Properties

Label 252.8.e.a.71.8
Level $252$
Weight $8$
Character 252.71
Analytic conductor $78.721$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(71,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.71");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.8
Character \(\chi\) \(=\) 252.71
Dual form 252.8.e.a.71.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-10.8566 + 3.18337i) q^{2} +(107.732 - 69.1213i) q^{4} -512.680i q^{5} -343.000i q^{7} +(-949.569 + 1093.38i) q^{8} +(1632.05 + 5565.97i) q^{10} +6950.61 q^{11} -968.015 q^{13} +(1091.90 + 3723.82i) q^{14} +(6828.49 - 14893.2i) q^{16} +6796.54i q^{17} +37771.6i q^{19} +(-35437.1 - 55232.2i) q^{20} +(-75460.1 + 22126.4i) q^{22} +2978.61 q^{23} -184716. q^{25} +(10509.4 - 3081.55i) q^{26} +(-23708.6 - 36952.2i) q^{28} +179257. i q^{29} +200289. i q^{31} +(-26723.7 + 183427. i) q^{32} +(-21635.9 - 73787.5i) q^{34} -175849. q^{35} -425727. q^{37} +(-120241. - 410072. i) q^{38} +(560552. + 486826. i) q^{40} +244050. i q^{41} -88312.9i q^{43} +(748805. - 480435. i) q^{44} +(-32337.6 + 9482.02i) q^{46} +453536. q^{47} -117649. q^{49} +(2.00539e6 - 588020. i) q^{50} +(-104287. + 66910.5i) q^{52} +1.57314e6i q^{53} -3.56344e6i q^{55} +(375028. + 325702. i) q^{56} +(-570643. - 1.94613e6i) q^{58} +77228.5 q^{59} -1.19278e6 q^{61} +(-637593. - 2.17446e6i) q^{62} +(-293788. - 2.07647e6i) q^{64} +496282. i q^{65} -1.71428e6i q^{67} +(469786. + 732207. i) q^{68} +(1.90913e6 - 559794. i) q^{70} +1.52612e6 q^{71} -5.69727e6 q^{73} +(4.62196e6 - 1.35525e6i) q^{74} +(2.61082e6 + 4.06922e6i) q^{76} -2.38406e6i q^{77} +8.63828e6i q^{79} +(-7.63545e6 - 3.50083e6i) q^{80} +(-776900. - 2.64955e6i) q^{82} +866901. q^{83} +3.48445e6 q^{85} +(281133. + 958779. i) q^{86} +(-6.60009e6 + 7.59963e6i) q^{88} +6.05763e6i q^{89} +332029. i q^{91} +(320892. - 205885. i) q^{92} +(-4.92387e6 + 1.44377e6i) q^{94} +1.93648e7 q^{95} +1.19866e7 q^{97} +(1.27727e6 - 374521. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 104 q^{4} - 5816 q^{10} + 16684 q^{16} - 201700 q^{22} - 1312500 q^{25} + 39788 q^{28} - 400048 q^{34} - 165544 q^{37} - 1477624 q^{40} + 1616724 q^{46} - 9882516 q^{49} - 3744592 q^{52} + 12053212 q^{58}+ \cdots + 73638456 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −10.8566 + 3.18337i −0.959598 + 0.281373i
\(3\) 0 0
\(4\) 107.732 69.1213i 0.841658 0.540010i
\(5\) 512.680i 1.83422i −0.398633 0.917110i \(-0.630515\pi\)
0.398633 0.917110i \(-0.369485\pi\)
\(6\) 0 0
\(7\) 343.000i 0.377964i
\(8\) −949.569 + 1093.38i −0.655710 + 0.755013i
\(9\) 0 0
\(10\) 1632.05 + 5565.97i 0.516100 + 1.76012i
\(11\) 6950.61 1.57452 0.787260 0.616621i \(-0.211499\pi\)
0.787260 + 0.616621i \(0.211499\pi\)
\(12\) 0 0
\(13\) −968.015 −0.122203 −0.0611013 0.998132i \(-0.519461\pi\)
−0.0611013 + 0.998132i \(0.519461\pi\)
\(14\) 1091.90 + 3723.82i 0.106349 + 0.362694i
\(15\) 0 0
\(16\) 6828.49 14893.2i 0.416778 0.909008i
\(17\) 6796.54i 0.335519i 0.985828 + 0.167759i \(0.0536532\pi\)
−0.985828 + 0.167759i \(0.946347\pi\)
\(18\) 0 0
\(19\) 37771.6i 1.26336i 0.775228 + 0.631681i \(0.217635\pi\)
−0.775228 + 0.631681i \(0.782365\pi\)
\(20\) −35437.1 55232.2i −0.990498 1.54379i
\(21\) 0 0
\(22\) −75460.1 + 22126.4i −1.51091 + 0.443028i
\(23\) 2978.61 0.0510465 0.0255233 0.999674i \(-0.491875\pi\)
0.0255233 + 0.999674i \(0.491875\pi\)
\(24\) 0 0
\(25\) −184716. −2.36437
\(26\) 10509.4 3081.55i 0.117265 0.0343845i
\(27\) 0 0
\(28\) −23708.6 36952.2i −0.204105 0.318117i
\(29\) 179257.i 1.36485i 0.730957 + 0.682423i \(0.239074\pi\)
−0.730957 + 0.682423i \(0.760926\pi\)
\(30\) 0 0
\(31\) 200289.i 1.20751i 0.797170 + 0.603755i \(0.206329\pi\)
−0.797170 + 0.603755i \(0.793671\pi\)
\(32\) −26723.7 + 183427.i −0.144169 + 0.989553i
\(33\) 0 0
\(34\) −21635.9 73787.5i −0.0944060 0.321963i
\(35\) −175849. −0.693270
\(36\) 0 0
\(37\) −425727. −1.38174 −0.690869 0.722980i \(-0.742772\pi\)
−0.690869 + 0.722980i \(0.742772\pi\)
\(38\) −120241. 410072.i −0.355476 1.21232i
\(39\) 0 0
\(40\) 560552. + 486826.i 1.38486 + 1.20272i
\(41\) 244050.i 0.553012i 0.961012 + 0.276506i \(0.0891766\pi\)
−0.961012 + 0.276506i \(0.910823\pi\)
\(42\) 0 0
\(43\) 88312.9i 0.169389i −0.996407 0.0846943i \(-0.973009\pi\)
0.996407 0.0846943i \(-0.0269914\pi\)
\(44\) 748805. 480435.i 1.32521 0.850257i
\(45\) 0 0
\(46\) −32337.6 + 9482.02i −0.0489842 + 0.0143631i
\(47\) 453536. 0.637191 0.318595 0.947891i \(-0.396789\pi\)
0.318595 + 0.947891i \(0.396789\pi\)
\(48\) 0 0
\(49\) −117649. −0.142857
\(50\) 2.00539e6 588020.i 2.26884 0.665269i
\(51\) 0 0
\(52\) −104287. + 66910.5i −0.102853 + 0.0659907i
\(53\) 1.57314e6i 1.45145i 0.687984 + 0.725726i \(0.258496\pi\)
−0.687984 + 0.725726i \(0.741504\pi\)
\(54\) 0 0
\(55\) 3.56344e6i 2.88802i
\(56\) 375028. + 325702.i 0.285368 + 0.247835i
\(57\) 0 0
\(58\) −570643. 1.94613e6i −0.384031 1.30970i
\(59\) 77228.5 0.0489548 0.0244774 0.999700i \(-0.492208\pi\)
0.0244774 + 0.999700i \(0.492208\pi\)
\(60\) 0 0
\(61\) −1.19278e6 −0.672828 −0.336414 0.941714i \(-0.609214\pi\)
−0.336414 + 0.941714i \(0.609214\pi\)
\(62\) −637593. 2.17446e6i −0.339760 1.15872i
\(63\) 0 0
\(64\) −293788. 2.07647e6i −0.140089 0.990139i
\(65\) 496282.i 0.224147i
\(66\) 0 0
\(67\) 1.71428e6i 0.696338i −0.937432 0.348169i \(-0.886804\pi\)
0.937432 0.348169i \(-0.113196\pi\)
\(68\) 469786. + 732207.i 0.181184 + 0.282392i
\(69\) 0 0
\(70\) 1.90913e6 559794.i 0.665261 0.195068i
\(71\) 1.52612e6 0.506039 0.253020 0.967461i \(-0.418576\pi\)
0.253020 + 0.967461i \(0.418576\pi\)
\(72\) 0 0
\(73\) −5.69727e6 −1.71410 −0.857051 0.515232i \(-0.827706\pi\)
−0.857051 + 0.515232i \(0.827706\pi\)
\(74\) 4.62196e6 1.35525e6i 1.32591 0.388784i
\(75\) 0 0
