Properties

Label 252.8.j.b.85.1
Level $252$
Weight $8$
Character 252.85
Analytic conductor $78.721$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(85,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.85");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(42\)
Relative dimension: \(21\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 85.1
Character \(\chi\) \(=\) 252.85
Dual form 252.8.j.b.169.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-46.3084 + 6.52189i) q^{3} +(-45.8869 + 79.4784i) q^{5} +(171.500 + 297.047i) q^{7} +(2101.93 - 604.036i) q^{9} +(-1535.50 - 2659.57i) q^{11} +(-3974.55 + 6884.12i) q^{13} +(1606.60 - 3979.78i) q^{15} -20475.4 q^{17} +13970.6 q^{19} +(-9879.19 - 12637.2i) q^{21} +(28826.8 - 49929.5i) q^{23} +(34851.3 + 60364.2i) q^{25} +(-93397.5 + 41680.5i) q^{27} +(72099.5 + 124880. i) q^{29} +(-142832. + 247393. i) q^{31} +(88452.0 + 113146. i) q^{33} -31478.4 q^{35} +369096. q^{37} +(139157. - 344714. i) q^{39} +(-66994.3 + 116038. i) q^{41} +(59715.9 + 103431. i) q^{43} +(-48443.1 + 194775. i) q^{45} +(46477.2 + 80500.9i) q^{47} +(-58824.5 + 101887. i) q^{49} +(948181. - 133538. i) q^{51} -764962. q^{53} +281838. q^{55} +(-646958. + 91115.0i) q^{57} +(447569. - 775213. i) q^{59} +(-1.07113e6 - 1.85524e6i) q^{61} +(539908. + 520779. i) q^{63} +(-364759. - 631781. i) q^{65} +(-804762. + 1.39389e6i) q^{67} +(-1.00929e6 + 2.50016e6i) q^{69} +2.51080e6 q^{71} -3.95286e6 q^{73} +(-2.00760e6 - 2.56807e6i) q^{75} +(526677. - 912232. i) q^{77} +(-704815. - 1.22078e6i) q^{79} +(4.05325e6 - 2.53928e6i) q^{81} +(942751. + 1.63289e6i) q^{83} +(939551. - 1.62735e6i) q^{85} +(-4.15326e6 - 5.31276e6i) q^{87} -5.61469e6 q^{89} -2.72654e6 q^{91} +(5.00086e6 - 1.23879e7i) q^{93} +(-641069. + 1.11036e6i) q^{95} +(-2.61063e6 - 4.52174e6i) q^{97} +(-4.83399e6 - 4.66273e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q + 82 q^{3} + 179 q^{5} + 7203 q^{7} + 890 q^{9} + 3958 q^{11} - 6177 q^{13} + 20077 q^{15} + 22036 q^{17} + 2094 q^{19} + 686 q^{21} + 91390 q^{23} - 284160 q^{25} - 16247 q^{27} + 180179 q^{29} + 99327 q^{31}+ \cdots - 61176680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −46.3084 + 6.52189i −0.990228 + 0.139460i
\(4\) 0 0
\(5\) −45.8869 + 79.4784i −0.164170 + 0.284351i −0.936360 0.351041i \(-0.885828\pi\)
0.772190 + 0.635391i \(0.219161\pi\)
\(6\) 0 0
\(7\) 171.500 + 297.047i 0.188982 + 0.327327i
\(8\) 0 0
\(9\) 2101.93 604.036i 0.961102 0.276194i
\(10\) 0 0
\(11\) −1535.50 2659.57i −0.347837 0.602472i 0.638028 0.770013i \(-0.279751\pi\)
−0.985865 + 0.167542i \(0.946417\pi\)
\(12\) 0 0
\(13\) −3974.55 + 6884.12i −0.501748 + 0.869053i 0.498250 + 0.867034i \(0.333976\pi\)
−0.999998 + 0.00201980i \(0.999357\pi\)
\(14\) 0 0
\(15\) 1606.60 3979.78i 0.122910 0.304467i
\(16\) 0 0
\(17\) −20475.4 −1.01079 −0.505395 0.862888i \(-0.668653\pi\)
−0.505395 + 0.862888i \(0.668653\pi\)
\(18\) 0 0
\(19\) 13970.6 0.467282 0.233641 0.972323i \(-0.424936\pi\)
0.233641 + 0.972323i \(0.424936\pi\)
\(20\) 0 0
\(21\) −9879.19 12637.2i −0.232784 0.297773i
\(22\) 0 0
\(23\) 28826.8 49929.5i 0.494025 0.855677i −0.505951 0.862562i \(-0.668858\pi\)
0.999976 + 0.00688551i \(0.00219174\pi\)
\(24\) 0 0
\(25\) 34851.3 + 60364.2i 0.446097 + 0.772662i
\(26\) 0 0
\(27\) −93397.5 + 41680.5i −0.913192 + 0.407530i
\(28\) 0 0
\(29\) 72099.5 + 124880.i 0.548958 + 0.950823i 0.998346 + 0.0574867i \(0.0183087\pi\)
−0.449388 + 0.893337i \(0.648358\pi\)
\(30\) 0 0
\(31\) −142832. + 247393.i −0.861114 + 1.49149i 0.00974086 + 0.999953i \(0.496899\pi\)
−0.870855 + 0.491540i \(0.836434\pi\)
\(32\) 0 0
\(33\) 88452.0 + 113146.i 0.428459 + 0.548075i
\(34\) 0 0
\(35\) −31478.4 −0.124101
\(36\) 0 0
\(37\) 369096. 1.19794 0.598968 0.800773i \(-0.295578\pi\)
0.598968 + 0.800773i \(0.295578\pi\)
\(38\) 0 0
\(39\) 139157. 344714.i 0.375647 0.930534i
\(40\) 0 0
\(41\) −66994.3 + 116038.i −0.151808 + 0.262939i −0.931892 0.362735i \(-0.881843\pi\)
0.780084 + 0.625675i \(0.215176\pi\)
\(42\) 0 0
\(43\) 59715.9 + 103431.i 0.114538 + 0.198386i 0.917595 0.397516i \(-0.130128\pi\)
−0.803057 + 0.595902i \(0.796794\pi\)
\(44\) 0 0
\(45\) −48443.1 + 194775.i −0.0792480 + 0.318633i
\(46\) 0 0
\(47\) 46477.2 + 80500.9i 0.0652977 + 0.113099i 0.896826 0.442383i \(-0.145867\pi\)
−0.831528 + 0.555482i \(0.812534\pi\)
\(48\) 0 0
\(49\) −58824.5 + 101887.i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 948181. 133538.i 1.00091 0.140965i
\(52\) 0 0
\(53\) −764962. −0.705788 −0.352894 0.935663i \(-0.614802\pi\)
−0.352894 + 0.935663i \(0.614802\pi\)
\(54\) 0 0
\(55\) 281838. 0.228418
\(56\) 0 0
\(57\) −646958. + 91115.0i −0.462715 + 0.0651670i
\(58\) 0 0
\(59\) 447569. 775213.i 0.283712 0.491404i −0.688584 0.725157i \(-0.741767\pi\)
0.972296 + 0.233752i \(0.0751005\pi\)
\(60\) 0 0
\(61\) −1.07113e6 1.85524e6i −0.604207 1.04652i −0.992176 0.124845i \(-0.960157\pi\)
0.387969 0.921672i \(-0.373177\pi\)
\(62\) 0 0
\(63\) 539908. + 520779.i 0.272037 + 0.262399i
\(64\) 0 0
\(65\) −364759. 631781.i −0.164744 0.285345i
\(66\) 0 0
\(67\) −804762. + 1.39389e6i −0.326893 + 0.566195i −0.981894 0.189433i \(-0.939335\pi\)
0.655001 + 0.755628i \(0.272668\pi\)
\(68\) 0 0
\(69\) −1.00929e6 + 2.50016e6i −0.369865 + 0.916211i
\(70\) 0 0
\(71\) 2.51080e6 0.832546 0.416273 0.909240i \(-0.363336\pi\)
0.416273 + 0.909240i \(0.363336\pi\)
\(72\) 0 0
