Properties

Label 252.8.f.a.125.10
Level $252$
Weight $8$
Character 252.125
Analytic conductor $78.721$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(125,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.125");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 71480 x^{18} + 1912507236 x^{16} + 23093807115120 x^{14} + \cdots + 18\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{52}\cdot 3^{47}\cdot 7^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.10
Root \(-21.9392i\) of defining polynomial
Character \(\chi\) \(=\) 252.125
Dual form 252.8.f.a.125.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-23.8524 q^{5} +(-396.183 + 816.445i) q^{7} +643.885i q^{11} -6871.76i q^{13} -18271.5 q^{17} +40411.7i q^{19} -105170. i q^{23} -77556.1 q^{25} +212794. i q^{29} -103411. i q^{31} +(9449.90 - 19474.2i) q^{35} +498893. q^{37} +799807. q^{41} -376424. q^{43} -898022. q^{47} +(-509622. - 646922. i) q^{49} -594558. i q^{53} -15358.2i q^{55} +1.39034e6 q^{59} +1.59586e6i q^{61} +163908. i q^{65} +1.30668e6 q^{67} -2.67924e6i q^{71} -5.32408e6i q^{73} +(-525697. - 255096. i) q^{77} -7.54010e6 q^{79} +4.29740e6 q^{83} +435819. q^{85} +8.40954e6 q^{89} +(5.61042e6 + 2.72247e6i) q^{91} -963916. i q^{95} -8.49132e6i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2468 q^{7} + 548780 q^{25} - 257344 q^{37} - 1589224 q^{43} - 291556 q^{49} - 11860256 q^{67} - 1991600 q^{79} + 11742576 q^{85} - 11268816 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −23.8524 −0.0853370 −0.0426685 0.999089i \(-0.513586\pi\)
−0.0426685 + 0.999089i \(0.513586\pi\)
\(6\) 0 0
\(7\) −396.183 + 816.445i −0.436568 + 0.899671i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 643.885i 0.145859i 0.997337 + 0.0729297i \(0.0232349\pi\)
−0.997337 + 0.0729297i \(0.976765\pi\)
\(12\) 0 0
\(13\) 6871.76i 0.867494i −0.901035 0.433747i \(-0.857191\pi\)
0.901035 0.433747i \(-0.142809\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −18271.5 −0.901993 −0.450997 0.892526i \(-0.648931\pi\)
−0.450997 + 0.892526i \(0.648931\pi\)
\(18\) 0 0
\(19\) 40411.7i 1.35167i 0.737055 + 0.675833i \(0.236216\pi\)
−0.737055 + 0.675833i \(0.763784\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 105170.i 1.80238i −0.433426 0.901189i \(-0.642696\pi\)
0.433426 0.901189i \(-0.357304\pi\)
\(24\) 0 0
\(25\) −77556.1 −0.992718
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 212794.i 1.62019i 0.586299 + 0.810094i \(0.300584\pi\)
−0.586299 + 0.810094i \(0.699416\pi\)
\(30\) 0 0
\(31\) 103411.i 0.623448i −0.950173 0.311724i \(-0.899094\pi\)
0.950173 0.311724i \(-0.100906\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9449.90 19474.2i 0.0372554 0.0767752i
\(36\) 0 0
\(37\) 498893. 1.61920 0.809602 0.586980i \(-0.199683\pi\)
0.809602 + 0.586980i \(0.199683\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 799807. 1.81235 0.906174 0.422904i \(-0.138989\pi\)
0.906174 + 0.422904i \(0.138989\pi\)
\(42\) 0 0
\(43\) −376424. −0.722001 −0.361000 0.932566i \(-0.617565\pi\)
−0.361000 + 0.932566i \(0.617565\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −898022. −1.26167 −0.630833 0.775919i \(-0.717287\pi\)
−0.630833 + 0.775919i \(0.717287\pi\)
\(48\) 0 0
\(49\) −509622. 646922.i −0.618816 0.785536i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 594558.i 0.548566i −0.961649 0.274283i \(-0.911560\pi\)
0.961649 0.274283i \(-0.0884405\pi\)
\(54\) 0 0
\(55\) 15358.2i 0.0124472i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.39034e6 0.881330 0.440665 0.897672i \(-0.354743\pi\)
0.440665 + 0.897672i \(0.354743\pi\)
\(60\) 0 0
\(61\) 1.59586e6i 0.900202i 0.892978 + 0.450101i \(0.148612\pi\)
−0.892978 + 0.450101i \(0.851388\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 163908.i 0.0740293i
\(66\) 0 0
\(67\) 1.30668e6 0.530773 0.265387 0.964142i \(-0.414500\pi\)
0.265387 + 0.964142i \(0.414500\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.67924e6i 0.888398i −0.895928 0.444199i \(-0.853488\pi\)
0.895928 0.444199i \(-0.146512\pi\)
\(72\) 0 0
\(73\) 5.32408e6i 1.60182i −0.598782 0.800912i \(-0.704348\pi\)
0.598782 0.800912i \(-0.295652\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −525697. 255096.i −0.131225 0.0636776i