\(76\) 2.61082e6 + 4.06922e6i 0.682228 + 1.06332i
\(77\) 2.38406e6i 0.595113i
\(78\) 0 0
\(79\) 8.63828e6i 1.97121i 0.169068 + 0.985604i \(0.445924\pi\)
−0.169068 + 0.985604i \(0.554076\pi\)
\(80\) −7.63545e6 3.50083e6i −1.66732 0.764463i
\(81\) 0 0
\(82\) −776900. 2.64955e6i −0.155603 0.530669i
\(83\) 866901. 0.166416 0.0832082 0.996532i \(-0.473483\pi\)
0.0832082 + 0.996532i \(0.473483\pi\)
\(84\) 0 0
\(85\) 3.48445e6 0.615416
\(86\) 281133. + 958779.i 0.0476614 + 0.162545i
\(87\) 0 0
\(88\) −6.60009e6 + 7.59963e6i −1.03243 + 1.18878i
\(89\) 6.05763e6i 0.910831i 0.890279 + 0.455416i \(0.150509\pi\)
−0.890279 + 0.455416i \(0.849491\pi\)
\(90\) 0 0
\(91\) 332029.i 0.0461883i
\(92\) 320892. 205885.i 0.0429637 0.0275656i
\(93\) 0 0
\(94\) −4.92387e6 + 1.44377e6i −0.611447 + 0.179288i
\(95\) 1.93648e7 2.31729
\(96\) 0 0
\(97\) 1.19866e7 1.33351 0.666756 0.745276i \(-0.267683\pi\)
0.666756 + 0.745276i \(0.267683\pi\)
\(98\) 1.27727e6 374521.i 0.137085 0.0401961i
\(99\) 0 0
\(100\) −1.98999e7 + 1.27678e7i −1.98999 + 1.27678i
\(101\) 9.58096e6i 0.925303i −0.886540 0.462652i \(-0.846898\pi\)
0.886540 0.462652i \(-0.153102\pi\)
\(102\) 0 0
\(103\) 1.28909e7i 1.16240i 0.813762 + 0.581198i \(0.197416\pi\)
−0.813762 + 0.581198i \(0.802584\pi\)
\(104\) 919198. 1.05840e6i 0.0801295 0.0922646i
\(105\) 0 0
\(106\) −5.00790e6 1.70790e7i −0.408399 1.39281i
\(107\) −6.50775e6 −0.513556 −0.256778 0.966470i \(-0.582661\pi\)
−0.256778 + 0.966470i \(0.582661\pi\)
\(108\) 0 0
\(109\) −2.28730e7 −1.69173 −0.845865 0.533397i \(-0.820915\pi\)
−0.845865 + 0.533397i \(0.820915\pi\)
\(110\) 1.13438e7 + 3.86869e7i 0.812611 + 2.77134i
\(111\) 0 0
\(112\) −5.10836e6 2.34217e6i −0.343573 0.157527i
\(113\) 1.68905e7i 1.10121i −0.834767 0.550603i \(-0.814398\pi\)
0.834767 0.550603i \(-0.185602\pi\)
\(114\) 0 0
\(115\) 1.52707e6i 0.0936306i
\(116\) 1.23905e7 + 1.93118e7i 0.737031 + 1.14873i
\(117\) 0 0
\(118\) −838440. + 245847.i −0.0469770 + 0.0137746i
\(119\) 2.33121e6 0.126814
\(120\) 0 0
\(121\) 2.88238e7 1.47912
\(122\) 1.29495e7 3.79705e6i 0.645645 0.189316i
\(123\) 0 0
\(124\) 1.38442e7 + 2.15776e7i 0.652067 + 1.01631i
\(125\) 5.46472e7i 2.50255i
\(126\) 0 0
\(127\) 341188.i 0.0147802i −0.999973 0.00739010i \(-0.997648\pi\)
0.999973 0.00739010i \(-0.00235236\pi\)
\(128\) 9.79973e6 + 2.16082e7i 0.413028 + 0.910719i
\(129\) 0 0
\(130\) −1.57985e6 5.38795e6i −0.0630688 0.215091i
\(131\) 9.47174e6 0.368112 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(132\) 0 0
\(133\) 1.29557e7 0.477506
\(134\) 5.45719e6 + 1.86113e7i 0.195931 + 0.668205i
\(135\) 0 0
\(136\) −7.43118e6 6.45379e6i −0.253321 0.220003i
\(137\) 2.45922e7i 0.817099i 0.912736 + 0.408550i \(0.133965\pi\)
−0.912736 + 0.408550i \(0.866035\pi\)
\(138\) 0 0
\(139\) 5.44958e7i 1.72112i 0.509348 + 0.860561i \(0.329887\pi\)
−0.509348 + 0.860561i \(0.670113\pi\)
\(140\) −1.89447e7 + 1.21549e7i −0.583497 + 0.374373i
\(141\) 0 0
\(142\) −1.65685e7 + 4.85821e6i −0.485595 + 0.142386i
\(143\) −6.72830e6 −0.192411
\(144\) 0 0
\(145\) 9.19017e7 2.50343
\(146\) 6.18530e7 1.81365e7i 1.64485 0.482302i
\(147\) 0 0
\(148\) −4.58646e7 + 2.94268e7i −1.16295 + 0.746152i
\(149\) 4.71462e6i 0.116760i 0.998294 + 0.0583801i \(0.0185935\pi\)
−0.998294 + 0.0583801i \(0.981406\pi\)
\(150\) 0 0
\(151\) 6.10409e7i 1.44279i 0.692526 + 0.721393i \(0.256498\pi\)
−0.692526 + 0.721393i \(0.743502\pi\)
\(152\) −4.12986e7 3.58668e7i −0.953855 0.828399i
\(153\) 0 0
\(154\) 7.58935e6 + 2.58828e7i 0.167449 + 0.571070i
\(155\) 1.02684e8 2.21484
\(156\) 0 0
\(157\) −4.67384e7 −0.963884 −0.481942 0.876203i \(-0.660068\pi\)
−0.481942 + 0.876203i \(0.660068\pi\)
\(158\) −2.74989e7 9.37825e7i −0.554645 1.89157i
\(159\) 0 0
\(160\) 9.40396e7 + 1.37007e7i 1.81506 + 0.264438i
\(161\) 1.02166e6i 0.0192938i
\(162\) 0 0
\(163\) 4.74541e7i 0.858257i −0.903243 0.429128i \(-0.858821\pi\)
0.903243 0.429128i \(-0.141179\pi\)
\(164\) 1.68690e7 + 2.62920e7i 0.298632 + 0.465447i
\(165\) 0 0
\(166\) −9.41161e6 + 2.75967e6i −0.159693 + 0.0468251i
\(167\) −7.81920e7 −1.29914 −0.649568 0.760304i \(-0.725050\pi\)
−0.649568 + 0.760304i \(0.725050\pi\)
\(168\) 0 0
\(169\) −6.18115e7 −0.985067
\(170\) −3.78294e7 + 1.10923e7i −0.590552 + 0.173161i
\(171\) 0 0
\(172\) −6.10430e6 9.51415e6i −0.0914716 0.142567i
\(173\) 9.24523e7i 1.35755i 0.734346 + 0.678776i \(0.237489\pi\)
−0.734346 + 0.678776i \(0.762511\pi\)
\(174\) 0 0
\(175\) 6.33576e7i 0.893646i
\(176\) 4.74622e7 1.03517e8i 0.656226 1.43125i
\(177\) 0 0
\(178\) −1.92837e7 6.57654e7i −0.256283 0.874032i
\(179\) −3.31204e7 −0.431628 −0.215814 0.976434i \(-0.569241\pi\)
−0.215814 + 0.976434i \(0.569241\pi\)
\(180\) 0 0
\(181\) −3.97750e7 −0.498581 −0.249290 0.968429i \(-0.580197\pi\)
−0.249290 + 0.968429i \(0.580197\pi\)
\(182\) −1.05697e6 3.60472e6i −0.0129961 0.0443222i
\(183\) 0 0
\(184\) −2.82840e6 + 3.25674e6i −0.0334717 + 0.0385408i
\(185\) 2.18262e8i 2.53441i
\(186\) 0 0
\(187\) 4.72401e7i 0.528281i
\(188\) 4.88605e7 3.13490e7i 0.536297 0.344090i
\(189\) 0 0
\(190\) −2.10236e8 + 6.16452e7i −2.22366 + 0.652022i
\(191\) −9.10602e7 −0.945610 −0.472805 0.881167i \(-0.656758\pi\)
−0.472805 + 0.881167i \(0.656758\pi\)
\(192\) 0 0
\(193\) 7.26301e7 0.727221 0.363610 0.931551i \(-0.381544\pi\)
0.363610 + 0.931551i \(0.381544\pi\)
\(194\) −1.30134e8 + 3.81580e7i −1.27964 + 0.375214i
\(195\) 0 0
\(196\) −1.26746e7 + 8.13205e6i −0.120237 + 0.0771443i
\(197\) 1.49839e8i 1.39635i −0.715927 0.698175i \(-0.753996\pi\)
0.715927 0.698175i \(-0.246004\pi\)
\(198\) 0 0
\(199\) 7.77032e7i 0.698961i −0.936944 0.349481i \(-0.886358\pi\)
0.936944 0.349481i \(-0.113642\pi\)
\(200\) 1.75401e8 2.01964e8i 1.55034 1.78513i
\(201\) 0 0