\(73\) −3.95286e6 −1.18927 −0.594636 0.803995i \(-0.702704\pi\)
−0.594636 + 0.803995i \(0.702704\pi\)
\(74\) 0 0
\(75\) −2.00760e6 2.56807e6i −0.549492 0.702899i
\(76\) 0 0
\(77\) 526677. 912232.i 0.131470 0.227713i
\(78\) 0 0
\(79\) −704815. 1.22078e6i −0.160835 0.278574i 0.774333 0.632778i \(-0.218085\pi\)
−0.935168 + 0.354204i \(0.884752\pi\)
\(80\) 0 0
\(81\) 4.05325e6 2.53928e6i 0.847434 0.530901i
\(82\) 0 0
\(83\) 942751. + 1.63289e6i 0.180977 + 0.313462i 0.942214 0.335013i \(-0.108741\pi\)
−0.761236 + 0.648475i \(0.775407\pi\)
\(84\) 0 0
\(85\) 939551. 1.62735e6i 0.165941 0.287418i
\(86\) 0 0
\(87\) −4.15326e6 5.31276e6i −0.676195 0.864974i
\(88\) 0 0
\(89\) −5.61469e6 −0.844230 −0.422115 0.906542i \(-0.638712\pi\)
−0.422115 + 0.906542i \(0.638712\pi\)
\(90\) 0 0
\(91\) −2.72654e6 −0.379286
\(92\) 0 0
\(93\) 5.00086e6 1.23879e7i 0.644695 1.59701i
\(94\) 0 0
\(95\) −641069. + 1.11036e6i −0.0767136 + 0.132872i
\(96\) 0 0
\(97\) −2.61063e6 4.52174e6i −0.290431 0.503042i 0.683480 0.729969i \(-0.260465\pi\)
−0.973912 + 0.226927i \(0.927132\pi\)
\(98\) 0 0
\(99\) −4.83399e6 4.66273e6i −0.500706 0.482966i
\(100\) 0 0
\(101\) −5.69717e6 9.86779e6i −0.550218 0.953005i −0.998258 0.0589920i \(-0.981211\pi\)
0.448041 0.894013i \(-0.352122\pi\)
\(102\) 0 0
\(103\) 6.89695e6 1.19459e7i 0.621909 1.07718i −0.367221 0.930134i \(-0.619691\pi\)
0.989130 0.147044i \(-0.0469758\pi\)
\(104\) 0 0
\(105\) 1.45771e6 205299.i 0.122888 0.0173071i
\(106\) 0 0
\(107\) −1.19196e7 −0.940629 −0.470314 0.882499i \(-0.655859\pi\)
−0.470314 + 0.882499i \(0.655859\pi\)
\(108\) 0 0
\(109\) −1.73306e7 −1.28180 −0.640900 0.767624i \(-0.721439\pi\)
−0.640900 + 0.767624i \(0.721439\pi\)
\(110\) 0 0
\(111\) −1.70923e7 + 2.40721e6i −1.18623 + 0.167064i
\(112\) 0 0
\(113\) 8.62633e6 1.49412e7i 0.562408 0.974119i −0.434878 0.900490i \(-0.643208\pi\)
0.997286 0.0736297i \(-0.0234583\pi\)
\(114\) 0 0
\(115\) 2.64554e6 + 4.58222e6i 0.162208 + 0.280953i
\(116\) 0 0
\(117\) −4.19596e6 + 1.68707e7i −0.242204 + 0.973829i
\(118\) 0 0
\(119\) −3.51153e6 6.08214e6i −0.191021 0.330858i
\(120\) 0 0
\(121\) 5.02805e6 8.70884e6i 0.258018 0.446901i
\(122\) 0 0
\(123\) 2.34561e6 5.81044e6i 0.113655 0.281541i
\(124\) 0 0
\(125\) −1.35667e7 −0.621282
\(126\) 0 0
\(127\) 4.60487e6 0.199482 0.0997412 0.995013i \(-0.468199\pi\)
0.0997412 + 0.995013i \(0.468199\pi\)
\(128\) 0 0
\(129\) −3.43991e6 4.40026e6i −0.141086 0.180474i
\(130\) 0 0
\(131\) 9.05627e6 1.56859e7i 0.351965 0.609622i −0.634628 0.772817i \(-0.718847\pi\)
0.986594 + 0.163196i \(0.0521801\pi\)
\(132\) 0 0
\(133\) 2.39596e6 + 4.14993e6i 0.0883079 + 0.152954i
\(134\) 0 0
\(135\) 973020. 9.33567e6i 0.0340372 0.326571i
\(136\) 0 0
\(137\) 3.05377e6 + 5.28928e6i 0.101465 + 0.175742i 0.912288 0.409549i \(-0.134314\pi\)
−0.810824 + 0.585290i \(0.800981\pi\)
\(138\) 0 0
\(139\) 8.94249e6 1.54888e7i 0.282427 0.489178i −0.689555 0.724233i \(-0.742194\pi\)
0.971982 + 0.235055i \(0.0755271\pi\)
\(140\) 0 0
\(141\) −2.67730e6 3.42475e6i −0.0804323 0.102887i
\(142\) 0 0
\(143\) 2.44117e7 0.698107
\(144\) 0 0
\(145\) −1.32337e7 −0.360489
\(146\) 0 0
\(147\) 2.05957e6 5.10187e6i 0.0534769 0.132470i
\(148\) 0 0
\(149\) −5.16644e6 + 8.94854e6i −0.127950 + 0.221616i −0.922882 0.385083i \(-0.874173\pi\)
0.794932 + 0.606698i \(0.207506\pi\)
\(150\) 0 0
\(151\) −2.82912e7 4.90019e7i −0.668702 1.15823i −0.978267 0.207348i \(-0.933517\pi\)
0.309565 0.950878i \(-0.399817\pi\)
\(152\) 0 0
\(153\) −4.30378e7 + 1.23679e7i −0.971472 + 0.279174i
\(154\) 0 0
\(155\) −1.31083e7 2.27042e7i −0.282738 0.489716i
\(156\) 0 0
\(157\) −1.89733e7 + 3.28628e7i −0.391286 + 0.677728i −0.992619 0.121271i \(-0.961303\pi\)
0.601333 + 0.798998i \(0.294636\pi\)
\(158\) 0 0
\(159\) 3.54241e7 4.98900e6i 0.698891 0.0984290i
\(160\) 0 0
\(161\) 1.97752e7 0.373448
\(162\) 0 0
\(163\) −5.18200e7 −0.937218 −0.468609 0.883406i \(-0.655245\pi\)
−0.468609 + 0.883406i \(0.655245\pi\)
\(164\) 0 0
\(165\) −1.30514e7 + 1.83811e6i −0.226185 + 0.0318551i
\(166\) 0 0
\(167\) −1.01593e7 + 1.75964e7i −0.168793 + 0.292359i −0.937996 0.346646i \(-0.887320\pi\)
0.769203 + 0.639005i \(0.220654\pi\)
\(168\) 0 0
\(169\) −219774. 380660.i −0.00350246 0.00606644i
\(170\) 0 0
\(171\) 2.93653e7 8.43877e6i 0.449105 0.129060i
\(172\) 0 0
\(173\) −5.97784e7 1.03539e8i −0.877774 1.52035i −0.853778 0.520638i \(-0.825694\pi\)
−0.0239965 0.999712i \(-0.507639\pi\)
\(174\) 0 0
\(175\) −1.19540e7 + 2.07049e7i −0.168609 + 0.292039i
\(176\) 0 0
\(177\) −1.56704e7 + 3.88179e7i −0.212409 + 0.526169i
\(178\) 0 0
\(179\) 1.25896e8 1.64069 0.820347 0.571867i \(-0.193781\pi\)
0.820347 + 0.571867i \(0.193781\pi\)
\(180\) 0 0
\(181\) −1.80186e7 −0.225864 −0.112932 0.993603i \(-0.536024\pi\)
−0.112932 + 0.993603i \(0.536024\pi\)
\(182\) 0 0
\(183\) 6.17017e7 + 7.89275e7i 0.744250 + 0.952028i
\(184\) 0 0
\(185\) −1.69367e7 + 2.93352e7i −0.196665 + 0.340634i
\(186\) 0 0
\(187\) 3.14400e7 + 5.44557e7i 0.351590 + 0.608972i
\(188\) 0 0
\(189\) −2.83987e7 2.05952e7i −0.305973 0.221896i
\(190\) 0 0
\(191\) −4.15879e7 7.20323e7i −0.431867 0.748015i 0.565167 0.824976i \(-0.308812\pi\)
−0.997034 + 0.0769610i \(0.975478\pi\)
\(192\) 0 0
\(193\) 6.80545e7 1.17874e8i 0.681406 1.18023i −0.293146 0.956068i \(-0.594702\pi\)
0.974552 0.224162i \(-0.0719646\pi\)
\(194\) 0 0
\(195\) 2.10118e7 + 2.68778e7i 0.202928 + 0.259581i
\(196\) 0 0