\(78\) 0 0
\(79\) −7.54010e6 −1.72061 −0.860305 0.509780i \(-0.829727\pi\)
−0.860305 + 0.509780i \(0.829727\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.29740e6 0.824958 0.412479 0.910967i \(-0.364663\pi\)
0.412479 + 0.910967i \(0.364663\pi\)
\(84\) 0 0
\(85\) 435819. 0.0769734
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.40954e6 1.26447 0.632233 0.774778i \(-0.282138\pi\)
0.632233 + 0.774778i \(0.282138\pi\)
\(90\) 0 0
\(91\) 5.61042e6 + 2.72247e6i 0.780459 + 0.378720i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 963916.i 0.115347i
\(96\) 0 0
\(97\) 8.49132e6i 0.944657i −0.881422 0.472329i \(-0.843414\pi\)
0.881422 0.472329i \(-0.156586\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.94682e7 1.88019 0.940094 0.340915i \(-0.110737\pi\)
0.940094 + 0.340915i \(0.110737\pi\)
\(102\) 0 0
\(103\) 1.97166e7i 1.77787i −0.458029 0.888937i \(-0.651445\pi\)
0.458029 0.888937i \(-0.348555\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.98543e6i 0.472337i −0.971712 0.236169i \(-0.924108\pi\)
0.971712 0.236169i \(-0.0758918\pi\)
\(108\) 0 0
\(109\) −1.69158e7 −1.25113 −0.625563 0.780174i \(-0.715131\pi\)
−0.625563 + 0.780174i \(0.715131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.24813e6i 0.276964i −0.990365 0.138482i \(-0.955778\pi\)
0.990365 0.138482i \(-0.0442223\pi\)
\(114\) 0 0
\(115\) 2.50857e6i 0.153809i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.23885e6 1.49177e7i 0.393782 0.811497i
\(120\) 0 0
\(121\) 1.90726e7 0.978725
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.71337e6 0.170052
\(126\) 0 0
\(127\) −2.18423e7 −0.946206 −0.473103 0.881007i \(-0.656866\pi\)
−0.473103 + 0.881007i \(0.656866\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.35785e7 1.69365 0.846824 0.531874i \(-0.178512\pi\)
0.846824 + 0.531874i \(0.178512\pi\)
\(132\) 0 0
\(133\) −3.29939e7 1.60104e7i −1.21605 0.590094i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.23150e7i 1.07370i −0.843678 0.536849i \(-0.819615\pi\)
0.843678 0.536849i \(-0.180385\pi\)
\(138\) 0 0
\(139\) 3.34417e7i 1.05618i −0.849189 0.528089i \(-0.822909\pi\)
0.849189 0.528089i \(-0.177091\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.42463e6 0.126532
\(144\) 0 0
\(145\) 5.07564e6i 0.138262i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.81672e7i 0.945233i −0.881268 0.472616i \(-0.843310\pi\)
0.881268 0.472616i \(-0.156690\pi\)
\(150\) 0 0
\(151\) 2.99275e7 0.707378 0.353689 0.935363i \(-0.384927\pi\)
0.353689 + 0.935363i \(0.384927\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.46660e6i 0.0532032i
\(156\) 0 0
\(157\) 4.20140e7i 0.866454i −0.901285 0.433227i \(-0.857375\pi\)
0.901285 0.433227i \(-0.142625\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.58658e7 + 4.16667e7i 1.62155 + 0.786861i
\(162\) 0 0
\(163\) −5.42394e7 −0.980975 −0.490488 0.871448i \(-0.663181\pi\)
−0.490488 + 0.871448i \(0.663181\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.56191e7 1.58868 0.794341 0.607472i \(-0.207816\pi\)
0.794341 + 0.607472i \(0.207816\pi\)
\(168\) 0 0
\(169\) 1.55274e7 0.247454
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.21683e6 −0.0766030 −0.0383015 0.999266i \(-0.512195\pi\)
−0.0383015 + 0.999266i \(0.512195\pi\)
\(174\) 0 0
\(175\) 3.07264e7 6.33203e7i 0.433389 0.893119i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.02021e6i 0.0132954i 0.999978 + 0.00664771i \(0.00211605\pi\)
−0.999978 + 0.00664771i \(0.997884\pi\)
\(180\) 0 0
\(181\) 8.57303e6i 0.107463i 0.998555 + 0.0537316i \(0.0171115\pi\)
−0.998555 + 0.0537316i \(0.982888\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.18998e7 −0.138178
\(186\) 0 0
\(187\) 1.17648e7i 0.131564i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.55929e7i 0.577301i 0.957435 + 0.288650i \(0.0932065\pi\)
−0.957435 + 0.288650i \(0.906793\pi\)
\(192\) 0 0
\(193\) −9.46260e7 −0.947458 −0.473729 0.880671i \(-0.657092\pi\)
−0.473729 + 0.880671i \(0.657092\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.49666e8i 1.39473i −0.716714 0.697367i \(-0.754355\pi\)
0.716714 0.697367i \(-0.245645\pi\)
\(198\) 0 0
\(199\) 6.75438e7i 0.607575i 0.952740 + 0.303787i \(0.0982512\pi\)