\(202\) 3.04998e7 + 1.04017e8i 0.260355 + 0.887920i
\(203\) 6.14853e7 0.515864
\(204\) 0 0
\(205\) 1.25119e8 1.01435
\(206\) −4.10366e7 1.39952e8i −0.327067 1.11543i
\(207\) 0 0
\(208\) −6.61008e6 + 1.44168e7i −0.0509314 + 0.111083i
\(209\) 2.62536e8i 1.98919i
\(210\) 0 0
\(211\) 1.31549e7i 0.0964050i −0.998838 0.0482025i \(-0.984651\pi\)
0.998838 0.0482025i \(-0.0153493\pi\)
\(212\) 1.08738e8 + 1.69478e8i 0.783799 + 1.22163i
\(213\) 0 0
\(214\) 7.06522e7 2.07166e7i 0.492808 0.144501i
\(215\) −4.52763e7 −0.310696
\(216\) 0 0
\(217\) 6.86990e7 0.456396
\(218\) 2.48324e8 7.28134e7i 1.62338 0.476007i
\(219\) 0 0
\(220\) −2.46310e8 3.83898e8i −1.55956 2.43073i
\(221\) 6.57916e6i 0.0410013i
\(222\) 0 0
\(223\) 1.23865e8i 0.747968i −0.927435 0.373984i \(-0.877991\pi\)
0.927435 0.373984i \(-0.122009\pi\)
\(224\) 6.29156e7 + 9.16624e6i 0.374016 + 0.0544908i
\(225\) 0 0
\(226\) 5.37688e7 + 1.83374e8i 0.309849 + 1.05671i
\(227\) 1.65072e8 0.936661 0.468330 0.883553i \(-0.344856\pi\)
0.468330 + 0.883553i \(0.344856\pi\)
\(228\) 0 0
\(229\) 4.70535e7 0.258922 0.129461 0.991585i \(-0.458675\pi\)
0.129461 + 0.991585i \(0.458675\pi\)
\(230\) 4.86125e6 + 1.65789e7i 0.0263451 + 0.0898478i
\(231\) 0 0
\(232\) −1.95996e8 1.70217e8i −1.03048 0.894944i
\(233\) 1.57640e8i 0.816436i −0.912885 0.408218i \(-0.866150\pi\)
0.912885 0.408218i \(-0.133850\pi\)
\(234\) 0 0
\(235\) 2.32519e8i 1.16875i
\(236\) 8.32000e6 5.33813e6i 0.0412032 0.0264361i
\(237\) 0 0
\(238\) −2.53091e7 + 7.42112e6i −0.121691 + 0.0356821i
\(239\) −2.25713e8 −1.06946 −0.534730 0.845023i \(-0.679587\pi\)
−0.534730 + 0.845023i \(0.679587\pi\)
\(240\) 0 0
\(241\) 1.45737e8 0.670673 0.335336 0.942098i \(-0.391150\pi\)
0.335336 + 0.942098i \(0.391150\pi\)
\(242\) −3.12929e8 + 9.17569e7i −1.41936 + 0.416183i
\(243\) 0 0
\(244\) −1.28500e8 + 8.24462e7i −0.566292 + 0.363334i
\(245\) 6.03163e7i 0.262032i
\(246\) 0 0
\(247\) 3.65635e7i 0.154386i
\(248\) −2.18991e8 1.90188e8i −0.911685 0.791776i
\(249\) 0 0
\(250\) −1.73962e8 5.93283e8i −0.704150 2.40144i
\(251\) 1.30634e8 0.521432 0.260716 0.965416i \(-0.416041\pi\)
0.260716 + 0.965416i \(0.416041\pi\)
\(252\) 0 0
\(253\) 2.07031e7 0.0803738
\(254\) 1.08613e6 + 3.70415e6i 0.00415875 + 0.0141831i
\(255\) 0 0
\(256\) −1.75179e8 2.03396e8i −0.652592 0.757709i
\(257\) 1.00167e8i 0.368095i −0.982917 0.184048i \(-0.941080\pi\)
0.982917 0.184048i \(-0.0589200\pi\)
\(258\) 0 0
\(259\) 1.46024e8i 0.522248i
\(260\) 3.43037e7 + 5.34656e7i 0.121041 + 0.188655i
\(261\) 0 0
\(262\) −1.02831e8 + 3.01521e7i −0.353240 + 0.103577i
\(263\) 4.92409e8 1.66909 0.834547 0.550937i \(-0.185730\pi\)
0.834547 + 0.550937i \(0.185730\pi\)
\(264\) 0 0
\(265\) 8.06519e8 2.66228
\(266\) −1.40655e8 + 4.12427e7i −0.458214 + 0.134357i
\(267\) 0 0
\(268\) −1.18493e8 1.84683e8i −0.376030 0.586079i
\(269\) 1.03348e8i 0.323719i −0.986814 0.161859i \(-0.948251\pi\)
0.986814 0.161859i \(-0.0517491\pi\)
\(270\) 0 0
\(271\) 6.11019e8i 1.86493i 0.361264 + 0.932464i \(0.382345\pi\)
−0.361264 + 0.932464i \(0.617655\pi\)
\(272\) 1.01222e8 + 4.64101e7i 0.304989 + 0.139837i
\(273\) 0 0
\(274\) −7.82860e7 2.66988e8i −0.229910 0.784087i
\(275\) −1.28389e9 −3.72274
\(276\) 0 0
\(277\) 6.69007e8 1.89126 0.945630 0.325245i \(-0.105447\pi\)
0.945630 + 0.325245i \(0.105447\pi\)
\(278\) −1.73481e8 5.91640e8i −0.484277 1.65159i
\(279\) 0 0
\(280\) 1.66981e8 1.92269e8i 0.454584 0.523428i
\(281\) 3.40848e8i 0.916408i −0.888847 0.458204i \(-0.848493\pi\)
0.888847 0.458204i \(-0.151507\pi\)
\(282\) 0 0
\(283\) 1.30260e8i 0.341633i 0.985303 + 0.170816i \(0.0546405\pi\)
−0.985303 + 0.170816i \(0.945359\pi\)
\(284\) 1.64412e8 1.05487e8i 0.425912 0.273266i
\(285\) 0 0
\(286\) 7.30465e7 2.14187e7i 0.184637 0.0541391i
\(287\) 8.37090e7 0.209019
\(288\) 0 0
\(289\) 3.64146e8 0.887427
\(290\) −9.97742e8 + 2.92557e8i −2.40229 + 0.704398i
\(291\) 0 0
\(292\) −6.13779e8 + 3.93802e8i −1.44269 + 0.925632i
\(293\) 4.55641e8i 1.05825i −0.848545 0.529123i \(-0.822521\pi\)
0.848545 0.529123i \(-0.177479\pi\)
\(294\) 0 0
\(295\) 3.95935e7i 0.0897939i
\(296\) 4.04258e8 4.65480e8i 0.906019 1.04323i
\(297\) 0 0
\(298\) −1.50084e7 5.11848e7i −0.0328532 0.112043i
\(299\) −2.88334e6 −0.00623802
\(300\) 0 0
\(301\) −3.02913e7 −0.0640229
\(302\) −1.94316e8 6.62698e8i −0.405961 1.38450i
\(303\) 0 0
\(304\) 5.62540e8 + 2.57923e8i 1.14841 + 0.526541i
\(305\) 6.11513e8i 1.23412i
\(306\) 0 0
\(307\) 9.01188e8i 1.77759i −0.458307 0.888794i \(-0.651544\pi\)
0.458307 0.888794i \(-0.348456\pi\)
\(308\) −1.64789e8 2.56840e8i −0.321367 0.500882i
\(309\) 0 0
\(310\) −1.11480e9 + 3.26882e8i −2.12536 + 0.623196i
\(311\) −8.22596e8 −1.55069 −0.775345 0.631538i \(-0.782424\pi\)
−0.775345 + 0.631538i \(0.782424\pi\)
\(312\) 0 0
\(313\) −3.31209e8 −0.610515 −0.305258 0.952270i \(-0.598743\pi\)
−0.305258 + 0.952270i \(0.598743\pi\)
\(314\) 5.07420e8 1.48786e8i 0.924941 0.271211i
\(315\) 0 0
\(316\) 5.97089e8 + 9.30622e8i 1.06447 + 1.65908i
\(317\) 3.47756e8i 0.613150i 0.951847 + 0.306575i \(0.0991830\pi\)
−0.951847 + 0.306575i \(0.900817\pi\)
\(318\) 0 0
\(319\) 1.24595e9i 2.14898i
\(320\) −1.06457e9 + 1.50619e8i −1.81613 + 0.256954i
\(321\) 0 0
\(322\) 3.25233e6 + 1.10918e7i 0.00542875 + 0.0185143i
\(323\) −2.56716e8 −0.423882
\(324\) 0 0
\(325\) 1.78808e8 0.288932
\(326\) 1.51064e8 + 5.15191e8i 0.241490 + 0.823582i
\(327\) 0 0
\(328\) −2.66838e8 2.31742e8i −0.417531 0.362615i
\(329\) 1.55563e8i 0.240835i
\(330\) 0 0
\(331\) 1.14708e9i 1.73858i −0.494298 0.869292i \(-0.664575\pi\)
0.494298 0.869292i \(-0.335425\pi\)
\(332\) 9.33932e7 5.99213e7i 0.140066 0.0898665i
\(333\) 0 0
\(334\) 8.48900e8 2.48914e8i 1.24665 0.365542i
\(335\) −8.78878e8 −1.27724
\(336\) 0 0