\(197\) −2.04556e8 −1.90625 −0.953127 0.302571i \(-0.902155\pi\)
−0.953127 + 0.302571i \(0.902155\pi\)
\(198\) 0 0
\(199\) 4.26491e7 0.383641 0.191820 0.981430i \(-0.438561\pi\)
0.191820 + 0.981430i \(0.438561\pi\)
\(200\) 0 0
\(201\) 2.81764e7 6.97973e7i 0.244737 0.606251i
\(202\) 0 0
\(203\) −2.47301e7 + 4.28338e7i −0.207487 + 0.359377i
\(204\) 0 0
\(205\) −6.14832e6 1.06492e7i −0.0498446 0.0863333i
\(206\) 0 0
\(207\) 3.04327e7 1.22361e8i 0.238476 0.958839i
\(208\) 0 0
\(209\) −2.14520e7 3.71559e7i −0.162538 0.281524i
\(210\) 0 0
\(211\) −3.72208e7 + 6.44683e7i −0.272770 + 0.472452i −0.969570 0.244814i \(-0.921273\pi\)
0.696800 + 0.717266i \(0.254607\pi\)
\(212\) 0 0
\(213\) −1.16271e8 + 1.63752e7i −0.824410 + 0.116107i
\(214\) 0 0
\(215\) −1.09607e7 −0.0752149
\(216\) 0 0
\(217\) −9.79830e7 −0.650941
\(218\) 0 0
\(219\) 1.83050e8 2.57801e7i 1.17765 0.165856i
\(220\) 0 0
\(221\) 8.13803e7 1.40955e8i 0.507162 0.878430i
\(222\) 0 0
\(223\) −5.48551e7 9.50119e7i −0.331246 0.573735i 0.651511 0.758640i \(-0.274136\pi\)
−0.982756 + 0.184905i \(0.940802\pi\)
\(224\) 0 0
\(225\) 1.09717e8 + 1.05830e8i 0.642149 + 0.619398i
\(226\) 0 0
\(227\) 5.91122e7 + 1.02385e8i 0.335418 + 0.580962i 0.983565 0.180554i \(-0.0577890\pi\)
−0.648147 + 0.761515i \(0.724456\pi\)
\(228\) 0 0
\(229\) −1.24521e8 + 2.15677e8i −0.685201 + 1.18680i 0.288172 + 0.957579i \(0.406953\pi\)
−0.973373 + 0.229225i \(0.926381\pi\)
\(230\) 0 0
\(231\) −1.84401e7 + 4.56789e7i −0.0984286 + 0.243822i
\(232\) 0 0
\(233\) 1.00141e7 0.0518643 0.0259321 0.999664i \(-0.491745\pi\)
0.0259321 + 0.999664i \(0.491745\pi\)
\(234\) 0 0
\(235\) −8.53078e6 −0.0428796
\(236\) 0 0
\(237\) 4.06006e7 + 5.19354e7i 0.198113 + 0.253422i
\(238\) 0 0
\(239\) 1.12966e8 1.95662e8i 0.535247 0.927075i −0.463904 0.885885i \(-0.653552\pi\)
0.999151 0.0411896i \(-0.0131148\pi\)
\(240\) 0 0
\(241\) −6.60432e7 1.14390e8i −0.303927 0.526416i 0.673095 0.739556i \(-0.264964\pi\)
−0.977022 + 0.213140i \(0.931631\pi\)
\(242\) 0 0
\(243\) −1.71138e8 + 1.44025e8i −0.765113 + 0.643896i
\(244\) 0 0
\(245\) −5.39854e6 9.35055e6i −0.0234528 0.0406215i
\(246\) 0 0
\(247\) −5.55270e7 + 9.61755e7i −0.234458 + 0.406093i
\(248\) 0 0
\(249\) −5.43068e7 6.94681e7i −0.222924 0.285159i
\(250\) 0 0
\(251\) 4.05102e8 1.61699 0.808493 0.588506i \(-0.200284\pi\)
0.808493 + 0.588506i \(0.200284\pi\)
\(252\) 0 0
\(253\) −1.77055e8 −0.687361
\(254\) 0 0
\(255\) −3.28957e7 + 8.14876e7i −0.124236 + 0.307752i
\(256\) 0 0
\(257\) 1.32304e8 2.29157e8i 0.486191 0.842108i −0.513683 0.857980i \(-0.671719\pi\)
0.999874 + 0.0158725i \(0.00505258\pi\)
\(258\) 0 0
\(259\) 6.33000e7 + 1.09639e8i 0.226389 + 0.392117i
\(260\) 0 0
\(261\) 2.26980e8 + 2.18938e8i 0.790216 + 0.762219i
\(262\) 0 0
\(263\) −6.55093e7 1.13466e8i −0.222054 0.384608i 0.733378 0.679821i \(-0.237943\pi\)
−0.955431 + 0.295213i \(0.904609\pi\)
\(264\) 0 0
\(265\) 3.51017e7 6.07979e7i 0.115869 0.200691i
\(266\) 0 0
\(267\) 2.60007e8 3.66184e7i 0.835980 0.117736i
\(268\) 0 0
\(269\) 1.17427e8 0.367820 0.183910 0.982943i \(-0.441124\pi\)
0.183910 + 0.982943i \(0.441124\pi\)
\(270\) 0 0
\(271\) 1.58598e8 0.484068 0.242034 0.970268i \(-0.422185\pi\)
0.242034 + 0.970268i \(0.422185\pi\)
\(272\) 0 0
\(273\) 1.26262e8 1.77822e7i 0.375579 0.0528952i
\(274\) 0 0
\(275\) 1.07028e8 1.85379e8i 0.310338 0.537521i
\(276\) 0 0
\(277\) 2.53781e8 + 4.39562e8i 0.717432 + 1.24263i 0.962014 + 0.273000i \(0.0880159\pi\)
−0.244582 + 0.969629i \(0.578651\pi\)
\(278\) 0 0
\(279\) −1.50789e8 + 6.06278e8i −0.415677 + 1.67131i
\(280\) 0 0
\(281\) 3.34099e8 + 5.78677e8i 0.898263 + 1.55584i 0.829713 + 0.558190i \(0.188504\pi\)
0.0685497 + 0.997648i \(0.478163\pi\)
\(282\) 0 0
\(283\) −2.73390e8 + 4.73525e8i −0.717017 + 1.24191i 0.245159 + 0.969483i \(0.421160\pi\)
−0.962176 + 0.272427i \(0.912174\pi\)
\(284\) 0 0
\(285\) 2.24452e7 5.56001e7i 0.0574336 0.142272i
\(286\) 0 0
\(287\) −4.59581e7 −0.114756
\(288\) 0 0
\(289\) 8.90229e6 0.0216950
\(290\) 0 0
\(291\) 1.50384e8 + 1.92368e8i 0.357747 + 0.457622i
\(292\) 0 0
\(293\) −4.18587e8 + 7.25013e8i −0.972184 + 1.68387i −0.283254 + 0.959045i \(0.591414\pi\)
−0.688930 + 0.724828i \(0.741919\pi\)
\(294\) 0 0
\(295\) 4.10751e7 + 7.11442e7i 0.0931541 + 0.161348i
\(296\) 0 0
\(297\) 2.54264e8 + 1.84397e8i 0.563168 + 0.408418i
\(298\) 0 0
\(299\) 2.29147e8 + 3.96894e8i 0.495752 + 0.858668i
\(300\) 0 0
\(301\) −2.04826e7 + 3.54768e7i −0.0432914 + 0.0749829i
\(302\) 0 0
\(303\) 3.28184e8 + 4.19805e8i 0.677747 + 0.866959i
\(304\) 0 0
\(305\) 1.96602e8 0.396770
\(306\) 0 0
\(307\) −6.62651e8 −1.30708 −0.653538 0.756894i \(-0.726716\pi\)
−0.653538 + 0.756894i \(0.726716\pi\)
\(308\) 0 0
\(309\) −2.41477e8 + 5.98174e8i −0.465608 + 1.15338i
\(310\) 0 0
\(311\) 2.35442e8 4.07797e8i 0.443836 0.768746i −0.554135 0.832427i \(-0.686951\pi\)
0.997970 + 0.0636813i \(0.0202841\pi\)
\(312\) 0 0
\(313\) −2.63093e8 4.55690e8i −0.484958 0.839972i 0.514893 0.857255i \(-0.327832\pi\)
−0.999851 + 0.0172830i \(0.994498\pi\)
\(314\) 0 0
\(315\) −6.61654e7 + 1.90141e7i −0.119273 + 0.0342759i
\(316\) 0 0
\(317\) −3.16253e8 5.47767e8i −0.557606 0.965802i −0.997696 0.0678483i \(-0.978387\pi\)
0.440089 0.897954i \(-0.354947\pi\)
\(318\) 0 0
\(319\) 2.21418e8 3.83507e8i 0.381896 0.661464i
\(320\) 0 0
\(321\) 5.51977e8 7.77383e7i 0.931437 0.131180i
\(322\) 0 0
\(323\) −2.86054e8 −0.472323
\(324\) 0 0