−0.952740 + 0.303787i \(0.901749\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.73734e8 8.43051e7i −1.45764 0.707323i
\(204\) 0 0
\(205\) −1.90773e7 −0.154660
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.60205e7 −0.197153
\(210\) 0 0
\(211\) 1.08106e7 0.0792251 0.0396125 0.999215i \(-0.487388\pi\)
0.0396125 + 0.999215i \(0.487388\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.97861e6 0.0616133
\(216\) 0 0
\(217\) 8.44293e7 + 4.09696e7i 0.560899 + 0.272178i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.25558e8i 0.782474i
\(222\) 0 0
\(223\) 7.39119e7i 0.446321i 0.974782 + 0.223160i \(0.0716374\pi\)
−0.974782 + 0.223160i \(0.928363\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.26000e7 0.128238 0.0641192 0.997942i \(-0.479576\pi\)
0.0641192 + 0.997942i \(0.479576\pi\)
\(228\) 0 0
\(229\) 1.28839e8i 0.708963i 0.935063 + 0.354481i \(0.115343\pi\)
−0.935063 + 0.354481i \(0.884657\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.44998e7i 0.385842i 0.981214 + 0.192921i \(0.0617961\pi\)
−0.981214 + 0.192921i \(0.938204\pi\)
\(234\) 0 0
\(235\) 2.14200e7 0.107667
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.92646e8i 1.38659i 0.720652 + 0.693297i \(0.243843\pi\)
−0.720652 + 0.693297i \(0.756157\pi\)
\(240\) 0 0
\(241\) 1.90802e8i 0.878058i −0.898473 0.439029i \(-0.855323\pi\)
0.898473 0.439029i \(-0.144677\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.21557e7 + 1.54307e7i 0.0528079 + 0.0670352i
\(246\) 0 0
\(247\) 2.77700e8 1.17256
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.64024e8 −1.85218 −0.926089 0.377305i \(-0.876851\pi\)
−0.926089 + 0.377305i \(0.876851\pi\)
\(252\) 0 0
\(253\) 6.77177e7 0.262894
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.55825e8 −0.572627 −0.286313 0.958136i \(-0.592430\pi\)
−0.286313 + 0.958136i \(0.592430\pi\)
\(258\) 0 0
\(259\) −1.97653e8 + 4.07319e8i −0.706893 + 1.45675i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.42817e8i 0.823066i −0.911395 0.411533i \(-0.864994\pi\)
0.911395 0.411533i \(-0.135006\pi\)
\(264\) 0 0
\(265\) 1.41816e7i 0.0468129i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.99083e6 0.0312946 0.0156473 0.999878i \(-0.495019\pi\)
0.0156473 + 0.999878i \(0.495019\pi\)
\(270\) 0 0
\(271\) 9.85005e6i 0.0300640i −0.999887 0.0150320i \(-0.995215\pi\)
0.999887 0.0150320i \(-0.00478501\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.99372e7i 0.144797i
\(276\) 0 0
\(277\) 3.25387e8 0.919859 0.459929 0.887955i \(-0.347875\pi\)
0.459929 + 0.887955i \(0.347875\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.28153e8i 0.882276i 0.897439 + 0.441138i \(0.145425\pi\)
−0.897439 + 0.441138i \(0.854575\pi\)
\(282\) 0 0
\(283\) 5.56460e8i 1.45942i 0.683755 + 0.729711i \(0.260346\pi\)
−0.683755 + 0.729711i \(0.739654\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.16870e8 + 6.52999e8i −0.791214 + 1.63052i
\(288\) 0 0
\(289\) −7.64905e7 −0.186408
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.56994e7 −0.222266 −0.111133 0.993806i \(-0.535448\pi\)
−0.111133 + 0.993806i \(0.535448\pi\)
\(294\) 0 0
\(295\) −3.31629e7 −0.0752100
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.22706e8 −1.56355
\(300\) 0 0
\(301\) 1.49133e8 3.07329e8i 0.315203 0.649563i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.80651e7i 0.0768205i
\(306\) 0 0
\(307\) 3.40920e8i 0.672462i 0.941780 + 0.336231i \(0.109152\pi\)
−0.941780 + 0.336231i \(0.890848\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.46606e8 −1.21893 −0.609464 0.792814i \(-0.708615\pi\)
−0.609464 + 0.792814i \(0.708615\pi\)
\(312\) 0 0
\(313\) 5.36531e8i 0.988985i 0.869182 + 0.494492i \(0.164646\pi\)
−0.869182 + 0.494492i \(0.835354\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.13662e8i 0.729354i 0.931134 + 0.364677i \(0.118821\pi\)
−0.931134 + 0.364677i \(0.881179\pi\)
\(318\) 0 0
\(319\) −1.37015e8 −0.236320
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.38382e8i 1.21919i
\(324\) 0 0
\(325\) 5.32947e8i 0.861177i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.55780e8 7.33185e8i 0.550803 1.13508i
\(330\) 0 0
\(331\) 3.27670e8 0.496637 0.248318 0.968678i \(-0.420122\pi\)