\(337\) 8.31129e8 1.18294 0.591471 0.806326i \(-0.298547\pi\)
0.591471 + 0.806326i \(0.298547\pi\)
\(338\) 6.71063e8 1.96769e8i 0.945268 0.277171i
\(339\) 0 0
\(340\) 3.75388e8 2.40850e8i 0.517970 0.332331i
\(341\) 1.39213e9i 1.90125i
\(342\) 0 0
\(343\) 4.03536e7i 0.0539949i
\(344\) 9.65591e7 + 8.38592e7i 0.127891 + 0.111070i
\(345\) 0 0
\(346\) −2.94310e8 1.00372e9i −0.381978 1.30270i
\(347\) 9.66197e8 1.24140 0.620701 0.784047i \(-0.286848\pi\)
0.620701 + 0.784047i \(0.286848\pi\)
\(348\) 0 0
\(349\) 1.56923e9 1.97605 0.988027 0.154280i \(-0.0493058\pi\)
0.988027 + 0.154280i \(0.0493058\pi\)
\(350\) −2.01691e8 6.87850e8i −0.251448 0.857542i
\(351\) 0 0
\(352\) −1.85746e8 + 1.27493e9i −0.226997 + 1.55807i
\(353\) 7.01860e8i 0.849257i 0.905368 + 0.424629i \(0.139595\pi\)
−0.905368 + 0.424629i \(0.860405\pi\)
\(354\) 0 0
\(355\) 7.82411e8i 0.928188i
\(356\) 4.18712e8 + 6.52603e8i 0.491858 + 0.766609i
\(357\) 0 0
\(358\) 3.59576e8 1.05435e8i 0.414190 0.121449i
\(359\) −1.49448e9 −1.70474 −0.852370 0.522939i \(-0.824836\pi\)
−0.852370 + 0.522939i \(0.824836\pi\)
\(360\) 0 0
\(361\) −5.32823e8 −0.596084
\(362\) 4.31822e8 1.26619e8i 0.478437 0.140287i
\(363\) 0 0
\(364\) 2.29503e7 + 3.57703e7i 0.0249421 + 0.0388747i
\(365\) 2.92088e9i 3.14404i
\(366\) 0 0
\(367\) 1.38437e9i 1.46191i 0.682425 + 0.730955i \(0.260925\pi\)
−0.682425 + 0.730955i \(0.739075\pi\)
\(368\) 2.03394e7 4.43610e7i 0.0212751 0.0464017i
\(369\) 0 0
\(370\) −6.94809e8 2.36959e9i −0.713115 2.43202i
\(371\) 5.39588e8 0.548597
\(372\) 0 0
\(373\) −7.73503e8 −0.771758 −0.385879 0.922549i \(-0.626102\pi\)
−0.385879 + 0.922549i \(0.626102\pi\)
\(374\) −1.50383e8 5.12868e8i −0.148644 0.506938i
\(375\) 0 0
\(376\) −4.30664e8 + 4.95885e8i −0.417812 + 0.481087i
\(377\) 1.73524e8i 0.166788i
\(378\) 0 0
\(379\) 6.35484e8i 0.599608i 0.954001 + 0.299804i \(0.0969213\pi\)
−0.954001 + 0.299804i \(0.903079\pi\)
\(380\) 2.08621e9 1.33852e9i 1.95036 1.25136i
\(381\) 0 0
\(382\) 9.88606e8 2.89879e8i 0.907406 0.266069i
\(383\) 1.60965e9 1.46399 0.731993 0.681312i \(-0.238590\pi\)
0.731993 + 0.681312i \(0.238590\pi\)
\(384\) 0 0
\(385\) −1.22226e9 −1.09157
\(386\) −7.88518e8 + 2.31209e8i −0.697840 + 0.204620i
\(387\) 0 0
\(388\) 1.29135e9 8.28533e8i 1.12236 0.720110i
\(389\) 6.09066e8i 0.524615i −0.964984 0.262308i \(-0.915516\pi\)
0.964984 0.262308i \(-0.0844835\pi\)
\(390\) 0 0
\(391\) 2.02442e7i 0.0171271i
\(392\) 1.11716e8 1.28635e8i 0.0936728 0.107859i
\(393\) 0 0
\(394\) 4.76995e8 + 1.62675e9i 0.392895 + 1.33994i
\(395\) 4.42868e9 3.61563
\(396\) 0 0
\(397\) −2.25970e9 −1.81252 −0.906262 0.422717i \(-0.861076\pi\)
−0.906262 + 0.422717i \(0.861076\pi\)
\(398\) 2.47358e8 + 8.43594e8i 0.196669 + 0.670722i
\(399\) 0 0
\(400\) −1.26133e9 + 2.75101e9i −0.985416 + 2.14923i
\(401\) 1.34647e9i 1.04278i −0.853319 0.521389i \(-0.825414\pi\)
0.853319 0.521389i \(-0.174586\pi\)
\(402\) 0 0
\(403\) 1.93883e8i 0.147561i
\(404\) −6.62248e8 1.03218e9i −0.499673 0.778789i
\(405\) 0 0
\(406\) −6.67522e8 + 1.95730e8i −0.495022 + 0.145150i
\(407\) −2.95906e9 −2.17557
\(408\) 0 0
\(409\) 1.51324e9 1.09364 0.546821 0.837250i \(-0.315838\pi\)
0.546821 + 0.837250i \(0.315838\pi\)
\(410\) −1.35837e9 + 3.98302e8i −0.973365 + 0.285410i
\(411\) 0 0
\(412\) 8.91038e8 + 1.38877e9i 0.627706 + 0.978340i
\(413\) 2.64894e7i 0.0185032i
\(414\) 0 0
\(415\) 4.44443e8i 0.305244i
\(416\) 2.58690e7 1.77560e8i 0.0176178 0.120926i
\(417\) 0 0
\(418\) −8.35749e8 2.85025e9i −0.559704 1.90882i
\(419\) 7.19570e7 0.0477886 0.0238943 0.999714i \(-0.492393\pi\)
0.0238943 + 0.999714i \(0.492393\pi\)
\(420\) 0 0
\(421\) −1.76118e8 −0.115031 −0.0575156 0.998345i \(-0.518318\pi\)
−0.0575156 + 0.998345i \(0.518318\pi\)
\(422\) 4.18770e7 + 1.42818e8i 0.0271258 + 0.0925101i
\(423\) 0 0
\(424\) −1.72004e9 1.49381e9i −1.09586 0.951731i
\(425\) 1.25543e9i 0.793290i
\(426\) 0 0
\(427\) 4.09122e8i 0.254305i
\(428\) −7.01095e8 + 4.49824e8i −0.432239 + 0.277326i
\(429\) 0 0
\(430\) 4.91547e8 1.44131e8i 0.298144 0.0874215i
\(431\) −1.07945e9 −0.649430 −0.324715 0.945812i \(-0.605268\pi\)
−0.324715 + 0.945812i \(0.605268\pi\)
\(432\) 0 0
\(433\) −2.09096e9 −1.23777 −0.618884 0.785483i \(-0.712415\pi\)
−0.618884 + 0.785483i \(0.712415\pi\)
\(434\) −7.45839e8 + 2.18695e8i −0.437957 + 0.128417i
\(435\) 0 0
\(436\) −2.46416e9 + 1.58101e9i −1.42386 + 0.913551i
\(437\) 1.12507e8i 0.0644902i
\(438\) 0 0
\(439\) 2.09571e9i 1.18224i 0.806585 + 0.591118i \(0.201313\pi\)
−0.806585 + 0.591118i \(0.798687\pi\)
\(440\) 3.89618e9 + 3.38373e9i 2.18049 + 1.89370i
\(441\) 0 0
\(442\) 2.09439e7 + 7.14274e7i 0.0115367 + 0.0393448i
\(443\) −4.95891e8 −0.271002 −0.135501 0.990777i \(-0.543264\pi\)
−0.135501 + 0.990777i \(0.543264\pi\)
\(444\) 0 0
\(445\) 3.10563e9 1.67067
\(446\) 3.94310e8 + 1.34476e9i 0.210458 + 0.717749i
\(447\) 0 0
\(448\) −7.12230e8 + 1.00769e8i −0.374237 + 0.0529487i
\(449\) 2.38831e9i 1.24517i −0.782551 0.622586i \(-0.786082\pi\)
0.782551 0.622586i \(-0.213918\pi\)
\(450\) 0 0
\(451\) 1.69629e9i 0.870729i
\(452\) −1.16749e9 1.81965e9i −0.594662 0.926839i
\(453\) 0 0
\(454\) −1.79212e9 + 5.25485e8i −0.898818 + 0.263551i
\(455\) 1.70225e8 0.0847195
\(456\) 0 0
\(457\) −1.91773e9 −0.939899 −0.469949 0.882693i \(-0.655728\pi\)
−0.469949 + 0.882693i \(0.655728\pi\)
\(458\) −5.10842e8 + 1.49789e8i −0.248461 + 0.0728535i
\(459\) 0 0
\(460\) −1.05553e8 1.64515e8i −0.0505615 0.0788050i
\(461\) 6.71193e8i 0.319076i −0.987192 0.159538i \(-0.949000\pi\)
0.987192 0.159538i \(-0.0510005\pi\)
\(462\) 0 0
\(463\) 1.48992e9i 0.697635i 0.937191 + 0.348817i \(0.113417\pi\)
−0.937191 + 0.348817i \(0.886583\pi\)
\(464\) 2.66971e9 + 1.22406e9i 1.24066 + 0.568838i
\(465\) 0 0
