Properties

Label 252.5.z.f
Level $252$
Weight $5$
Character orbit 252.z
Analytic conductor $26.049$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,5,Mod(73,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.73");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0492306971\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.11337408.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{4} + \beta_{2} + 3 \beta_1 + 3) q^{5} + ( - \beta_{5} + 3 \beta_{2} + 4 \beta_1 + 9) q^{7} + (\beta_{5} + 2 \beta_{4} + \cdots - 45 \beta_1) q^{11} + ( - \beta_{5} - \beta_{4} - 21 \beta_{3} + \cdots + 12) q^{13}+ \cdots + (59 \beta_{5} + 59 \beta_{4} + \cdots - 3476) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 27 q^{5} + 66 q^{7} - 135 q^{11} + 1107 q^{17} - 747 q^{19} - 243 q^{23} + 1878 q^{25} + 540 q^{29} - 5355 q^{31} - 6021 q^{35} + 2355 q^{37} - 948 q^{43} + 9747 q^{47} + 8430 q^{49} - 6291 q^{53}+ \cdots + 20655 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 18x^{4} + 81x^{2} + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 9\nu + 2 ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} - 9\nu^{4} - 15\nu^{3} - 87\nu^{2} - 36\nu - 36 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 9\nu^{4} + 15\nu^{3} - 87\nu^{2} + 36\nu - 36 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 9\nu^{5} - 3\nu^{4} + 135\nu^{3} + 27\nu^{2} + 492\nu + 324 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 9\nu^{5} + 3\nu^{4} + 135\nu^{3} - 27\nu^{2} + 492\nu - 324 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} - 9\beta_{3} + 9\beta_{2} ) / 42 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{5} + 3\beta_{4} - \beta_{3} - \beta_{2} - 252 ) / 42 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{5} - 3\beta_{4} + 27\beta_{3} - 27\beta_{2} + 56\beta _1 - 28 ) / 14 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 29\beta_{5} - 29\beta_{4} - 9\beta_{3} - 9\beta_{2} + 2268 ) / 42 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 33\beta_{5} + 33\beta_{4} - 241\beta_{3} + 241\beta_{2} - 840\beta _1 + 420 ) / 14 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(1 - \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
0.391571i
2.78499i
3.17656i
0.391571i
2.78499i
3.17656i
0 0 0 −38.3327 + 22.1314i 0 42.3967 + 24.5667i 0 0 0
73.2 0 0 0 24.9067 14.3799i 0 39.2754 29.2993i 0 0 0
73.3 0 0 0 26.9260 15.5457i 0 −48.6720 5.65972i 0 0 0
145.1 0 0 0 −38.3327 22.1314i 0 42.3967 24.5667i 0 0 0
145.2 0 0 0 24.9067 + 14.3799i 0 39.2754 + 29.2993i 0 0 0
145.3 0 0 0 26.9260 + 15.5457i 0 −48.6720 + 5.65972i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.5.z.f 6
3.b odd 2 1 28.5.h.a 6
7.d odd 6 1 inner 252.5.z.f 6
12.b even 2 1 112.5.s.c 6
15.d odd 2 1 700.5.s.a 6
15.e even 4 2 700.5.o.a 12
21.c even 2 1 196.5.h.c 6
21.g even 6 1 28.5.h.a 6
21.g even 6 1 196.5.b.a 6
21.h odd 6 1 196.5.b.a 6
21.h odd 6 1 196.5.h.c 6
84.j odd 6 1 112.5.s.c 6
84.j odd 6 1 784.5.c.e 6
84.n even 6 1 784.5.c.e 6
105.p even 6 1 700.5.s.a 6
105.w odd 12 2 700.5.o.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.5.h.a 6 3.b odd 2 1
28.5.h.a 6 21.g even 6 1
112.5.s.c 6 12.b even 2 1
112.5.s.c 6 84.j odd 6 1
196.5.b.a 6 21.g even 6 1
196.5.b.a 6 21.h odd 6 1
196.5.h.c 6 21.c even 2 1
196.5.h.c 6 21.h odd 6 1
252.5.z.f 6 1.a even 1 1 trivial
252.5.z.f 6 7.d odd 6 1 inner
700.5.o.a 12 15.e even 4 2
700.5.o.a 12 105.w odd 12 2
700.5.s.a 6 15.d odd 2 1
700.5.s.a 6 105.p even 6 1
784.5.c.e 6 84.j odd 6 1
784.5.c.e 6 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 27T_{5}^{5} - 1512T_{5}^{4} + 47385T_{5}^{3} + 2463048T_{5}^{2} - 120310515T_{5} + 1566504603 \) acting on \(S_{5}^{\mathrm{new}}(252, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 1566504603 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 13841287201 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 1920280041 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 65933832204288 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 86645980184427 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 163848759776883 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 18\!\cdots\!21 \) Copy content Toggle raw display
$29$ \( (T^{3} - 270 T^{2} + \cdots - 401089968)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 81\!\cdots\!63 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 19\!\cdots\!81 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 30\!\cdots\!92 \) Copy content Toggle raw display
$43$ \( (T^{3} + 474 T^{2} + \cdots + 2925826856)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 12\!\cdots\!27 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 34\!\cdots\!01 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 40\!\cdots\!87 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 15\!\cdots\!47 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 30\!\cdots\!41 \) Copy content Toggle raw display
$71$ \( (T^{3} + 1134 T^{2} + \cdots - 66080643048)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 51\!\cdots\!67 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 32\!\cdots\!81 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 21\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 12\!\cdots\!07 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 22\!\cdots\!32 \) Copy content Toggle raw display
show more
show less