.f even 2 1 448.2.i.c 2
24.h odd 2 1 448.2.i.e 2
28.f even 6 1 7056.2.a.bw 1
28.g odd 6 1 1008.2.s.p 2
28.g odd 6 1 7056.2.a.f 1
63.g even 3 1 2268.2.i.h 2
63.h even 3 1 2268.2.l.a 2
63.j odd 6 1 2268.2.l.h 2
63.n odd 6 1 2268.2.i.a 2
84.h odd 2 1 784.2.i.d 2
84.j odd 6 1 784.2.a.g 1
84.j odd 6 1 784.2.i.d 2
84.n even 6 1 112.2.i.b 2
84.n even 6 1 784.2.a.d 1
105.o odd 6 1 700.2.i.c 2
105.o odd 6 1 4900.2.a.g 1
105.p even 6 1 4900.2.a.n 1
105.w odd 12 2 4900.2.e.h 2
105.x even 12 2 700.2.r.b 4
105.x even 12 2 4900.2.e.i 2
168.s odd 6 1 448.2.i.e 2
168.s odd 6 1 3136.2.a.h 1
168.v even 6 1 448.2.i.c 2
168.v even 6 1 3136.2.a.s 1
168.ba even 6 1 3136.2.a.v 1
168.be odd 6 1 3136.2.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.2.e.a 2 3.b odd 2 1
28.2.e.a 2 21.h odd 6 1
112.2.i.b 2 12.b even 2 1
112.2.i.b 2 84.n even 6 1
196.2.a.a 1 21.g even 6 1
196.2.a.b 1 21.h odd 6 1
196.2.e.a 2 21.c even 2 1
196.2.e.a 2 21.g even 6 1
252.2.k.c 2 1.a even 1 1 trivial
252.2.k.c 2 7.c even 3 1 inner
448.2.i.c 2 24.f even 2 1
448.2.i.c 2 168.v even 6 1
448.2.i.e 2 24.h odd 2 1
448.2.i.e 2 168.s odd 6 1
700.2.i.c 2 15.d odd 2 1
700.2.i.c 2 105.o odd 6 1
700.2.r.b 4 15.e even 4 2
700.2.r.b 4 105.x even 12 2
784.2.a.d 1 84.n even 6 1
784.2.a.g 1 84.j odd 6 1
784.2.i.d 2 84.h odd 2 1
784.2.i.d 2 84.j odd 6 1
1008.2.s.p 2 4.b odd 2 1
1008.2.s.p 2 28.g odd 6 1
1764.2.a.a 1 7.c even 3 1
1764.2.a.j 1 7.d odd 6 1
1764.2.k.b 2 7.b odd 2 1
1764.2.k.b 2 7.d odd 6 1
2268.2.i.a 2 9.d odd 6 1
2268.2.i.a 2 63.n odd 6 1
2268.2.i.h 2 9.c even 3 1
2268.2.i.h 2 63.g even 3 1
2268.2.l.a 2 9.c even 3 1
2268.2.l.a 2 63.h even 3 1
2268.2.l.h 2 9.d odd 6 1
2268.2.l.h 2 63.j odd 6 1
3136.2.a.h 1 168.s odd 6 1
3136.2.a.k 1 168.be odd 6 1
3136.2.a.s 1 168.v even 6 1
3136.2.a.v 1 168.ba even 6 1
4900.2.a.g 1 105.o odd 6 1
4900.2.a.n 1 105.p even 6 1
4900.2.e.h 2 105.w odd 12 2
4900.2.e.i 2 105.x even 12 2
7056.2.a.f 1 28.g odd 6 1
7056.2.a.bw 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 3T_{5} + 9 \) acting on \(S_{2}^{\mathrm{new}}(252, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$37$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$79$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less