0.248318 + 0.968678i \(0.420122\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.11676e7 −0.0452946
\(336\) 0 0
\(337\) −3.51326e8 −0.500041 −0.250020 0.968241i \(-0.580437\pi\)
−0.250020 + 0.968241i \(0.580437\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.65848e7 0.0909358
\(342\) 0 0
\(343\) 7.30080e8 1.59779e8i 0.976879 0.213791i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.08160e9i 1.38967i 0.719169 + 0.694836i \(0.244523\pi\)
−0.719169 + 0.694836i \(0.755477\pi\)
\(348\) 0 0
\(349\) 5.84964e8i 0.736615i −0.929704 0.368307i \(-0.879937\pi\)
0.929704 0.368307i \(-0.120063\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.22041e8 −0.873676 −0.436838 0.899540i \(-0.643902\pi\)
−0.436838 + 0.899540i \(0.643902\pi\)
\(354\) 0 0
\(355\) 6.39063e7i 0.0758132i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.98675e8i 1.02511i 0.858653 + 0.512557i \(0.171302\pi\)
−0.858653 + 0.512557i \(0.828698\pi\)
\(360\) 0 0
\(361\) −7.39232e8 −0.827000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.26992e8i 0.136695i
\(366\) 0 0
\(367\) 1.09069e9i 1.15178i −0.817527 0.575890i \(-0.804656\pi\)
0.817527 0.575890i \(-0.195344\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.85424e8 + 2.35554e8i 0.493529 + 0.239486i
\(372\) 0 0
\(373\) −3.97934e8 −0.397037 −0.198518 0.980097i \(-0.563613\pi\)
−0.198518 + 0.980097i \(0.563613\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.46227e9 1.40550
\(378\) 0 0
\(379\) 1.40632e9 1.32692 0.663462 0.748210i \(-0.269086\pi\)
0.663462 + 0.748210i \(0.269086\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.05857e9 0.962776 0.481388 0.876508i \(-0.340133\pi\)
0.481388 + 0.876508i \(0.340133\pi\)
\(384\) 0 0
\(385\) 1.25391e7 + 6.08466e6i 0.0111984 + 0.00543405i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.13515e9i 1.83909i −0.392980 0.919547i \(-0.628556\pi\)
0.392980 0.919547i \(-0.371444\pi\)
\(390\) 0 0
\(391\) 1.92162e9i 1.62573i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.79849e8 0.146832
\(396\) 0 0
\(397\) 1.86451e9i 1.49554i −0.663956 0.747772i \(-0.731124\pi\)
0.663956 0.747772i \(-0.268876\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.44179e9i 1.11659i −0.829641 0.558297i \(-0.811455\pi\)
0.829641 0.558297i \(-0.188545\pi\)
\(402\) 0 0
\(403\) −7.10615e8 −0.540838
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.21230e8i 0.236176i
\(408\) 0 0
\(409\) 3.60787e8i 0.260747i −0.991465 0.130374i \(-0.958382\pi\)
0.991465 0.130374i \(-0.0416177\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5.50828e8 + 1.13513e9i −0.384761 + 0.792907i
\(414\) 0 0
\(415\) −1.02503e8 −0.0703994
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.28039e9 −1.51447 −0.757235 0.653142i \(-0.773450\pi\)
−0.757235 + 0.653142i \(0.773450\pi\)
\(420\) 0 0
\(421\) −1.73520e9 −1.13335 −0.566674 0.823942i \(-0.691770\pi\)
−0.566674 + 0.823942i \(0.691770\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.41707e9 0.895425
\(426\) 0 0
\(427\) −1.30293e9 6.32251e8i −0.809886 0.393000i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.65594e9i 1.59790i −0.601400 0.798948i \(-0.705390\pi\)
0.601400 0.798948i \(-0.294610\pi\)
\(432\) 0 0
\(433\) 2.00338e9i 1.18592i −0.805231 0.592961i \(-0.797959\pi\)
0.805231 0.592961i \(-0.202041\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.25011e9 2.43621
\(438\) 0 0
\(439\) 4.07192e8i 0.229706i 0.993382 + 0.114853i \(0.0366398\pi\)
−0.993382 + 0.114853i \(0.963360\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.65872e8i 0.473196i 0.971608 + 0.236598i \(0.0760324\pi\)
−0.971608 + 0.236598i \(0.923968\pi\)
\(444\) 0 0
\(445\) −2.00588e8 −0.107906
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.29775e9i 0.676596i −0.941039 0.338298i \(-0.890149\pi\)
0.941039 0.338298i \(-0.109851\pi\)
\(450\) 0 0
\(451\) 5.14984e8i 0.264348i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.33822e8 6.49375e7i −0.0666020 0.0323188i
\(456\) 0 0
\(457\) 2.28635e9 1.12056 0.560282 0.828302i \(-0.310693\pi\)
0.560282 + 0.828302i \(0.310693\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.04333e9 1.92214 0.961071 0.276301i \(-0.0891088\pi\)
0.961071 + 0.276301i \(0.0891088\pi\)
\(462\) 0 0
\(463\) −1.49148e9 −0.698367 −0.349184 0.937054i \(-0.613541\pi\)