\(466\) 5.01828e8 + 1.71144e9i 0.229723 + 0.783451i
\(467\) 1.72985e9 0.785956 0.392978 0.919548i \(-0.371445\pi\)
0.392978 + 0.919548i \(0.371445\pi\)
\(468\) 0 0
\(469\) −5.87998e8 −0.263191
\(470\) 7.40195e8 + 2.52437e9i 0.328854 + 1.12153i
\(471\) 0 0
\(472\) −7.33338e7 + 8.44397e7i −0.0321002 + 0.0369615i
\(473\) 6.13828e8i 0.266706i
\(474\) 0 0
\(475\) 6.97702e9i 2.98705i
\(476\) 2.51147e8 1.61137e8i 0.106734 0.0684810i
\(477\) 0 0
\(478\) 2.45048e9 7.18529e8i 1.02625 0.300917i
\(479\) 3.39296e9 1.41060 0.705301 0.708908i \(-0.250812\pi\)
0.705301 + 0.708908i \(0.250812\pi\)
\(480\) 0 0
\(481\) 4.12111e8 0.168852
\(482\) −1.58221e9 + 4.63936e8i −0.643577 + 0.188709i
\(483\) 0 0
\(484\) 3.10525e9 1.99234e9i 1.24491 0.798738i
\(485\) 6.14532e9i 2.44595i
\(486\) 0 0
\(487\) 2.58539e9i 1.01432i −0.861852 0.507159i \(-0.830696\pi\)
0.861852 0.507159i \(-0.169304\pi\)
\(488\) 1.13262e9 1.30415e9i 0.441180 0.507994i
\(489\) 0 0
\(490\) −1.92009e8 6.54831e8i −0.0737286 0.251445i
\(491\) 1.16509e7 0.00444194 0.00222097 0.999998i \(-0.499293\pi\)
0.00222097 + 0.999998i \(0.499293\pi\)
\(492\) 0 0
\(493\) −1.21833e9 −0.457932
\(494\) 1.16395e8 + 3.96956e8i 0.0434401 + 0.148149i
\(495\) 0 0
\(496\) 2.98294e9 + 1.36767e9i 1.09764 + 0.503263i
\(497\) 5.23459e8i 0.191265i
\(498\) 0 0
\(499\) 6.10284e8i 0.219877i −0.993938 0.109939i \(-0.964935\pi\)
0.993938 0.109939i \(-0.0350654\pi\)
\(500\) 3.77728e9 + 5.88726e9i 1.35140 + 2.10629i
\(501\) 0 0
\(502\) −1.41824e9 + 4.15856e8i −0.500365 + 0.146717i
\(503\) 5.36664e9 1.88025 0.940123 0.340835i \(-0.110710\pi\)
0.940123 + 0.340835i \(0.110710\pi\)
\(504\) 0 0
\(505\) −4.91197e9 −1.69721
\(506\) −2.24766e8 + 6.59058e7i −0.0771266 + 0.0226150i
\(507\) 0 0
\(508\) −2.35834e7 3.67570e7i −0.00798146 0.0124399i
\(509\) 1.27945e9i 0.430043i 0.976609 + 0.215022i \(0.0689822\pi\)
−0.976609 + 0.215022i \(0.931018\pi\)
\(510\) 0 0
\(511\) 1.95416e9i 0.647869i
\(512\) 2.54934e9 + 1.65053e9i 0.839425 + 0.543475i
\(513\) 0 0
\(514\) 3.18870e8 + 1.08748e9i 0.103572 + 0.353224i
\(515\) 6.60893e9 2.13209
\(516\) 0 0
\(517\) 3.15235e9 1.00327
\(518\) −4.64850e8 1.58533e9i −0.146946 0.501148i
\(519\) 0 0
\(520\) −5.42623e8 4.71255e8i −0.169234 0.146975i
\(521\) 1.78970e9i 0.554431i 0.960808 + 0.277216i \(0.0894116\pi\)
−0.960808 + 0.277216i \(0.910588\pi\)
\(522\) 0 0
\(523\) 1.61533e9i 0.493748i 0.969048 + 0.246874i \(0.0794035\pi\)
−0.969048 + 0.246874i \(0.920597\pi\)
\(524\) 1.02041e9 6.54699e8i 0.309825 0.198784i
\(525\) 0 0
\(526\) −5.34589e9 + 1.56752e9i −1.60166 + 0.469638i
\(527\) −1.36127e9 −0.405142
\(528\) 0 0
\(529\) −3.39595e9 −0.997394
\(530\) −8.75607e9 + 2.56745e9i −2.55472 + 0.749094i
\(531\) 0 0
\(532\) 1.39574e9 8.95512e8i 0.401897 0.257858i
\(533\) 2.36244e8i 0.0675795i
\(534\) 0 0
\(535\) 3.33640e9i 0.941975i
\(536\) 1.87435e9 + 1.62783e9i 0.525744 + 0.456596i
\(537\) 0 0
\(538\) 3.28994e8 + 1.12201e9i 0.0910857 + 0.310640i
\(539\) −8.17732e8 −0.224932
\(540\) 0 0
\(541\) −2.11635e9 −0.574642 −0.287321 0.957834i \(-0.592765\pi\)
−0.287321 + 0.957834i \(0.592765\pi\)
\(542\) −1.94510e9 6.63360e9i −0.524740 1.78958i
\(543\) 0 0
\(544\) −1.24667e9 1.81629e8i −0.332014 0.0483715i
\(545\) 1.17266e10i 3.10301i
\(546\) 0 0
\(547\) 3.87336e9i 1.01189i −0.862566 0.505944i \(-0.831144\pi\)
0.862566 0.505944i \(-0.168856\pi\)
\(548\) 1.69984e9 + 2.64937e9i 0.441242 + 0.687719i
\(549\) 0 0
\(550\) 1.39387e10 4.08710e9i 3.57234 1.04748i
\(551\) −6.77084e9 −1.72430
\(552\) 0 0
\(553\) 2.96293e9 0.745047
\(554\) −7.26315e9 + 2.12970e9i −1.81485 + 0.532149i
\(555\) 0 0
\(556\) 3.76682e9 + 5.87096e9i 0.929423 + 1.44860i
\(557\) 3.18813e9i 0.781705i 0.920453 + 0.390853i \(0.127820\pi\)
−0.920453 + 0.390853i \(0.872180\pi\)
\(558\) 0 0
\(559\) 8.54882e7i 0.0206997i
\(560\) −1.20079e9 + 2.61896e9i −0.288940 + 0.630189i
\(561\) 0 0
\(562\) 1.08505e9 + 3.70046e9i 0.257853 + 0.879384i
\(563\) −1.86008e9 −0.439292 −0.219646 0.975580i \(-0.570490\pi\)
−0.219646 + 0.975580i \(0.570490\pi\)
\(564\) 0 0
\(565\) −8.65943e9 −2.01985
\(566\) −4.14667e8 1.41419e9i −0.0961263 0.327830i
\(567\) 0 0
\(568\) −1.44916e9 + 1.66862e9i −0.331815 + 0.382066i
\(569\) 4.37966e9i 0.996661i −0.866987 0.498331i \(-0.833947\pi\)
0.866987 0.498331i \(-0.166053\pi\)
\(570\) 0 0
\(571\) 1.50649e8i 0.0338642i −0.999857 0.0169321i \(-0.994610\pi\)
0.999857 0.0169321i \(-0.00538991\pi\)
\(572\) −7.24855e8 + 4.65069e8i −0.161944 + 0.103904i
\(573\) 0 0
\(574\) −9.08796e8 + 2.66477e8i −0.200574 + 0.0588123i
\(575\) −5.50197e8 −0.120693
\(576\) 0 0
\(577\) −2.10867e9 −0.456975 −0.228488 0.973547i \(-0.573378\pi\)
−0.228488 + 0.973547i \(0.573378\pi\)
\(578\) −3.95339e9 + 1.15921e9i −0.851574 + 0.249698i
\(579\) 0 0
\(580\) 9.90078e9 6.35237e9i 2.10703 1.35188i
\(581\) 2.97347e8i 0.0628995i
\(582\) 0 0
\(583\) 1.09343e10i 2.28534i
\(584\) 5.40995e9 6.22925e9i 1.12395 1.29417i
\(585\) 0 0
\(586\) 1.45048e9 + 4.94672e9i 0.297762 + 1.01549i
\(587\) −8.38246e9 −1.71056 −0.855280 0.518167i \(-0.826615\pi\)
−0.855280 + 0.518167i \(0.826615\pi\)
\(588\) 0 0
\(589\) −7.56522e9 −1.52552
\(590\) 1.26041e8 + 4.29852e8i 0.0252656 + 0.0861661i
\(591\) 0 0
\(592\) −2.90708e9 + 6.34044e9i −0.575878 + 1.25601i
\(593\) 6.67307e8i 0.131412i 0.997839 + 0.0657059i \(0.0209299\pi\)
−0.997839 + 0.0657059i \(0.979070\pi\)
\(594\) 0 0
\(595\) 1.19517e9i 0.232605i
\(596\) 3.25881e8 + 5.07917e8i 0.0630517 + 0.0982722i
\(597\) 0 0
\(598\) 3.13033e7 9.17874e6i 0.00598599 0.00175521i
\(599\) −4.39677e9 −0.835872 −0.417936 0.908476i \(-0.637246\pi\)
−0.417936 + 0.908476i \(0.637246\pi\)
\(600\) 0 0
\(601\) −7.73210e9 −1.45290 −0.726452 0.687217i \(-0.758832\pi\)
−0.726452 + 0.687217i \(0.758832\pi\)