\(325\) −5.54072e8 −0.895312
\(326\) 0 0
\(327\) 8.02551e8 1.13028e8i 1.26927 0.178760i
\(328\) 0 0
\(329\) −1.59417e7 + 2.76118e7i −0.0246802 + 0.0427474i
\(330\) 0 0
\(331\) −8.08381e7 1.40016e8i −0.122523 0.212216i 0.798239 0.602341i \(-0.205765\pi\)
−0.920762 + 0.390125i \(0.872432\pi\)
\(332\) 0 0
\(333\) 7.75815e8 2.22948e8i 1.15134 0.330863i
\(334\) 0 0
\(335\) −7.38560e7 1.27922e8i −0.107332 0.185904i
\(336\) 0 0
\(337\) −5.06942e8 + 8.78050e8i −0.721529 + 1.24973i 0.238858 + 0.971055i \(0.423227\pi\)
−0.960387 + 0.278671i \(0.910106\pi\)
\(338\) 0 0
\(339\) −3.02026e8 + 7.48164e8i −0.421061 + 1.04303i
\(340\) 0 0
\(341\) 8.77278e8 1.19811
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) 0 0
\(345\) −1.52395e8 1.94941e8i −0.199805 0.255586i
\(346\) 0 0
\(347\) 7.50068e8 1.29916e9i 0.963712 1.66920i 0.250676 0.968071i \(-0.419347\pi\)
0.713036 0.701127i \(-0.247319\pi\)
\(348\) 0 0
\(349\) 3.91104e8 + 6.77412e8i 0.492496 + 0.853029i 0.999963 0.00864285i \(-0.00275114\pi\)
−0.507466 + 0.861672i \(0.669418\pi\)
\(350\) 0 0
\(351\) 8.42793e7 8.08620e8i 0.104027 0.998090i
\(352\) 0 0
\(353\) −3.15843e8 5.47056e8i −0.382173 0.661943i 0.609200 0.793017i \(-0.291491\pi\)
−0.991373 + 0.131074i \(0.958157\pi\)
\(354\) 0 0
\(355\) −1.15213e8 + 1.99554e8i −0.136679 + 0.236735i
\(356\) 0 0
\(357\) 2.02280e8 + 2.58752e8i 0.235296 + 0.300985i
\(358\) 0 0
\(359\) −3.85095e8 −0.439276 −0.219638 0.975581i \(-0.570488\pi\)
−0.219638 + 0.975581i \(0.570488\pi\)
\(360\) 0 0
\(361\) −6.98693e8 −0.781648
\(362\) 0 0
\(363\) −1.76043e8 + 4.36084e8i −0.193172 + 0.478517i
\(364\) 0 0
\(365\) 1.81384e8 3.14167e8i 0.195243 0.338170i
\(366\) 0 0
\(367\) 3.89735e8 + 6.75042e8i 0.411565 + 0.712852i 0.995061 0.0992641i \(-0.0316489\pi\)
−0.583496 + 0.812116i \(0.698316\pi\)
\(368\) 0 0
\(369\) −7.07265e7 + 2.84370e8i −0.0732807 + 0.294640i
\(370\) 0 0
\(371\) −1.31191e8 2.27229e8i −0.133381 0.231023i
\(372\) 0 0
\(373\) 5.92359e8 1.02600e9i 0.591023 1.02368i −0.403072 0.915168i \(-0.632058\pi\)
0.994095 0.108513i \(-0.0346090\pi\)
\(374\) 0 0
\(375\) 6.28251e8 8.84805e7i 0.615211 0.0866439i
\(376\) 0 0
\(377\) −1.14625e9 −1.10175
\(378\) 0 0
\(379\) −3.66625e8 −0.345928 −0.172964 0.984928i \(-0.555334\pi\)
−0.172964 + 0.984928i \(0.555334\pi\)
\(380\) 0 0
\(381\) −2.13244e8 + 3.00325e7i −0.197533 + 0.0278198i
\(382\) 0 0
\(383\) 4.20505e8 7.28336e8i 0.382451 0.662424i −0.608961 0.793200i \(-0.708414\pi\)
0.991412 + 0.130776i \(0.0417469\pi\)
\(384\) 0 0
\(385\) 4.83351e7 + 8.37189e7i 0.0431669 + 0.0747672i
\(386\) 0 0
\(387\) 1.87995e8 + 1.81334e8i 0.164876 + 0.159034i
\(388\) 0 0
\(389\) −4.86755e8 8.43085e8i −0.419264 0.726186i 0.576602 0.817025i \(-0.304378\pi\)
−0.995866 + 0.0908393i \(0.971045\pi\)
\(390\) 0 0
\(391\) −5.90240e8 + 1.02232e9i −0.499355 + 0.864909i
\(392\) 0 0
\(393\) −3.17079e8 + 7.85454e8i −0.263508 + 0.652750i
\(394\) 0 0
\(395\) 1.29367e8 0.105617
\(396\) 0 0
\(397\) −1.65174e9 −1.32487 −0.662437 0.749118i \(-0.730478\pi\)
−0.662437 + 0.749118i \(0.730478\pi\)
\(398\) 0 0
\(399\) −1.38019e8 1.76550e8i −0.108776 0.139144i
\(400\) 0 0
\(401\) 1.06679e9 1.84774e9i 0.826179 1.43098i −0.0748364 0.997196i \(-0.523843\pi\)
0.901015 0.433788i \(-0.142823\pi\)
\(402\) 0 0
\(403\) −1.13539e9 1.96655e9i −0.864125 1.49671i
\(404\) 0 0
\(405\) 1.58273e7 + 4.38665e8i 0.0118389 + 0.328126i
\(406\) 0 0
\(407\) −5.66749e8 9.81637e8i −0.416687 0.721723i
\(408\) 0 0
\(409\) −3.48584e8 + 6.03766e8i −0.251928 + 0.436352i −0.964057 0.265697i \(-0.914398\pi\)
0.712129 + 0.702049i \(0.247731\pi\)
\(410\) 0 0
\(411\) −1.75911e8 2.25022e8i −0.124982 0.159874i
\(412\) 0 0
\(413\) 3.07033e8 0.214466
\(414\) 0 0
\(415\) −1.73040e8 −0.118844
\(416\) 0 0
\(417\) −3.13095e8 + 7.75585e8i −0.211447 + 0.523785i
\(418\) 0 0
\(419\) 8.85854e8 1.53434e9i 0.588319 1.01900i −0.406133 0.913814i \(-0.633123\pi\)
0.994453 0.105185i \(-0.0335435\pi\)
\(420\) 0 0
\(421\) −1.22810e9 2.12714e9i −0.802135 1.38934i −0.918208 0.396098i \(-0.870364\pi\)
0.116073 0.993241i \(-0.462969\pi\)
\(422\) 0 0
\(423\) 1.46317e8 + 1.41133e8i 0.0939949 + 0.0906647i
\(424\) 0 0
\(425\) −7.13593e8 1.23598e9i −0.450910 0.780998i
\(426\) 0 0
\(427\) 3.67396e8 6.36348e8i 0.228369 0.395546i
\(428\) 0 0
\(429\) −1.13047e9 + 1.59210e8i −0.691285 + 0.0973579i
\(430\) 0 0
\(431\) −5.83620e8 −0.351123 −0.175562 0.984468i \(-0.556174\pi\)
−0.175562 + 0.984468i \(0.556174\pi\)
\(432\) 0 0
\(433\) −2.28190e9 −1.35079 −0.675397 0.737454i \(-0.736028\pi\)
−0.675397 + 0.737454i \(0.736028\pi\)
\(434\) 0 0
\(435\) 6.12830e8 8.63086e7i 0.356967 0.0502738i
\(436\) 0 0
\(437\) 4.02729e8 6.97547e8i 0.230849 0.399842i
\(438\) 0 0
\(439\) 2.40387e7 + 4.16363e7i 0.0135608 + 0.0234880i 0.872726 0.488210i \(-0.162350\pi\)
−0.859165 + 0.511698i \(0.829017\pi\)
\(440\) 0 0
\(441\) −6.21015e7 + 2.49692e8i −0.0344800 + 0.138634i
\(442\) 0 0
\(443\) 1.45047e9 + 2.51229e9i 0.792676 + 1.37295i 0.924305 + 0.381656i \(0.124646\pi\)
−0.131629 + 0.991299i \(0.542021\pi\)
\(444\) 0 0
\(445\) 2.57641e8 4.46246e8i 0.138597 0.240057i
\(446\) 0 0
\(447\) 1.80888e8 4.48087e8i 0.0957930 0.237294i
\(448\) 0 0
\(449\) 3.68290e8 0.192012 0.0960058 0.995381i \(-0.469393\pi\)
0.0960058 + 0.995381i \(0.469393\pi\)
\(450\) 0 0
\(451\) 4.11480e8 0.211218
\(452\) 0 0
\(453\) 1.62971e9 + 2.08468e9i 0.823694 + 1.05365i
\(454\) 0 0