−0.349184 + 0.937054i \(0.613541\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.14324e7 0.0188248 0.00941241 0.999956i \(-0.497004\pi\)
0.00941241 + 0.999956i \(0.497004\pi\)
\(468\) 0 0
\(469\) −5.17686e8 + 1.06684e9i −0.231719 + 0.477521i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.42374e8i 0.105311i
\(474\) 0 0
\(475\) 3.13417e9i 1.34182i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.81530e8 0.0754700 0.0377350 0.999288i \(-0.487986\pi\)
0.0377350 + 0.999288i \(0.487986\pi\)
\(480\) 0 0
\(481\) 3.42828e9i 1.40465i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.02538e8i 0.0806142i
\(486\) 0 0
\(487\) −1.63416e8 −0.0641127 −0.0320563 0.999486i \(-0.510206\pi\)
−0.0320563 + 0.999486i \(0.510206\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.82974e8i 0.374763i −0.982287 0.187381i \(-0.940000\pi\)
0.982287 0.187381i \(-0.0600001\pi\)
\(492\) 0 0
\(493\) 3.88806e9i 1.46140i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.18745e9 + 1.06147e9i 0.799266 + 0.387846i
\(498\) 0 0
\(499\) 1.28099e8 0.0461524 0.0230762 0.999734i \(-0.492654\pi\)
0.0230762 + 0.999734i \(0.492654\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.87368e8 0.135717 0.0678587 0.997695i \(-0.478383\pi\)
0.0678587 + 0.997695i \(0.478383\pi\)
\(504\) 0 0
\(505\) −4.64364e8 −0.160450
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.74362e9 0.586055 0.293028 0.956104i \(-0.405337\pi\)
0.293028 + 0.956104i \(0.405337\pi\)
\(510\) 0 0
\(511\) 4.34682e9 + 2.10931e9i 1.44112 + 0.699306i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.70287e8i 0.151718i
\(516\) 0 0
\(517\) 5.78223e8i 0.184026i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.83093e9 0.567206 0.283603 0.958942i \(-0.408470\pi\)
0.283603 + 0.958942i \(0.408470\pi\)
\(522\) 0 0
\(523\) 5.32924e9i 1.62896i 0.580194 + 0.814478i \(0.302977\pi\)
−0.580194 + 0.814478i \(0.697023\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.88947e9i 0.562346i
\(528\) 0 0
\(529\) −7.65598e9 −2.24857
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.49609e9i 1.57220i
\(534\) 0 0
\(535\) 1.42767e8i 0.0403078i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.16544e8 3.28138e8i 0.114578 0.0902601i
\(540\) 0 0
\(541\) −1.47651e9 −0.400910 −0.200455 0.979703i \(-0.564242\pi\)
−0.200455 + 0.979703i \(0.564242\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.03483e8 0.106767
\(546\) 0 0
\(547\) 5.74676e8 0.150130 0.0750650 0.997179i \(-0.476084\pi\)
0.0750650 + 0.997179i \(0.476084\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.59935e9 −2.18995
\(552\) 0 0
\(553\) 2.98726e9 6.15608e9i 0.751163 1.54798i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.87265e9i 1.68512i −0.538602 0.842561i \(-0.681047\pi\)
0.538602 0.842561i \(-0.318953\pi\)
\(558\) 0 0
\(559\) 2.58670e9i 0.626331i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.82726e9 −1.14004 −0.570022 0.821629i \(-0.693065\pi\)
−0.570022 + 0.821629i \(0.693065\pi\)
\(564\) 0 0
\(565\) 1.01328e8i 0.0236353i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.11400e9i 0.936205i 0.883674 + 0.468102i \(0.155062\pi\)
−0.883674 + 0.468102i \(0.844938\pi\)
\(570\) 0 0
\(571\) 1.90302e8 0.0427777 0.0213889 0.999771i \(-0.493191\pi\)
0.0213889 + 0.999771i \(0.493191\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.15660e9i 1.78925i
\(576\) 0 0
\(577\) 6.16463e9i 1.33595i 0.744182 + 0.667977i \(0.232840\pi\)
−0.744182 + 0.667977i \(0.767160\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.70255e9 + 3.50859e9i −0.360151 + 0.742191i
\(582\) 0 0
\(583\) 3.82827e8 0.0800135
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.39623e8 −0.110118 −0.0550588 0.998483i \(-0.517535\pi\)
−0.0550588 + 0.998483i \(0.517535\pi\)
\(588\) 0 0
\(589\) 4.17901e9 0.842694
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.36499e9 1.25345 0.626724 0.779241i \(-0.284395\pi\)
0.626724 + 0.779241i \(0.284395\pi\)
\(594\) 0 0
\(595\) −1.72664e8 + 3.55823e8i −0.0336041 + 0.0692507i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.11729e9i 1.35307i −0.736410 0.676536i \(-0.763480\pi\)
0.736410 0.676536i \(-0.236520\pi\)
\(600\) 0 0