\(602\) 3.28861e8 9.64285e7i 0.0614363 0.0180143i
\(603\) 0 0
\(604\) 4.21923e9 + 6.57608e9i 0.779119 + 1.21433i
\(605\) 1.47774e10i 2.71303i
\(606\) 0 0
\(607\) 4.36451e9i 0.792091i −0.918231 0.396045i \(-0.870382\pi\)
0.918231 0.396045i \(-0.129618\pi\)
\(608\) −6.92834e9 1.00940e9i −1.25016 0.182138i
\(609\) 0 0
\(610\) −1.94667e9 6.63896e9i −0.347247 1.18426i
\(611\) −4.39030e8 −0.0778664
\(612\) 0 0
\(613\) 1.20038e9 0.210478 0.105239 0.994447i \(-0.466439\pi\)
0.105239 + 0.994447i \(0.466439\pi\)
\(614\) 2.86882e9 + 9.78385e9i 0.500165 + 1.70577i
\(615\) 0 0
\(616\) 2.60667e9 + 2.26383e9i 0.449318 + 0.390221i
\(617\) 8.52396e9i 1.46098i −0.682925 0.730488i \(-0.739293\pi\)
0.682925 0.730488i \(-0.260707\pi\)
\(618\) 0 0
\(619\) 4.84688e9i 0.821381i −0.911775 0.410691i \(-0.865288\pi\)
0.911775 0.410691i \(-0.134712\pi\)
\(620\) 1.10624e10 7.09766e9i 1.86414 1.19604i
\(621\) 0 0
\(622\) 8.93061e9 2.61863e9i 1.48804 0.436322i
\(623\) 2.07777e9 0.344262
\(624\) 0 0
\(625\) 1.35856e10 2.22586
\(626\) 3.59581e9 1.05436e9i 0.585850 0.171783i
\(627\) 0 0
\(628\) −5.03523e9 + 3.23062e9i −0.811261 + 0.520507i
\(629\) 2.89348e9i 0.463599i
\(630\) 0 0
\(631\) 9.50221e9i 1.50564i −0.658225 0.752821i \(-0.728692\pi\)
0.658225 0.752821i \(-0.271308\pi\)
\(632\) −9.44489e9 8.20265e9i −1.48829 1.29254i
\(633\) 0 0
\(634\) −1.10704e9 3.77545e9i −0.172524 0.588378i
\(635\) −1.74920e8 −0.0271102
\(636\) 0 0
\(637\) 1.13886e8 0.0174575
\(638\) −3.96631e9 1.35268e10i −0.604665 2.06216i
\(639\) 0 0
\(640\) 1.10781e10 5.02413e9i 1.67046 0.757584i
\(641\) 8.25267e8i 0.123763i 0.998083 + 0.0618816i \(0.0197101\pi\)
−0.998083 + 0.0618816i \(0.980290\pi\)
\(642\) 0 0
\(643\) 1.46353e9i 0.217102i −0.994091 0.108551i \(-0.965379\pi\)
0.994091 0.108551i \(-0.0346211\pi\)
\(644\) −7.06187e7 1.10066e8i −0.0104188 0.0162388i
\(645\) 0 0
\(646\) 2.78707e9 8.17224e8i 0.406756 0.119269i
\(647\) −8.14995e9 −1.18301 −0.591507 0.806300i \(-0.701467\pi\)
−0.591507 + 0.806300i \(0.701467\pi\)
\(648\) 0 0
\(649\) 5.36785e8 0.0770804
\(650\) −1.94125e9 + 5.69213e8i −0.277259 + 0.0812976i
\(651\) 0 0
\(652\) −3.28009e9 5.11234e9i −0.463468 0.722359i
\(653\) 7.90957e9i 1.11162i 0.831309 + 0.555811i \(0.187592\pi\)
−0.831309 + 0.555811i \(0.812408\pi\)
\(654\) 0 0
\(655\) 4.85598e9i 0.675199i
\(656\) 3.63468e9 + 1.66649e9i 0.502692 + 0.230483i
\(657\) 0 0
\(658\) 4.95215e8 + 1.68889e9i 0.0677646 + 0.231105i
\(659\) 1.79941e9 0.244924 0.122462 0.992473i \(-0.460921\pi\)
0.122462 + 0.992473i \(0.460921\pi\)
\(660\) 0 0
\(661\) −2.56731e9 −0.345759 −0.172879 0.984943i \(-0.555307\pi\)
−0.172879 + 0.984943i \(0.555307\pi\)
\(662\) 3.65158e9 + 1.24534e10i 0.489191 + 1.66834i
\(663\) 0 0
\(664\) −8.23182e8 + 9.47848e8i −0.109121 + 0.125646i
\(665\) 6.64211e9i 0.875852i
\(666\) 0 0
\(667\) 5.33937e8i 0.0696707i
\(668\) −8.42380e9 + 5.40473e9i −1.09343 + 0.701546i
\(669\) 0 0
\(670\) 9.54164e9 2.79780e9i 1.22564 0.359380i
\(671\) −8.29052e9 −1.05938
\(672\) 0 0
\(673\) 1.58520e9 0.200462 0.100231 0.994964i \(-0.468042\pi\)
0.100231 + 0.994964i \(0.468042\pi\)
\(674\) −9.02325e9 + 2.64579e9i −1.13515 + 0.332848i
\(675\) 0 0
\(676\) −6.65909e9 + 4.27249e9i −0.829090 + 0.531946i
\(677\) 1.07207e9i 0.132789i 0.997793 + 0.0663947i \(0.0211497\pi\)
−0.997793 + 0.0663947i \(0.978850\pi\)
\(678\) 0 0
\(679\) 4.11142e9i 0.504020i
\(680\) −3.30873e9 + 3.80982e9i −0.403534 + 0.464647i
\(681\) 0 0
\(682\) −4.43166e9 1.51138e10i −0.534960 1.82444i
\(683\) 4.50598e9 0.541149 0.270575 0.962699i \(-0.412786\pi\)
0.270575 + 0.962699i \(0.412786\pi\)
\(684\) 0 0
\(685\) 1.26079e10 1.49874
\(686\) −1.28461e8 4.38104e8i −0.0151927 0.0518134i
\(687\) 0 0
\(688\) −1.31526e9 6.03043e8i −0.153976 0.0705975i
\(689\) 1.52283e9i 0.177371i
\(690\) 0 0
\(691\) 2.55258e9i 0.294311i 0.989113 + 0.147155i \(0.0470117\pi\)
−0.989113 + 0.147155i \(0.952988\pi\)
\(692\) 6.39042e9 + 9.96009e9i 0.733092 + 1.14259i
\(693\) 0 0
\(694\) −1.04896e10 + 3.07577e9i −1.19125 + 0.349297i
\(695\) 2.79389e10 3.15692
\(696\) 0 0
\(697\) −1.65869e9 −0.185546
\(698\) −1.70366e10 + 4.99546e9i −1.89622 + 0.556008i
\(699\) 0 0
\(700\) 4.37936e9 + 6.82566e9i 0.482578 + 0.752145i
\(701\) 3.27800e9i 0.359414i −0.983720 0.179707i \(-0.942485\pi\)
0.983720 0.179707i \(-0.0575150\pi\)
\(702\) 0 0
\(703\) 1.60804e10i 1.74563i
\(704\) −2.04201e9 1.44327e10i −0.220573 1.55899i
\(705\) 0 0
\(706\) −2.23428e9 7.61983e9i −0.238958 0.814946i
\(707\) −3.28627e9 −0.349732
\(708\) 0 0
\(709\) −1.00606e10 −1.06014 −0.530069 0.847954i \(-0.677834\pi\)
−0.530069 + 0.847954i \(0.677834\pi\)
\(710\) 2.49071e9 + 8.49434e9i 0.261167 + 0.890688i
\(711\) 0 0
\(712\) −6.62327e9 5.75214e9i −0.687689 0.597241i
\(713\) 5.96582e8i 0.0616391i
\(714\) 0 0
\(715\) 3.44947e9i 0.352924i
\(716\) −3.56814e9 + 2.28933e9i −0.363284 + 0.233084i
\(717\) 0 0
\(718\) 1.62249e10 4.75747e9i 1.63587 0.479668i
\(719\) −1.81069e10 −1.81675 −0.908373 0.418161i \(-0.862675\pi\)
−0.908373 + 0.418161i \(0.862675\pi\)
\(720\) 0 0
\(721\) 4.42159e9 0.439344
\(722\) 5.78465e9 1.69617e9i 0.572001 0.167722i
\(723\) 0 0
\(724\) −4.28505e9 + 2.74930e9i −0.419635 + 0.269239i
\(725\) 3.31117e10i 3.22700i
\(726\) 0 0
\(727\) 1.39140e10i 1.34301i 0.740998 + 0.671507i \(0.234353\pi\)
−0.740998 + 0.671507i \(0.765647\pi\)
\(728\) −3.63033e8 3.15285e8i −0.0348727 0.0302861i
\(729\) 0 0
\(730\) −9.29823e9 3.17108e10i −0.884648 3.01702i
\(731\) 6.00222e8 0.0568331
\(732\) 0 0
\(733\) −5.67481e8 −0.0532215 −0.0266107 0.999646i \(-0.508471\pi\)
−0.0266107 + 0.999646i \(0.508471\pi\)
\(734\) −4.40696e9 1.50296e10i −0.411342 1.40285i
\(735\) 0 0
\(736\) −7.95995e7 + 5.46358e8i −0.00735933 + 0.0505132i
\(737\) 1.19153e10i 1.09640i