\(455\) 1.25112e8 2.16701e8i 0.0622673 0.107850i
\(456\) 0 0
\(457\) −1.70815e8 2.95860e8i −0.0837181 0.145004i 0.821126 0.570747i \(-0.193346\pi\)
−0.904844 + 0.425743i \(0.860013\pi\)
\(458\) 0 0
\(459\) 1.91235e9 8.53424e8i 0.923044 0.411927i
\(460\) 0 0
\(461\) −1.41140e9 2.44462e9i −0.670961 1.16214i −0.977632 0.210323i \(-0.932548\pi\)
0.306671 0.951816i \(-0.400785\pi\)
\(462\) 0 0
\(463\) −8.55758e8 + 1.48222e9i −0.400698 + 0.694030i −0.993810 0.111090i \(-0.964566\pi\)
0.593112 + 0.805120i \(0.297899\pi\)
\(464\) 0 0
\(465\) 7.55096e8 + 9.65902e8i 0.348271 + 0.445500i
\(466\) 0 0
\(467\) −1.73369e9 −0.787703 −0.393851 0.919174i \(-0.628858\pi\)
−0.393851 + 0.919174i \(0.628858\pi\)
\(468\) 0 0
\(469\) −5.52067e8 −0.247108
\(470\) 0 0
\(471\) 6.64296e8 1.64556e9i 0.292947 0.725674i
\(472\) 0 0
\(473\) 1.83388e8 3.17637e8i 0.0796814 0.138012i
\(474\) 0 0
\(475\) 4.86895e8 + 8.43327e8i 0.208453 + 0.361051i
\(476\) 0 0
\(477\) −1.60790e9 + 4.62065e8i −0.678334 + 0.194934i
\(478\) 0 0
\(479\) −1.95809e9 3.39150e9i −0.814062 1.41000i −0.910000 0.414609i \(-0.863918\pi\)
0.0959380 0.995387i \(-0.469415\pi\)
\(480\) 0 0
\(481\) −1.46699e9 + 2.54090e9i −0.601063 + 1.04107i
\(482\) 0 0
\(483\) −9.15757e8 + 1.28972e8i −0.369798 + 0.0520810i
\(484\) 0 0
\(485\) 4.79174e8 0.190720
\(486\) 0 0
\(487\) −7.60877e8 −0.298513 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(488\) 0 0
\(489\) 2.39970e9 3.37964e8i 0.928059 0.130704i
\(490\) 0 0
\(491\) −1.19158e9 + 2.06389e9i −0.454297 + 0.786865i −0.998647 0.0519926i \(-0.983443\pi\)
0.544351 + 0.838858i \(0.316776\pi\)
\(492\) 0 0
\(493\) −1.47626e9 2.55696e9i −0.554881 0.961082i
\(494\) 0 0
\(495\) 5.92403e8 1.70240e8i 0.219533 0.0630876i
\(496\) 0 0
\(497\) 4.30602e8 + 7.45825e8i 0.157336 + 0.272515i
\(498\) 0 0
\(499\) −7.01116e8 + 1.21437e9i −0.252603 + 0.437520i −0.964242 0.265025i \(-0.914620\pi\)
0.711639 + 0.702545i \(0.247953\pi\)
\(500\) 0 0
\(501\) 3.55698e8 8.81118e8i 0.126372 0.313042i
\(502\) 0 0
\(503\) 3.78661e9 1.32667 0.663334 0.748323i \(-0.269141\pi\)
0.663334 + 0.748323i \(0.269141\pi\)
\(504\) 0 0
\(505\) 1.04570e9 0.361317
\(506\) 0 0
\(507\) 1.26600e7 + 1.61944e7i 0.00431426 + 0.00551871i
\(508\) 0 0
\(509\) −1.18052e9 + 2.04473e9i −0.396792 + 0.687264i −0.993328 0.115323i \(-0.963210\pi\)
0.596536 + 0.802586i \(0.296543\pi\)
\(510\) 0 0
\(511\) −6.77915e8 1.17418e9i −0.224751 0.389280i
\(512\) 0 0
\(513\) −1.30482e9 + 5.82303e8i −0.426718 + 0.190431i
\(514\) 0 0
\(515\) 6.32958e8 + 1.09632e9i 0.204197 + 0.353680i
\(516\) 0 0
\(517\) 1.42732e8 2.47219e8i 0.0454259 0.0786800i
\(518\) 0 0
\(519\) 3.44351e9 + 4.40486e9i 1.08122 + 1.38308i
\(520\) 0 0
\(521\) 1.00498e9 0.311334 0.155667 0.987810i \(-0.450247\pi\)
0.155667 + 0.987810i \(0.450247\pi\)
\(522\) 0 0
\(523\) 1.26287e9 0.386013 0.193006 0.981198i \(-0.438176\pi\)
0.193006 + 0.981198i \(0.438176\pi\)
\(524\) 0 0
\(525\) 4.18535e8 1.03677e9i 0.126233 0.312699i
\(526\) 0 0
\(527\) 2.92455e9 5.06546e9i 0.870405 1.50759i
\(528\) 0 0
\(529\) 4.04438e7 + 7.00506e7i 0.0118784 + 0.0205739i
\(530\) 0 0
\(531\) 4.72503e8 1.89979e9i 0.136954 0.550649i
\(532\) 0 0
\(533\) −5.32544e8 9.22393e8i −0.152339 0.263858i
\(534\) 0 0
\(535\) 5.46953e8 9.47350e8i 0.154423 0.267468i
\(536\) 0 0
\(537\) −5.83005e9 + 8.21082e8i −1.62466 + 0.228811i
\(538\) 0 0
\(539\) 3.61301e8 0.0993821
\(540\) 0 0
\(541\) −4.30190e9 −1.16807 −0.584037 0.811727i \(-0.698528\pi\)
−0.584037 + 0.811727i \(0.698528\pi\)
\(542\) 0 0
\(543\) 8.34414e8 1.17516e8i 0.223657 0.0314990i
\(544\) 0 0
\(545\) 7.95246e8 1.37741e9i 0.210433 0.364480i
\(546\) 0 0
\(547\) −1.78578e9 3.09306e9i −0.466522 0.808040i 0.532747 0.846275i \(-0.321160\pi\)
−0.999269 + 0.0382348i \(0.987827\pi\)
\(548\) 0 0
\(549\) −3.37206e9 3.25259e9i −0.869746 0.838931i
\(550\) 0 0
\(551\) 1.00728e9 + 1.74465e9i 0.256518 + 0.444302i
\(552\) 0 0
\(553\) 2.41752e8 4.18726e8i 0.0607899 0.105291i
\(554\) 0 0
\(555\) 5.92989e8 1.46892e9i 0.147238 0.364732i
\(556\) 0 0
\(557\) −3.34906e9 −0.821164 −0.410582 0.911824i \(-0.634674\pi\)
−0.410582 + 0.911824i \(0.634674\pi\)
\(558\) 0 0
\(559\) −9.49375e8 −0.229877
\(560\) 0 0
\(561\) −1.81109e9 2.31670e9i −0.433082 0.553988i
\(562\) 0 0
\(563\) 1.34927e7 2.33700e7i 0.00318654 0.00551925i −0.864428 0.502757i \(-0.832319\pi\)
0.867614 + 0.497238i \(0.165652\pi\)
\(564\) 0 0
\(565\) 7.91670e8 + 1.37121e9i 0.184661 + 0.319842i
\(566\) 0 0
\(567\) 1.44942e9 + 7.68517e8i 0.333928 + 0.177057i
\(568\) 0 0
\(569\) −1.17902e9 2.04212e9i −0.268304 0.464717i 0.700120 0.714025i \(-0.253130\pi\)
−0.968424 + 0.249309i \(0.919797\pi\)
\(570\) 0 0
\(571\) −1.65443e9 + 2.86555e9i −0.371895 + 0.644142i −0.989857 0.142066i \(-0.954625\pi\)
0.617962 + 0.786208i \(0.287959\pi\)
\(572\) 0 0
\(573\) 2.39565e9 + 3.06447e9i 0.531965 + 0.680478i
\(574\) 0 0
\(575\) 4.01861e9 0.881532
\(576\) 0 0
\(577\) 1.01622e9 0.220227 0.110114 0.993919i \(-0.464879\pi\)
0.110114 + 0.993919i \(0.464879\pi\)
\(578\) 0 0
\(579\) −2.38273e9 + 5.90239e9i −0.510153 + 1.26373i
\(580\) 0 0
\(581\) −3.23364e8 + 5.60082e8i −0.0684030 + 0.118477i
\(582\) 0 0
\(583\) 1.17460e9 + 2.03447e9i 0.245499 + 0.425217i
\(584\) 0 0
\(585\) −1.14832e9 1.10763e9i −0.237146 0.228744i
\(586\) 0 0
\(587\) 1.29703e9 + 2.24653e9i 0.264678 + 0.458436i 0.967479 0.252951i \(-0.0814010\pi\)
−0.702801 + 0.711386i \(0.748068\pi\)