\(601\) 2.08445e9i 0.391680i 0.980636 + 0.195840i \(0.0627433\pi\)
−0.980636 + 0.195840i \(0.937257\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.54927e8 −0.0835214
\(606\) 0 0
\(607\) 1.02932e9i 0.186806i −0.995628 0.0934031i \(-0.970225\pi\)
0.995628 0.0934031i \(-0.0297745\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.17099e9i 1.09449i
\(612\) 0 0
\(613\) 1.87594e9 0.328933 0.164466 0.986383i \(-0.447410\pi\)
0.164466 + 0.986383i \(0.447410\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.48916e9i 0.255236i −0.991823 0.127618i \(-0.959267\pi\)
0.991823 0.127618i \(-0.0407332\pi\)
\(618\) 0 0
\(619\) 2.10140e9i 0.356116i 0.984020 + 0.178058i \(0.0569814\pi\)
−0.984020 + 0.178058i \(0.943019\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.33171e9 + 6.86593e9i −0.552026 + 1.13760i
\(624\) 0 0
\(625\) 5.97049e9 0.978206
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.11553e9 −1.46051
\(630\) 0 0
\(631\) −5.80511e9 −0.919830 −0.459915 0.887963i \(-0.652120\pi\)
−0.459915 + 0.887963i \(0.652120\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.20992e8 0.0807463
\(636\) 0 0
\(637\) −4.44550e9 + 3.50200e9i −0.681448 + 0.536819i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.22507e9i 0.333689i −0.985983 0.166844i \(-0.946642\pi\)
0.985983 0.166844i \(-0.0533577\pi\)
\(642\) 0 0
\(643\) 9.40778e9i 1.39556i 0.716312 + 0.697780i \(0.245829\pi\)
−0.716312 + 0.697780i \(0.754171\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.21664e10 −1.76603 −0.883015 0.469345i \(-0.844490\pi\)
−0.883015 + 0.469345i \(0.844490\pi\)
\(648\) 0 0
\(649\) 8.95218e8i 0.128550i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.44756e9i 1.18723i 0.804749 + 0.593615i \(0.202300\pi\)
−0.804749 + 0.593615i \(0.797700\pi\)
\(654\) 0 0
\(655\) −1.03945e9 −0.144531
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.44574e9i 0.332898i −0.986050 0.166449i \(-0.946770\pi\)
0.986050 0.166449i \(-0.0532300\pi\)
\(660\) 0 0
\(661\) 8.94751e9i 1.20503i −0.798108 0.602514i \(-0.794166\pi\)
0.798108 0.602514i \(-0.205834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.86984e8 + 3.81887e8i 0.103774 + 0.0503568i
\(666\) 0 0
\(667\) 2.23796e10 2.92019
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.02755e9 −0.131303
\(672\) 0 0
\(673\) −3.50385e9 −0.443091 −0.221545 0.975150i \(-0.571110\pi\)
−0.221545 + 0.975150i \(0.571110\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.03313e9 0.127966 0.0639828 0.997951i \(-0.479620\pi\)
0.0639828 + 0.997951i \(0.479620\pi\)
\(678\) 0 0
\(679\) 6.93270e9 + 3.36411e9i 0.849881 + 0.412407i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.17949e8i 0.110242i −0.998480 0.0551209i \(-0.982446\pi\)
0.998480 0.0551209i \(-0.0175544\pi\)
\(684\) 0 0
\(685\) 7.70790e8i 0.0916261i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.08566e9 −0.475878
\(690\) 0 0
\(691\) 9.56290e8i 0.110260i 0.998479 + 0.0551298i \(0.0175573\pi\)
−0.998479 + 0.0551298i \(0.982443\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.97666e8i 0.0901310i
\(696\) 0 0
\(697\) −1.46137e10 −1.63473
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.86676e9i 0.314325i 0.987573 + 0.157162i \(0.0502346\pi\)
−0.987573 + 0.157162i \(0.949765\pi\)
\(702\) 0 0
\(703\) 2.01611e10i 2.18862i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.71297e9 + 1.58947e10i −0.820830 + 1.69155i
\(708\) 0 0
\(709\) −6.32278e9 −0.666263 −0.333132 0.942880i \(-0.608105\pi\)
−0.333132 + 0.942880i \(0.608105\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.08758e10 −1.12369
\(714\) 0 0
\(715\) −1.05538e8 −0.0107979
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.14699e10 −1.15083 −0.575414 0.817862i \(-0.695159\pi\)
−0.575414 + 0.817862i \(0.695159\pi\)
\(720\) 0 0
\(721\) 1.60975e10 + 7.81136e9i 1.59950 + 0.776163i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.65034e10i 1.60839i
\(726\) 0 0
\(727\) 1.28262e10i 1.23802i −0.785385 0.619008i \(-0.787535\pi\)
0.785385 0.619008i \(-0.212465\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.87783e9 0.651240
\(732\) 0 0
\(733\) 5.83532e9i 0.547269i 0.961834 + 0.273634i \(0.0882259\pi\)
−0.961834 + 0.273634i \(0.911774\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.41355e8i 0.0774182i