\(738\) 0 0
\(739\) 2.66240e9i 0.242671i 0.992612 + 0.121335i \(0.0387177\pi\)
−0.992612 + 0.121335i \(0.961282\pi\)
\(740\) 1.50866e10 + 2.35139e10i 1.36861 + 2.13311i
\(741\) 0 0
\(742\) −5.85810e9 + 1.71771e9i −0.526433 + 0.154360i
\(743\) 1.17550e10 1.05139 0.525693 0.850674i \(-0.323806\pi\)
0.525693 + 0.850674i \(0.323806\pi\)
\(744\) 0 0
\(745\) 2.41709e9 0.214164
\(746\) 8.39763e9 2.46235e9i 0.740578 0.217152i
\(747\) 0 0
\(748\) 3.26530e9 + 5.08929e9i 0.285277 + 0.444633i
\(749\) 2.23216e9i 0.194106i
\(750\) 0 0
\(751\) 3.68001e9i 0.317037i 0.987356 + 0.158518i \(0.0506717\pi\)
−0.987356 + 0.158518i \(0.949328\pi\)
\(752\) 3.09697e9 6.75460e9i 0.265567 0.579212i
\(753\) 0 0
\(754\) 5.52391e8 + 1.88388e9i 0.0469296 + 0.160049i
\(755\) 3.12945e10 2.64639
\(756\) 0 0
\(757\) −6.00364e9 −0.503013 −0.251507 0.967856i \(-0.580926\pi\)
−0.251507 + 0.967856i \(0.580926\pi\)
\(758\) −2.02298e9 6.89921e9i −0.168714 0.575383i
\(759\) 0 0
\(760\) −1.83882e10 + 2.11730e10i −1.51947 + 1.74958i
\(761\) 2.05678e10i 1.69177i 0.533366 + 0.845885i \(0.320927\pi\)
−0.533366 + 0.845885i \(0.679073\pi\)
\(762\) 0 0
\(763\) 7.84545e9i 0.639414i
\(764\) −9.81013e9 + 6.29420e9i −0.795881 + 0.510639i
\(765\) 0 0
\(766\) −1.74754e10 + 5.12413e9i −1.40484 + 0.411926i
\(767\) −7.47584e7 −0.00598241
\(768\) 0 0
\(769\) −3.33896e9 −0.264770 −0.132385 0.991198i \(-0.542264\pi\)
−0.132385 + 0.991198i \(0.542264\pi\)
\(770\) 1.32696e10 3.89091e9i 1.04747 0.307138i
\(771\) 0 0
\(772\) 7.82461e9 5.02029e9i 0.612072 0.392707i
\(773\) 4.49786e9i 0.350250i 0.984546 + 0.175125i \(0.0560329\pi\)
−0.984546 + 0.175125i \(0.943967\pi\)
\(774\) 0 0
\(775\) 3.69965e10i 2.85499i
\(776\) −1.13822e10 + 1.31059e10i −0.874396 + 1.00682i
\(777\) 0 0
\(778\) 1.93888e9 + 6.61240e9i 0.147613 + 0.503420i
\(779\) −9.21814e9 −0.698654
\(780\) 0 0
\(781\) 1.06075e10 0.796770
\(782\) −6.44450e7 2.19784e8i −0.00481909 0.0164351i
\(783\) 0 0
\(784\) −8.03365e8 + 1.75217e9i −0.0595397 + 0.129858i
\(785\) 2.39618e10i 1.76798i
\(786\) 0 0
\(787\) 1.52635e10i 1.11620i 0.829773 + 0.558101i \(0.188470\pi\)
−0.829773 + 0.558101i \(0.811530\pi\)
\(788\) −1.03571e10 1.61425e10i −0.754043 1.17525i
\(789\) 0 0
\(790\) −4.80805e10 + 1.40981e10i −3.46956 + 1.01734i
\(791\) −5.79345e9 −0.416216
\(792\) 0 0
\(793\) 1.15463e9 0.0822214
\(794\) 2.45327e10 7.19346e9i 1.73929 0.509995i
\(795\) 0 0
\(796\) −5.37095e9 8.37115e9i −0.377446 0.588287i
\(797\) 2.04580e8i 0.0143139i −0.999974 0.00715696i \(-0.997722\pi\)
0.999974 0.00715696i \(-0.00227815\pi\)
\(798\) 0 0
\(799\) 3.08248e9i 0.213790i
\(800\) 4.93630e9 3.38820e10i 0.340869 2.33967i
\(801\) 0 0
\(802\) 4.28632e9 + 1.46181e10i 0.293410 + 1.00065i
\(803\) −3.95995e10 −2.69889
\(804\) 0 0
\(805\) −5.23786e8 −0.0353890
\(806\) 6.17200e8 + 2.10491e9i 0.0415196 + 0.141599i
\(807\) 0 0
\(808\) 1.04756e10 + 9.09779e9i 0.698616 + 0.606731i
\(809\) 8.93941e9i 0.593594i −0.954941 0.296797i \(-0.904082\pi\)
0.954941 0.296797i \(-0.0959184\pi\)
\(810\) 0 0
\(811\) 5.70590e9i 0.375622i −0.982205 0.187811i \(-0.939861\pi\)
0.982205 0.187811i \(-0.0601393\pi\)
\(812\) 6.62395e9 4.24994e9i 0.434181 0.278572i
\(813\) 0 0
\(814\) 3.21254e10 9.41980e9i 2.08768 0.612148i
\(815\) −2.43288e10 −1.57423
\(816\) 0 0
\(817\) 3.33572e9 0.213999
\(818\) −1.64286e10 + 4.81719e9i −1.04946 + 0.307721i
\(819\) 0 0
\(820\) 1.34794e10 8.64842e9i 0.853733 0.547757i
\(821\) 1.17803e10i 0.742942i 0.928445 + 0.371471i \(0.121146\pi\)
−0.928445 + 0.371471i \(0.878854\pi\)
\(822\) 0 0
\(823\) 7.47614e9i 0.467496i 0.972297 + 0.233748i \(0.0750991\pi\)
−0.972297 + 0.233748i \(0.924901\pi\)
\(824\) −1.40946e10 1.22408e10i −0.877624 0.762194i
\(825\) 0 0
\(826\) 8.43255e7 + 2.87585e8i 0.00520630 + 0.0177556i
\(827\) −5.68386e9 −0.349441 −0.174721 0.984618i \(-0.555902\pi\)
−0.174721 + 0.984618i \(0.555902\pi\)
\(828\) 0 0
\(829\) 1.59689e10 0.973498 0.486749 0.873542i \(-0.338183\pi\)
0.486749 + 0.873542i \(0.338183\pi\)
\(830\) 1.41483e9 + 4.82515e9i 0.0858875 + 0.292912i
\(831\) 0 0
\(832\) 2.84391e8 + 2.01006e9i 0.0171193 + 0.120998i
\(833\) 7.99607e8i 0.0479313i
\(834\) 0 0
\(835\) 4.00875e10i 2.38290i
\(836\) 1.81468e10 + 2.82836e10i 1.07418 + 1.67422i
\(837\) 0 0
\(838\) −7.81210e8 + 2.29066e8i −0.0458578 + 0.0134464i
\(839\) 1.98205e10 1.15864 0.579318 0.815101i \(-0.303319\pi\)
0.579318 + 0.815101i \(0.303319\pi\)
\(840\) 0 0
\(841\) −1.48833e10 −0.862807
\(842\) 1.91204e9 5.60648e8i 0.110384 0.0323666i
\(843\) 0 0
\(844\) −9.09285e8 1.41721e9i −0.0520597 0.0811401i
\(845\) 3.16895e10i 1.80683i
\(846\) 0 0
\(847\) 9.88656e9i 0.559053i
\(848\) 2.34291e10 + 1.07422e10i 1.31938 + 0.604933i
\(849\) 0 0
\(850\) 3.99651e9 + 1.36297e10i 0.223210 + 0.761239i
\(851\) −1.26808e9 −0.0705329
\(852\) 0 0
\(853\) −1.55847e10 −0.859762 −0.429881 0.902886i \(-0.641444\pi\)
−0.429881 + 0.902886i \(0.641444\pi\)
\(854\) −1.30239e9 4.44168e9i −0.0715546 0.244031i
\(855\) 0 0
\(856\) 6.17956e9 7.11542e9i 0.336744 0.387742i
\(857\) 1.07475e10i 0.583277i −0.956529 0.291638i \(-0.905800\pi\)
0.956529 0.291638i \(-0.0942004\pi\)
\(858\) 0 0
\(859\) 1.22437e9i 0.0659077i −0.999457 0.0329538i \(-0.989509\pi\)
0.999457 0.0329538i \(-0.0104914\pi\)
\(860\) −4.87772e9 + 3.12955e9i −0.261500 + 0.167779i
\(861\) 0 0
\(862\) 1.17192e10 3.43629e9i 0.623192 0.182732i
\(863\) 2.77391e10 1.46911 0.734555 0.678549i \(-0.237391\pi\)
0.734555 + 0.678549i \(0.237391\pi\)
\(864\) 0 0
\(865\) 4.73985e10 2.49005
\(866\) 2.27008e10 6.65632e9i 1.18776 0.348274i
\(867\) 0 0
\(868\) 7.40110e9 4.74857e9i 0.384129 0.246458i
\(869\) 6.00413e10i 3.10371i
\(870\) 0 0
\(871\) 1.65945e9i 0.0850943i
\(872\) 2.17195e10 2.50088e10i 1.10928 1.27728i