\(588\) 0 0
\(589\) −1.99546e9 + 3.45624e9i −0.402383 + 0.696947i
\(590\) 0 0
\(591\) 9.47266e9 1.33409e9i 1.88763 0.265846i
\(592\) 0 0
\(593\) −4.18460e9 −0.824068 −0.412034 0.911169i \(-0.635181\pi\)
−0.412034 + 0.911169i \(0.635181\pi\)
\(594\) 0 0
\(595\) 6.44532e8 0.125440
\(596\) 0 0
\(597\) −1.97501e9 + 2.78153e8i −0.379891 + 0.0535024i
\(598\) 0 0
\(599\) 3.54145e9 6.13397e9i 0.673267 1.16613i −0.303705 0.952766i \(-0.598224\pi\)
0.976972 0.213367i \(-0.0684430\pi\)
\(600\) 0 0
\(601\) −1.42107e9 2.46137e9i −0.267027 0.462504i 0.701066 0.713097i \(-0.252708\pi\)
−0.968093 + 0.250593i \(0.919375\pi\)
\(602\) 0 0
\(603\) −8.49594e8 + 3.41596e9i −0.157798 + 0.634457i
\(604\) 0 0
\(605\) 4.61443e8 + 7.99242e8i 0.0847177 + 0.146735i
\(606\) 0 0
\(607\) 2.03471e9 3.52422e9i 0.369268 0.639591i −0.620183 0.784457i \(-0.712942\pi\)
0.989451 + 0.144866i \(0.0462752\pi\)
\(608\) 0 0
\(609\) 8.65854e8 2.14485e9i 0.155340 0.384802i
\(610\) 0 0
\(611\) −7.38903e8 −0.131052
\(612\) 0 0
\(613\) 2.01727e8 0.0353714 0.0176857 0.999844i \(-0.494370\pi\)
0.0176857 + 0.999844i \(0.494370\pi\)
\(614\) 0 0
\(615\) 3.54172e8 + 4.53048e8i 0.0613975 + 0.0785383i
\(616\) 0 0
\(617\) −5.88263e8 + 1.01890e9i −0.100826 + 0.174636i −0.912025 0.410134i \(-0.865482\pi\)
0.811199 + 0.584770i \(0.198815\pi\)
\(618\) 0 0
\(619\) 2.92639e9 + 5.06865e9i 0.495923 + 0.858965i 0.999989 0.00470078i \(-0.00149631\pi\)
−0.504065 + 0.863665i \(0.668163\pi\)
\(620\) 0 0
\(621\) −6.11265e8 + 5.86480e9i −0.102426 + 0.982727i
\(622\) 0 0
\(623\) −9.62919e8 1.66783e9i −0.159544 0.276339i
\(624\) 0 0
\(625\) −2.10022e9 + 3.63770e9i −0.344101 + 0.596000i
\(626\) 0 0
\(627\) 1.23573e9 + 1.58072e9i 0.200211 + 0.256105i
\(628\) 0 0
\(629\) −7.55739e9 −1.21086
\(630\) 0 0
\(631\) 3.92237e9 0.621506 0.310753 0.950491i \(-0.399419\pi\)
0.310753 + 0.950491i \(0.399419\pi\)
\(632\) 0 0
\(633\) 1.30318e9 3.22817e9i 0.204217 0.505876i
\(634\) 0 0
\(635\) −2.11303e8 + 3.65988e8i −0.0327490 + 0.0567229i
\(636\) 0 0
\(637\) −4.67601e8 8.09909e8i −0.0716783 0.124150i
\(638\) 0 0
\(639\) 5.27753e9 1.51661e9i 0.800161 0.229944i
\(640\) 0 0
\(641\) 4.20367e9 + 7.28097e9i 0.630414 + 1.09191i 0.987467 + 0.157825i \(0.0504481\pi\)
−0.357053 + 0.934084i \(0.616219\pi\)
\(642\) 0 0
\(643\) 1.39478e9 2.41583e9i 0.206903 0.358367i −0.743834 0.668364i \(-0.766995\pi\)
0.950737 + 0.309997i \(0.100328\pi\)
\(644\) 0 0
\(645\) 5.07573e8 7.14845e7i 0.0744799 0.0104895i
\(646\) 0 0
\(647\) 3.60948e9 0.523938 0.261969 0.965076i \(-0.415628\pi\)
0.261969 + 0.965076i \(0.415628\pi\)
\(648\) 0 0
\(649\) −2.74898e9 −0.394743
\(650\) 0 0
\(651\) 4.53743e9 6.39034e8i 0.644580 0.0907801i
\(652\) 0 0
\(653\) −2.81141e8 + 4.86951e8i −0.0395120 + 0.0684368i −0.885105 0.465391i \(-0.845914\pi\)
0.845593 + 0.533828i \(0.179247\pi\)
\(654\) 0 0
\(655\) 8.31128e8 + 1.43956e9i 0.115564 + 0.200163i
\(656\) 0 0
\(657\) −8.30863e9 + 2.38767e9i −1.14301 + 0.328470i
\(658\) 0 0
\(659\) 1.84097e9 + 3.18865e9i 0.250580 + 0.434018i 0.963686 0.267039i \(-0.0860453\pi\)
−0.713105 + 0.701057i \(0.752712\pi\)
\(660\) 0 0
\(661\) 3.77126e9 6.53201e9i 0.507904 0.879715i −0.492054 0.870564i \(-0.663754\pi\)
0.999958 0.00915061i \(-0.00291277\pi\)
\(662\) 0 0
\(663\) −2.84930e9 + 7.05814e9i −0.379700 + 0.940574i
\(664\) 0 0
\(665\) −4.39773e8 −0.0579900
\(666\) 0 0
\(667\) 8.31359e9 1.08480
\(668\) 0 0
\(669\) 3.15991e9 + 4.04209e9i 0.408022 + 0.521932i
\(670\) 0 0
\(671\) −3.28943e9 + 5.69746e9i −0.420331 + 0.728035i
\(672\) 0 0
\(673\) 4.04423e9 + 7.00481e9i 0.511426 + 0.885816i 0.999912 + 0.0132441i \(0.00421586\pi\)
−0.488486 + 0.872572i \(0.662451\pi\)
\(674\) 0 0
\(675\) −5.77103e9 4.18525e9i −0.722255 0.523791i
\(676\) 0 0
\(677\) 6.94533e9 + 1.20297e10i 0.860265 + 1.49002i 0.871673 + 0.490088i \(0.163035\pi\)
−0.0114077 + 0.999935i \(0.503631\pi\)
\(678\) 0 0
\(679\) 8.95445e8 1.55096e9i 0.109773 0.190132i
\(680\) 0 0
\(681\) −3.40514e9 4.35578e9i −0.413161 0.528507i
\(682\) 0 0
\(683\) −2.24491e9 −0.269604 −0.134802 0.990873i \(-0.543040\pi\)
−0.134802 + 0.990873i \(0.543040\pi\)
\(684\) 0 0
\(685\) −5.60511e8 −0.0666296
\(686\) 0 0
\(687\) 4.35974e9 1.07997e10i 0.512994 1.27076i
\(688\) 0 0
\(689\) 3.04038e9 5.26608e9i 0.354128 0.613367i
\(690\) 0 0
\(691\) 6.93214e9 + 1.20068e10i 0.799272 + 1.38438i 0.920091 + 0.391705i \(0.128114\pi\)
−0.120819 + 0.992675i \(0.538552\pi\)
\(692\) 0 0
\(693\) 5.56018e8 2.23558e9i 0.0634633 0.255167i
\(694\) 0 0
\(695\) 8.20685e8 + 1.42147e9i 0.0927321 + 0.160617i
\(696\) 0 0
\(697\) 1.37173e9 2.37591e9i 0.153446 0.265776i
\(698\) 0 0
\(699\) −4.63739e8 + 6.53112e7i −0.0513574 + 0.00723298i
\(700\) 0 0
\(701\) −2.56554e9 −0.281298 −0.140649 0.990060i \(-0.544919\pi\)
−0.140649 + 0.990060i \(0.544919\pi\)
\(702\) 0 0
\(703\) 5.15651e9 0.559774
\(704\) 0 0
\(705\) 3.95046e8 5.56368e7i 0.0424606 0.00597999i
\(706\) 0 0
\(707\) 1.95413e9 3.38465e9i 0.207963 0.360202i
\(708\) 0 0
\(709\) −2.02093e9 3.50035e9i −0.212956 0.368850i 0.739683 0.672956i \(-0.234976\pi\)
−0.952638 + 0.304106i \(0.901642\pi\)
\(710\) 0 0
\(711\) −2.21886e9 2.14025e9i −0.231519 0.223317i
\(712\) 0 0
\(713\) 8.23480e9 + 1.42631e10i 0.850824 + 1.47367i
\(714\) 0 0
\(715\) −1.12018e9 + 1.94020e9i −0.114608 + 0.198507i
\(716\) 0 0
\(717\) −3.95517e9 + 9.79756e9i −0.400727 + 0.992661i
\(718\) 0 0
