Properties

Label 252.8.a.h
Level 252252
Weight 88
Character orbit 252.a
Self dual yes
Analytic conductor 78.72178.721
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(1,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 252=22327 252 = 2^{2} \cdot 3^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 252.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 78.721026422078.7210264220
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x44648x2+2987775 x^{4} - 4648x^{2} + 2987775 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2834 2^{8}\cdot 3^{4}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+343q7+(β2+3β1)q11+(β3+2702)q13+43β1q17+(3β3+4424)q19+(8β2+179β1)q23+(7β3+5539)q25++(714β3+6397622)q97+O(q100) q + \beta_1 q^{5} + 343 q^{7} + (\beta_{2} + 3 \beta_1) q^{11} + ( - \beta_{3} + 2702) q^{13} + 43 \beta_1 q^{17} + (3 \beta_{3} + 4424) q^{19} + ( - 8 \beta_{2} + 179 \beta_1) q^{23} + (7 \beta_{3} + 5539) q^{25}+ \cdots + ( - 714 \beta_{3} + 6397622) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+1372q7+10808q13+17696q19+22156q25+87584q31121672q3720464q43+470596q49+840672q55+4844840q61+6220976q67+10659992q73+4446272q79++25590488q97+O(q100) 4 q + 1372 q^{7} + 10808 q^{13} + 17696 q^{19} + 22156 q^{25} + 87584 q^{31} - 121672 q^{37} - 20464 q^{43} + 470596 q^{49} + 840672 q^{55} + 4844840 q^{61} + 6220976 q^{67} + 10659992 q^{73} + 4446272 q^{79}+ \cdots + 25590488 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x44648x2+2987775 x^{4} - 4648x^{2} + 2987775 : Copy content Toggle raw display

β1\beta_{1}== 6ν 6\nu Copy content Toggle raw display
β2\beta_{2}== (4ν313552ν)/35 ( 4\nu^{3} - 13552\nu ) / 35 Copy content Toggle raw display
β3\beta_{3}== (36ν283664)/7 ( 36\nu^{2} - 83664 ) / 7 Copy content Toggle raw display
ν\nu== (β1)/6 ( \beta_1 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (7β3+83664)/36 ( 7\beta_{3} + 83664 ) / 36 Copy content Toggle raw display
ν3\nu^{3}== (105β2+6776β1)/12 ( 105\beta_{2} + 6776\beta_1 ) / 12 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−62.2692
−27.7588
27.7588
62.2692
0 0 0 −373.615 0 343.000 0 0 0
1.2 0 0 0 −166.553 0 343.000 0 0 0
1.3 0 0 0 166.553 0 343.000 0 0 0
1.4 0 0 0 373.615 0 343.000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
77 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.8.a.h 4
3.b odd 2 1 inner 252.8.a.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.8.a.h 4 1.a even 1 1 trivial
252.8.a.h 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54167328T52+3872156400 T_{5}^{4} - 167328T_{5}^{2} + 3872156400 acting on S8new(Γ0(252))S_{8}^{\mathrm{new}}(\Gamma_0(252)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4++3872156400 T^{4} + \cdots + 3872156400 Copy content Toggle raw display
77 (T343)4 (T - 343)^{4} Copy content Toggle raw display
1111 T4++12 ⁣ ⁣64 T^{4} + \cdots + 12\!\cdots\!64 Copy content Toggle raw display
1313 (T25404T56525900)2 (T^{2} - 5404 T - 56525900)^{2} Copy content Toggle raw display
1717 T4++13 ⁣ ⁣00 T^{4} + \cdots + 13\!\cdots\!00 Copy content Toggle raw display
1919 (T28848T554868560)2 (T^{2} - 8848 T - 554868560)^{2} Copy content Toggle raw display
2323 T4++14 ⁣ ⁣96 T^{4} + \cdots + 14\!\cdots\!96 Copy content Toggle raw display
2929 T4++26 ⁣ ⁣96 T^{4} + \cdots + 26\!\cdots\!96 Copy content Toggle raw display
3131 (T243792T69027845840)2 (T^{2} - 43792 T - 69027845840)^{2} Copy content Toggle raw display
3737 (T2+60836T77262457676)2 (T^{2} + 60836 T - 77262457676)^{2} Copy content Toggle raw display
4141 T4++48 ⁣ ⁣00 T^{4} + \cdots + 48\!\cdots\!00 Copy content Toggle raw display
4343 (T2+10232T50013962480)2 (T^{2} + 10232 T - 50013962480)^{2} Copy content Toggle raw display
4747 T4++19 ⁣ ⁣96 T^{4} + \cdots + 19\!\cdots\!96 Copy content Toggle raw display
5353 T4++19 ⁣ ⁣00 T^{4} + \cdots + 19\!\cdots\!00 Copy content Toggle raw display
5959 T4++26 ⁣ ⁣36 T^{4} + \cdots + 26\!\cdots\!36 Copy content Toggle raw display
6161 (T22422420T+563179708756)2 (T^{2} - 2422420 T + 563179708756)^{2} Copy content Toggle raw display
6767 (T2+5399987340464)2 (T^{2} + \cdots - 5399987340464)^{2} Copy content Toggle raw display
7171 T4++49 ⁣ ⁣44 T^{4} + \cdots + 49\!\cdots\!44 Copy content Toggle raw display
7373 (T2++6272722494820)2 (T^{2} + \cdots + 6272722494820)^{2} Copy content Toggle raw display
7979 (T2+31303014973760)2 (T^{2} + \cdots - 31303014973760)^{2} Copy content Toggle raw display
8383 T4++55 ⁣ ⁣24 T^{4} + \cdots + 55\!\cdots\!24 Copy content Toggle raw display
8989 T4++52 ⁣ ⁣16 T^{4} + \cdots + 52\!\cdots\!16 Copy content Toggle raw display
9797 (T2++8390968862500)2 (T^{2} + \cdots + 8390968862500)^{2} Copy content Toggle raw display
show more
show less