\(873\) 0 0
\(874\) −3.58151e8 1.22144e9i −0.0181458 0.0618847i
\(875\) 1.87440e10 0.945875
\(876\) 0 0
\(877\) −4.17436e9 −0.208974 −0.104487 0.994526i \(-0.533320\pi\)
−0.104487 + 0.994526i \(0.533320\pi\)
\(878\) −6.67141e9 2.27523e10i −0.332649 1.13447i
\(879\) 0 0
\(880\) −5.30710e10 2.43329e10i −2.62523 1.20366i
\(881\) 4.37768e9i 0.215689i 0.994168 + 0.107845i \(0.0343949\pi\)
−0.994168 + 0.107845i \(0.965605\pi\)
\(882\) 0 0
\(883\) 2.27246e10i 1.11080i 0.831585 + 0.555398i \(0.187434\pi\)
−0.831585 + 0.555398i \(0.812566\pi\)
\(884\) −4.54760e8 7.08788e8i −0.0221411 0.0345091i
\(885\) 0 0
\(886\) 5.38370e9 1.57861e9i 0.260054 0.0762528i
\(887\) 2.78475e9 0.133984 0.0669921 0.997754i \(-0.478660\pi\)
0.0669921 + 0.997754i \(0.478660\pi\)
\(888\) 0 0
\(889\) −1.17027e8 −0.00558639
\(890\) −3.37166e10 + 9.88637e9i −1.60317 + 0.470080i
\(891\) 0 0
\(892\) −8.56174e9 1.33443e10i −0.403910 0.629534i
\(893\) 1.71308e10i 0.805003i
\(894\) 0 0
\(895\) 1.69802e10i 0.791702i
\(896\) 7.41162e9 3.36131e9i 0.344219 0.156110i
\(897\) 0 0
\(898\) 7.60289e9 + 2.59290e10i 0.350358 + 1.19487i
\(899\) −3.59032e10 −1.64807
\(900\) 0 0
\(901\) −1.06919e10 −0.486989
\(902\) −5.39993e9 1.84160e10i −0.245000 0.835550i
\(903\) 0 0
\(904\) 1.84677e10 + 1.60387e10i 0.831424 + 0.722071i
\(905\) 2.03919e10i 0.914507i
\(906\) 0 0
\(907\) 2.37580e9i 0.105726i −0.998602 0.0528632i \(-0.983165\pi\)
0.998602 0.0528632i \(-0.0168347\pi\)
\(908\) 1.77836e10 1.14100e10i 0.788348 0.505806i
\(909\) 0 0
\(910\) −1.84807e9 + 5.41889e8i −0.0812967 + 0.0238378i
\(911\) 2.73821e10 1.19992 0.599961 0.800030i \(-0.295183\pi\)
0.599961 + 0.800030i \(0.295183\pi\)
\(912\) 0 0
\(913\) 6.02549e9 0.262026
\(914\) 2.08201e10 6.10485e9i 0.901926 0.264462i
\(915\) 0 0
\(916\) 5.06919e9 3.25240e9i 0.217923 0.139820i
\(917\) 3.24881e9i 0.139133i
\(918\) 0 0
\(919\) 1.23130e9i 0.0523311i −0.999658 0.0261656i \(-0.991670\pi\)
0.999658 0.0261656i \(-0.00832970\pi\)
\(920\) 1.66967e9 + 1.45006e9i 0.0706923 + 0.0613945i
\(921\) 0 0
\(922\) 2.13666e9 + 7.28689e9i 0.0897794 + 0.306185i
\(923\) −1.47731e9 −0.0618393
\(924\) 0 0
\(925\) 7.86387e10 3.26693
\(926\) −4.74295e9 1.61754e10i −0.196296 0.669449i
\(927\) 0 0
\(928\) −3.28807e10 4.79042e9i −1.35059 0.196769i
\(929\) 2.93114e10i 1.19945i 0.800207 + 0.599723i \(0.204723\pi\)
−0.800207 + 0.599723i \(0.795277\pi\)
\(930\) 0 0
\(931\) 4.44379e9i 0.180480i
\(932\) −1.08963e10 1.69830e10i −0.440884 0.687160i
\(933\) 0 0
\(934\) −1.87803e10 + 5.50674e9i −0.754202 + 0.221147i
\(935\) 2.42191e10 0.968985
\(936\) 0 0
\(937\) −2.39661e9 −0.0951720 −0.0475860 0.998867i \(-0.515153\pi\)
−0.0475860 + 0.998867i \(0.515153\pi\)
\(938\) 6.38367e9 1.87182e9i 0.252558 0.0740549i
\(939\) 0 0
\(940\) −1.60720e10 2.50498e10i −0.631136 0.983687i
\(941\) 1.91604e10i 0.749620i 0.927102 + 0.374810i \(0.122292\pi\)
−0.927102 + 0.374810i \(0.877708\pi\)
\(942\) 0 0
\(943\) 7.26928e8i 0.0282293i
\(944\) 5.27354e8 1.15018e9i 0.0204033 0.0445003i
\(945\) 0 0
\(946\) 1.95404e9 + 6.66410e9i 0.0750439 + 0.255931i
\(947\) 3.09806e10 1.18540 0.592700 0.805423i \(-0.298062\pi\)
0.592700 + 0.805423i \(0.298062\pi\)
\(948\) 0 0
\(949\) 5.51504e9 0.209468
\(950\) 2.22105e10 + 7.57469e10i 0.840475 + 2.86637i
\(951\) 0 0
\(952\) −2.21365e9 + 2.54889e9i −0.0831533 + 0.0957464i
\(953\) 2.24750e10i 0.841152i 0.907257 + 0.420576i \(0.138172\pi\)
−0.907257 + 0.420576i \(0.861828\pi\)
\(954\) 0 0
\(955\) 4.66848e10i 1.73446i
\(956\) −2.43166e10 + 1.56016e10i −0.900120 + 0.577519i
\(957\) 0 0
\(958\) −3.68361e10 + 1.08011e10i −1.35361 + 0.396906i
\(959\) 8.43511e9 0.308835
\(960\) 0 0
\(961\) −1.26029e10 −0.458079
\(962\) −4.47413e9 + 1.31190e9i −0.162030 + 0.0475104i
\(963\) 0 0
\(964\) 1.57006e10 1.00735e10i 0.564477 0.362170i
\(965\) 3.72360e10i 1.33388i
\(966\) 0 0
\(967\) 4.14573e10i 1.47437i −0.675688 0.737187i \(-0.736153\pi\)
0.675688 0.737187i \(-0.263847\pi\)
\(968\) −2.73702e10 + 3.15152e10i −0.969871 + 1.11675i
\(969\) 0 0
\(970\) 1.95628e10 + 6.67174e10i 0.688225 + 2.34713i
\(971\) 3.03308e9 0.106320 0.0531602 0.998586i \(-0.483071\pi\)
0.0531602 + 0.998586i \(0.483071\pi\)
\(972\) 0 0
\(973\) 1.86921e10 0.650523
\(974\) 8.23025e9 + 2.80686e10i 0.285402 + 0.973339i
\(975\) 0 0
\(976\) −8.14486e9 + 1.77642e10i −0.280420 + 0.611607i
\(977\) 2.89511e10i 0.993194i −0.867981 0.496597i \(-0.834583\pi\)
0.867981 0.496597i \(-0.165417\pi\)
\(978\) 0 0
\(979\) 4.21042e10i 1.43412i
\(980\) 4.16914e9 + 6.49802e9i 0.141500 + 0.220541i
\(981\) 0 0
\(982\) −1.26489e8 + 3.70890e7i −0.00426248 + 0.00124984i
\(983\) −3.71869e10 −1.24868 −0.624341 0.781152i \(-0.714633\pi\)
−0.624341 + 0.781152i \(0.714633\pi\)
\(984\) 0 0
\(985\) −7.68197e10 −2.56121
\(986\) 1.32269e10 3.87840e9i 0.439431 0.128850i
\(987\) 0 0
\(988\) −2.52732e9 3.93907e9i −0.0833701 0.129940i
\(989\) 2.63049e8i 0.00864670i
\(990\) 0 0
\(991\) 2.03370e10i 0.663788i 0.943317 + 0.331894i \(0.107688\pi\)
−0.943317 + 0.331894i \(0.892312\pi\)
\(992\) −3.67384e10 5.35246e9i −1.19489 0.174086i
\(993\) 0 0
\(994\) 1.66636e9 + 5.68299e9i 0.0538168 + 0.183538i
\(995\) −3.98369e10 −1.28205
\(996\) 0 0
\(997\) 2.69713e10 0.861923 0.430961 0.902370i \(-0.358175\pi\)
0.430961 + 0.902370i \(0.358175\pi\)
\(998\) 1.94276e9 + 6.62562e9i 0.0618675 + 0.210994i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.e.a.71.8 yes 84
3.2 odd 2 inner 252.8.e.a.71.77 yes 84
4.3 odd 2 inner 252.8.e.a.71.78 yes 84
12.11 even 2 inner 252.8.e.a.71.7 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.e.a.71.7 84 12.11 even 2 inner
252.8.e.a.71.8 yes 84 1.1 even 1 trivial
252.8.e.a.71.77 yes 84 3.2 odd 2 inner
252.8.e.a.71.78 yes 84 4.3 odd 2 inner