\(719\) −1.55898e10 −1.56418 −0.782092 0.623162i \(-0.785848\pi\)
−0.782092 + 0.623162i \(0.785848\pi\)
\(720\) 0 0
\(721\) 4.73130e9 0.470119
\(722\) 0 0
\(723\) 3.80439e9 + 4.86650e9i 0.374370 + 0.478886i
\(724\) 0 0
\(725\) −5.02552e9 + 8.70446e9i −0.489777 + 0.848318i
\(726\) 0 0
\(727\) 6.35805e9 + 1.10125e10i 0.613696 + 1.06295i 0.990612 + 0.136705i \(0.0436513\pi\)
−0.376916 + 0.926248i \(0.623015\pi\)
\(728\) 0 0
\(729\) 6.98583e9 7.78571e9i 0.667838 0.744306i
\(730\) 0 0
\(731\) −1.22271e9 2.11779e9i −0.115774 0.200527i
\(732\) 0 0
\(733\) −1.06062e10 + 1.83705e10i −0.994710 + 1.72289i −0.408396 + 0.912805i \(0.633912\pi\)
−0.586314 + 0.810084i \(0.699421\pi\)
\(734\) 0 0
\(735\) 3.10981e8 + 3.97800e8i 0.0288887 + 0.0369538i
\(736\) 0 0
\(737\) 4.94286e9 0.454822
\(738\) 0 0
\(739\) 6.18318e9 0.563581 0.281790 0.959476i \(-0.409072\pi\)
0.281790 + 0.959476i \(0.409072\pi\)
\(740\) 0 0
\(741\) 1.94412e9 4.81587e9i 0.175533 0.434822i
\(742\) 0 0
\(743\) −6.10377e9 + 1.05720e10i −0.545930 + 0.945579i 0.452618 + 0.891705i \(0.350490\pi\)
−0.998548 + 0.0538739i \(0.982843\pi\)
\(744\) 0 0
\(745\) −4.74144e8 8.21241e8i −0.0420110 0.0727652i
\(746\) 0 0
\(747\) 2.96792e9 + 2.86277e9i 0.260514 + 0.251284i
\(748\) 0 0
\(749\) −2.04421e9 3.54068e9i −0.177762 0.307893i
\(750\) 0 0
\(751\) 7.93530e9 1.37443e10i 0.683634 1.18409i −0.290231 0.956957i \(-0.593732\pi\)
0.973864 0.227131i \(-0.0729347\pi\)
\(752\) 0 0
\(753\) −1.87596e10 + 2.64203e9i −1.60118 + 0.225504i
\(754\) 0 0
\(755\) 5.19279e9 0.439123
\(756\) 0 0
\(757\) 7.78620e9 0.652364 0.326182 0.945307i \(-0.394238\pi\)
0.326182 + 0.945307i \(0.394238\pi\)
\(758\) 0 0
\(759\) 8.19911e9 1.15473e9i 0.680644 0.0958593i
\(760\) 0 0
\(761\) −5.85552e9 + 1.01421e10i −0.481636 + 0.834218i −0.999778 0.0210766i \(-0.993291\pi\)
0.518142 + 0.855295i \(0.326624\pi\)
\(762\) 0 0
\(763\) −2.97219e9 5.14799e9i −0.242237 0.419568i
\(764\) 0 0
\(765\) 9.91892e8 3.98810e9i 0.0801031 0.322070i
\(766\) 0 0
\(767\) 3.55777e9 + 6.16224e9i 0.284704 + 0.493123i
\(768\) 0 0
\(769\) 1.17564e10 2.03626e10i 0.932247 1.61470i 0.152776 0.988261i \(-0.451179\pi\)
0.779471 0.626438i \(-0.215488\pi\)
\(770\) 0 0
\(771\) −4.63224e9 + 1.14748e10i −0.364000 + 0.901682i
\(772\) 0 0
\(773\) 1.07195e10 0.834731 0.417366 0.908739i \(-0.362953\pi\)
0.417366 + 0.908739i \(0.362953\pi\)
\(774\) 0 0
\(775\) −1.99116e10 −1.53656
\(776\) 0 0
\(777\) −3.64637e9 4.66436e9i −0.278861 0.356713i
\(778\) 0 0
\(779\) −9.35954e8 + 1.62112e9i −0.0709371 + 0.122867i
\(780\) 0 0
\(781\) −3.85534e9 6.67765e9i −0.289590 0.501585i
\(782\) 0 0
\(783\) −1.19390e10 8.65833e9i −0.888793 0.644567i
\(784\) 0 0
\(785\) −1.74125e9 3.01594e9i −0.128475 0.222525i
\(786\) 0 0
\(787\) 4.17149e9 7.22523e9i 0.305056 0.528373i −0.672218 0.740353i \(-0.734658\pi\)
0.977274 + 0.211981i \(0.0679915\pi\)
\(788\) 0 0
\(789\) 3.77364e9 + 4.82716e9i 0.273521 + 0.349882i
\(790\) 0 0
\(791\) 5.91766e9 0.425140
\(792\) 0 0
\(793\) 1.70289e10 1.21264
\(794\) 0 0
\(795\) −1.22898e9 + 3.04438e9i −0.0867484 + 0.214889i
\(796\) 0 0
\(797\) 3.00916e9 5.21201e9i 0.210543 0.364671i −0.741342 0.671128i \(-0.765810\pi\)
0.951885 + 0.306457i \(0.0991435\pi\)
\(798\) 0 0
\(799\) −9.51639e8 1.64829e9i −0.0660022 0.114319i
\(800\) 0 0
\(801\) −1.18017e10 + 3.39148e9i −0.811391 + 0.233171i
\(802\) 0 0
\(803\) 6.06962e9 + 1.05129e10i 0.413673 + 0.716503i
\(804\) 0 0
\(805\) −9.07421e8 + 1.57170e9i −0.0613089 + 0.106190i
\(806\) 0 0
\(807\) −5.43786e9 + 7.65847e8i −0.364226 + 0.0512962i
\(808\) 0 0
\(809\) −1.36503e10 −0.906408 −0.453204 0.891407i \(-0.649719\pi\)
−0.453204 + 0.891407i \(0.649719\pi\)
\(810\) 0 0
\(811\) 6.05829e8 0.0398820 0.0199410 0.999801i \(-0.493652\pi\)
0.0199410 + 0.999801i \(0.493652\pi\)
\(812\) 0 0
\(813\) −7.34444e9 + 1.03436e9i −0.479338 + 0.0675081i
\(814\) 0 0
\(815\) 2.37786e9 4.11857e9i 0.153863 0.266498i
\(816\) 0 0
\(817\) 8.34270e8 + 1.44500e9i 0.0535216 + 0.0927022i
\(818\) 0 0
\(819\) −5.73099e9 + 1.64693e9i −0.364532 + 0.104757i
\(820\) 0 0
\(821\) −2.88003e9 4.98836e9i −0.181633 0.314598i 0.760803 0.648982i \(-0.224805\pi\)
−0.942437 + 0.334384i \(0.891472\pi\)
\(822\) 0 0
\(823\) 1.19915e10 2.07699e10i 0.749851 1.29878i −0.198042 0.980194i \(-0.563458\pi\)
0.947894 0.318587i \(-0.103208\pi\)
\(824\) 0 0
\(825\) −3.74729e9 + 9.28262e9i −0.232343 + 0.575548i
\(826\) 0 0
\(827\) −2.24793e10 −1.38202 −0.691010 0.722845i \(-0.742834\pi\)
−0.691010 + 0.722845i \(0.742834\pi\)
\(828\) 0 0
\(829\) 1.15292e10 0.702846 0.351423 0.936217i \(-0.385698\pi\)
0.351423 + 0.936217i \(0.385698\pi\)
\(830\) 0 0
\(831\) −1.46190e10 1.87003e10i −0.883718 1.13043i
\(832\) 0 0
\(833\) 1.20445e9 2.08617e9i 0.0721992 0.125053i
\(834\) 0 0
\(835\) −9.32355e8 1.61489e9i −0.0554216 0.0959930i
\(836\) 0 0
\(837\) 3.02872e9 2.90592e10i 0.178534 1.71295i
\(838\) 0 0
\(839\) −1.47830e9 2.56048e9i −0.0864160 0.149677i 0.819578 0.572968i \(-0.194208\pi\)
−0.905994 + 0.423291i \(0.860875\pi\)
\(840\) 0 0
\(841\) −1.77173e9 + 3.06873e9i −0.102710 + 0.177899i
\(842\) 0 0
\(843\) −1.92457e10 2.46186e10i −1.10646 1.41536i
\(844\) 0 0
\(845\) 4.03390e7 0.00229999
\(846\) 0 0
\(847\) 3.44924e9 0.195044
\(848\) 0 0
\(849\) 9.57195e9 2.37112e10i 0.536814 1.32977i
\(850\) 0 0
\(851\) 1.06399e10 1.84288e10i 0.591811 1.02505i
\(852\) 0 0
\(853\) −2.92234e9 5.06165e9i −0.161217 0.279235i 0.774089 0.633077i \(-0.218208\pi\)