\(738\) 0 0
\(739\) −1.57289e10 −1.43365 −0.716823 0.697255i \(-0.754404\pi\)
−0.716823 + 0.697255i \(0.754404\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.27677e10i 1.14196i −0.820963 0.570981i \(-0.806563\pi\)
0.820963 0.570981i \(-0.193437\pi\)
\(744\) 0 0
\(745\) 9.10380e8i 0.0806633i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.88678e9 + 2.37132e9i 0.424948 + 0.206207i
\(750\) 0 0
\(751\) −4.66554e9 −0.401941 −0.200971 0.979597i \(-0.564410\pi\)
−0.200971 + 0.979597i \(0.564410\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.13843e8 −0.0603654
\(756\) 0 0
\(757\) 1.65338e9 0.138528 0.0692639 0.997598i \(-0.477935\pi\)
0.0692639 + 0.997598i \(0.477935\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.63897e9 −0.792838 −0.396419 0.918070i \(-0.629747\pi\)
−0.396419 + 0.918070i \(0.629747\pi\)
\(762\) 0 0
\(763\) 6.70176e9 1.38109e10i 0.546202 1.12560i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.55407e9i 0.764548i
\(768\) 0 0
\(769\) 2.55518e8i 0.0202619i −0.999949 0.0101309i \(-0.996775\pi\)
0.999949 0.0101309i \(-0.00322483\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.04766e10 1.59452 0.797258 0.603639i \(-0.206283\pi\)
0.797258 + 0.603639i \(0.206283\pi\)
\(774\) 0 0
\(775\) 8.02014e9i 0.618908i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.23215e10i 2.44969i
\(780\) 0 0
\(781\) 1.72512e9 0.129581
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.00214e9i 0.0739406i
\(786\) 0 0
\(787\) 1.44231e10i 1.05475i −0.849634 0.527373i \(-0.823177\pi\)
0.849634 0.527373i \(-0.176823\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.46837e9 + 1.68304e9i 0.249177 + 0.120914i
\(792\) 0 0
\(793\) 1.09664e10 0.780920
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.22429e10 1.55628 0.778138 0.628093i \(-0.216164\pi\)
0.778138 + 0.628093i \(0.216164\pi\)
\(798\) 0 0
\(799\) 1.64082e10 1.13801
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.42810e9 0.233641
\(804\) 0 0
\(805\) −2.04811e9 9.93850e8i −0.138378 0.0671483i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.47353e10i 0.978452i −0.872157 0.489226i \(-0.837279\pi\)
0.872157 0.489226i \(-0.162721\pi\)
\(810\) 0 0
\(811\) 3.21939e9i 0.211934i 0.994370 + 0.105967i \(0.0337938\pi\)
−0.994370 + 0.105967i \(0.966206\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.29374e9 0.0837134
\(816\) 0 0
\(817\) 1.52119e10i 0.975904i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.77772e10i 1.12114i 0.828106 + 0.560572i \(0.189419\pi\)
−0.828106 + 0.560572i \(0.810581\pi\)
\(822\) 0 0
\(823\) −2.41352e10 −1.50922 −0.754609 0.656174i \(-0.772174\pi\)
−0.754609 + 0.656174i \(0.772174\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.45903e10i 0.897006i −0.893781 0.448503i \(-0.851957\pi\)
0.893781 0.448503i \(-0.148043\pi\)
\(828\) 0 0
\(829\) 1.50353e10i 0.916583i −0.888802 0.458291i \(-0.848462\pi\)
0.888802 0.458291i \(-0.151538\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9.31156e9 + 1.18203e10i 0.558168 + 0.708548i
\(834\) 0 0
\(835\) −2.28075e9 −0.135573
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.23475e10 0.721789 0.360895 0.932607i \(-0.382471\pi\)
0.360895 + 0.932607i \(0.382471\pi\)
\(840\) 0 0
\(841\) −2.80313e10 −1.62501
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.70365e8 −0.0211170
\(846\) 0 0
\(847\) −7.55622e9 + 1.55717e10i −0.427280 + 0.880531i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.24688e10i 2.91842i
\(852\) 0 0
\(853\) 1.46116e10i 0.806079i −0.915183 0.403039i \(-0.867954\pi\)
0.915183 0.403039i \(-0.132046\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.87295e10 −1.01647 −0.508233 0.861220i \(-0.669701\pi\)
−0.508233 + 0.861220i \(0.669701\pi\)
\(858\) 0 0
\(859\) 2.83604e9i 0.152664i 0.997082 + 0.0763319i \(0.0243209\pi\)
−0.997082 + 0.0763319i \(0.975679\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.18114e9i 0.274402i −0.990543 0.137201i \(-0.956189\pi\)
0.990543 0.137201i \(-0.0438107\pi\)
\(864\) 0 0
\(865\) 1.24434e8 0.00653706
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.85496e9i 0.250967i
\(870\) 0 0
\(871\) 8.97923e9i 0.460443i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.47117e9 + 3.03176e9i −0.0742395 + 0.152991i
\(876\) 0 0
\(877\) 2.88914e10 1.44634 0.723169 0.690671i \(-0.242685\pi\)
0.723169 + 0.690671i \(0.242685\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.73613e10 0.855393 0.427697 0.903922i \(-0.359325\pi\)
0.427697 + 0.903922i \(0.359325\pi\)
\(882\) 0 0
\(883\) −5.09174e9 −0.248888 −0.124444 0.992227i \(-0.539715\pi\)
−0.124444 + 0.992227i \(0.539715\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.20796e10 1.54346 0.771732 0.635948i \(-0.219391\pi\)
0.771732 + 0.635948i \(0.219391\pi\)
\(888\) 0 0
\(889\) 8.65354e9 1.78331e10i 0.413084 0.851274i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.62906e10i 1.70535i
\(894\) 0 0
\(895\) 2.43343e7i 0.00113459i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.20052e10 1.01010
\(900\) 0 0
\(901\) 1.08635e10i 0.494803i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.04487e8i 0.00917057i
\(906\) 0 0
\(907\) −3.98435e10 −1.77309 −0.886547 0.462639i \(-0.846903\pi\)
−0.886547 + 0.462639i \(0.846903\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.81415e9i 0.210962i 0.994421 + 0.105481i \(0.0336383\pi\)
−0.994421 + 0.105481i \(0.966362\pi\)
\(912\) 0 0
\(913\) 2.76703e9i 0.120328i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.72650e10 + 3.55795e10i −0.739393 + 1.52373i
\(918\) 0 0
\(919\) 2.30402e10 0.979223 0.489612 0.871941i \(-0.337139\pi\)
0.489612 + 0.871941i \(0.337139\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.84111e10 −0.770680
\(924\) 0 0
\(925\) −3.86922e10 −1.60741
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.46870e10 1.41942 0.709712 0.704492i \(-0.248825\pi\)
0.709712 + 0.704492i \(0.248825\pi\)
\(930\) 0 0
\(931\) 2.61432e10 2.05947e10i 1.06178 0.836433i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.80618e8i 0.0112273i
\(936\) 0 0
\(937\) 2.19036e10i 0.869815i 0.900475 + 0.434908i \(0.143219\pi\)
−0.900475 + 0.434908i \(0.856781\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.40379e9 0.367908 0.183954 0.982935i \(-0.441110\pi\)
0.183954 + 0.982935i \(0.441110\pi\)
\(942\) 0 0
\(943\) 8.41160e10i 3.26654i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.05372e9i 0.346419i −0.984885 0.173210i \(-0.944586\pi\)
0.984885 0.173210i \(-0.0554138\pi\)
\(948\) 0 0
\(949\) −3.65858e10 −1.38957
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.49734e10i 0.934659i −0.884083 0.467329i \(-0.845216\pi\)
0.884083 0.467329i \(-0.154784\pi\)
\(954\) 0 0
\(955\) 1.32602e9i 0.0492651i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.63834e10 + 1.28026e10i 0.965975 + 0.468742i
\(960\) 0 0
\(961\) 1.68188e10 0.611312
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.25706e9 0.0808531
\(966\) 0 0
\(967\) −1.04896e10 −0.373049 −0.186524 0.982450i \(-0.559722\pi\)
−0.186524 + 0.982450i \(0.559722\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.13205e10 0.747361 0.373681 0.927557i \(-0.378096\pi\)
0.373681 + 0.927557i \(0.378096\pi\)
\(972\) 0 0
\(973\) 2.73033e10 + 1.32490e10i 0.950212 + 0.461094i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.48845e10i 0.510627i −0.966858 0.255314i \(-0.917821\pi\)
0.966858 0.255314i \(-0.0821787\pi\)
\(978\) 0 0
\(979\) 5.41478e9i 0.184434i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.24046e10 0.752314 0.376157 0.926556i \(-0.377245\pi\)
0.376157 + 0.926556i \(0.377245\pi\)
\(984\) 0 0
\(985\) 3.56989e9i 0.119022i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.95886e10i 1.30132i
\(990\) 0 0
\(991\) 4.80897e9 0.156962 0.0784809 0.996916i \(-0.474993\pi\)
0.0784809 + 0.996916i \(0.474993\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.61108e9i 0.0518486i
\(996\) 0 0
\(997\) 3.11939e10i 0.996867i 0.866928 + 0.498434i \(0.166091\pi\)
−0.866928 + 0.498434i \(0.833909\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.f.a.125.10 yes 20
3.2 odd 2 inner 252.8.f.a.125.12 yes 20
7.6 odd 2 inner 252.8.f.a.125.11 yes 20
21.20 even 2 inner 252.8.f.a.125.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.f.a.125.9 20 21.20 even 2 inner
252.8.f.a.125.10 yes 20 1.1 even 1 trivial
252.8.f.a.125.11 yes 20 7.6 odd 2 inner
252.8.f.a.125.12 yes 20 3.2 odd 2 inner