−0.935305 + 0.353842i \(0.884875\pi\)
\(854\) 0 0
\(855\) −6.76782e8 + 2.72114e9i −0.0370312 + 0.148891i
\(856\) 0 0
\(857\) 4.52864e9 + 7.84383e9i 0.245773 + 0.425692i 0.962349 0.271818i \(-0.0876248\pi\)
−0.716575 + 0.697510i \(0.754291\pi\)
\(858\) 0 0
\(859\) −1.15273e10 + 1.99658e10i −0.620513 + 1.07476i 0.368878 + 0.929478i \(0.379742\pi\)
−0.989390 + 0.145281i \(0.953591\pi\)
\(860\) 0 0
\(861\) 2.12824e9 2.99734e8i 0.113635 0.0160039i
\(862\) 0 0
\(863\) −1.98186e10 −1.04963 −0.524814 0.851217i \(-0.675865\pi\)
−0.524814 + 0.851217i \(0.675865\pi\)
\(864\) 0 0
\(865\) 1.09722e10 0.576416
\(866\) 0 0
\(867\) −4.12251e8 + 5.80598e7i −0.0214830 + 0.00302558i
\(868\) 0 0
\(869\) −2.16449e9 + 3.74901e9i −0.111889 + 0.193797i
\(870\) 0 0
\(871\) −6.39713e9 1.10802e10i −0.328036 0.568175i
\(872\) 0 0
\(873\) −8.21864e9 7.92746e9i −0.418071 0.403259i
\(874\) 0 0
\(875\) −2.32669e9 4.02994e9i −0.117411 0.203362i
\(876\) 0 0
\(877\) 9.39734e9 1.62767e10i 0.470442 0.814830i −0.528986 0.848630i \(-0.677428\pi\)
0.999429 + 0.0338006i \(0.0107611\pi\)
\(878\) 0 0
\(879\) 1.46556e10 3.63042e10i 0.727851 1.80300i
\(880\) 0 0
\(881\) −6.78319e9 −0.334209 −0.167104 0.985939i \(-0.553442\pi\)
−0.167104 + 0.985939i \(0.553442\pi\)
\(882\) 0 0
\(883\) −2.48178e10 −1.21311 −0.606556 0.795041i \(-0.707449\pi\)
−0.606556 + 0.795041i \(0.707449\pi\)
\(884\) 0 0
\(885\) −2.36612e9 3.02668e9i −0.114745 0.146780i
\(886\) 0 0
\(887\) −4.96331e9 + 8.59670e9i −0.238802 + 0.413618i −0.960371 0.278725i \(-0.910088\pi\)
0.721569 + 0.692343i \(0.243421\pi\)
\(888\) 0 0
\(889\) 7.89735e8 + 1.36786e9i 0.0376986 + 0.0652959i
\(890\) 0 0
\(891\) −1.29772e10 6.88082e9i −0.614622 0.325888i
\(892\) 0 0
\(893\) 6.49317e8 + 1.12465e9i 0.0305124 + 0.0528490i
\(894\) 0 0
\(895\) −5.77699e9 + 1.00060e10i −0.269352 + 0.466532i
\(896\) 0 0
\(897\) −1.31999e10 1.68850e10i −0.610658 0.781140i
\(898\) 0 0
\(899\) −4.11926e10 −1.89086
\(900\) 0 0
\(901\) 1.56629e10 0.713403
\(902\) 0 0
\(903\) 7.17138e8 1.77646e9i 0.0324112 0.0802876i
\(904\) 0 0
\(905\) 8.26819e8 1.43209e9i 0.0370801 0.0642245i
\(906\) 0 0
\(907\) −2.68556e9 4.65153e9i −0.119512 0.207000i 0.800063 0.599916i \(-0.204800\pi\)
−0.919574 + 0.392916i \(0.871466\pi\)
\(908\) 0 0
\(909\) −1.79356e10 1.73001e10i −0.792030 0.763968i
\(910\) 0 0
\(911\) 1.88958e10 + 3.27286e10i 0.828041 + 1.43421i 0.899573 + 0.436771i \(0.143878\pi\)
−0.0715316 + 0.997438i \(0.522789\pi\)
\(912\) 0 0
\(913\) 2.89519e9 5.01462e9i 0.125901 0.218067i
\(914\) 0 0
\(915\) −9.10433e9 + 1.28222e9i −0.392893 + 0.0553335i
\(916\) 0 0
\(917\) 6.21260e9 0.266061
\(918\) 0 0
\(919\) 6.91679e9 0.293968 0.146984 0.989139i \(-0.453043\pi\)
0.146984 + 0.989139i \(0.453043\pi\)
\(920\) 0 0
\(921\) 3.06863e10 4.32174e9i 1.29430 0.182284i
\(922\) 0 0
\(923\) −9.97929e9 + 1.72846e10i −0.417728 + 0.723527i
\(924\) 0 0
\(925\) 1.28635e10 + 2.22802e10i 0.534395 + 0.925600i
\(926\) 0 0
\(927\) 7.28116e9 2.92754e10i 0.300208 1.20704i
\(928\) 0 0
\(929\) 2.00263e10 + 3.46865e10i 0.819493 + 1.41940i 0.906056 + 0.423158i \(0.139078\pi\)
−0.0865629 + 0.996246i \(0.527588\pi\)
\(930\) 0 0
\(931\) −8.21816e8 + 1.42343e9i −0.0333773 + 0.0578111i
\(932\) 0 0
\(933\) −8.24331e9 + 2.04199e10i −0.332289 + 0.823131i
\(934\) 0 0
\(935\) −5.77073e9 −0.230882
\(936\) 0 0
\(937\) −9.65701e9 −0.383490 −0.191745 0.981445i \(-0.561415\pi\)
−0.191745 + 0.981445i \(0.561415\pi\)
\(938\) 0 0
\(939\) 1.51554e10 + 1.93864e10i 0.597361 + 0.764131i
\(940\) 0 0
\(941\) 7.95833e9 1.37842e10i 0.311357 0.539286i −0.667300 0.744789i \(-0.732550\pi\)
0.978656 + 0.205504i \(0.0658833\pi\)
\(942\) 0 0
\(943\) 3.86246e9 + 6.68998e9i 0.149994 + 0.259797i
\(944\) 0 0
\(945\) 2.94000e9 1.31203e9i 0.113328 0.0505748i
\(946\) 0 0
\(947\) −7.35634e9 1.27415e10i −0.281473 0.487525i 0.690275 0.723547i \(-0.257490\pi\)
−0.971748 + 0.236022i \(0.924156\pi\)
\(948\) 0 0
\(949\) 1.57108e10 2.72119e10i 0.596715 1.03354i
\(950\) 0 0
\(951\) 1.82176e10 + 2.33036e10i 0.686848 + 0.878600i
\(952\) 0 0
\(953\) −3.95979e10 −1.48200 −0.740998 0.671507i \(-0.765647\pi\)
−0.740998 + 0.671507i \(0.765647\pi\)
\(954\) 0 0
\(955\) 7.63335e9 0.283598
\(956\) 0 0
\(957\) −7.75231e9 + 1.92036e10i −0.285917 + 0.708259i
\(958\) 0 0
\(959\) −1.04744e9 + 1.81422e9i −0.0383500 + 0.0664241i
\(960\) 0 0
\(961\) −2.70458e10 4.68448e10i −0.983034 1.70267i
\(962\) 0 0
\(963\) −2.50542e10 + 7.19987e9i −0.904040 + 0.259796i
\(964\) 0 0
\(965\) 6.24561e9 + 1.08177e10i 0.223733 + 0.387516i
\(966\) 0 0
\(967\) 6.55024e9 1.13454e10i 0.232951 0.403483i −0.725724 0.687986i \(-0.758495\pi\)
0.958675 + 0.284503i \(0.0918285\pi\)
\(968\) 0 0
\(969\) 1.32467e10 1.86561e9i 0.467708 0.0658701i
\(970\) 0 0
\(971\) −9.57880e9 −0.335771 −0.167886 0.985806i \(-0.553694\pi\)
−0.167886 + 0.985806i \(0.553694\pi\)
\(972\) 0 0
\(973\) 6.13455e9 0.213495
\(974\) 0 0
\(975\) 2.56582e10 3.61360e9i 0.886563 0.124860i
\(976\) 0 0
\(977\) 2.68959e10 4.65851e10i 0.922689 1.59814i 0.127452 0.991845i \(-0.459320\pi\)
0.795237 0.606299i \(-0.207347\pi\)
\(978\) 0 0
\(979\) 8.62137e9 + 1.49327e10i 0.293655 + 0.508625i
\(980\) 0 0
\(981\) −3.64277e10 + 1.04683e10i −1.23194 + 0.354025i
\(982\) 0 0
\(983\) 4.40275e9 + 7.62578e9i 0.147838 + 0.256063i 0.930428 0.366474i \(-0.119435\pi\)
−0.782590 + 0.622537i \(0.786102\pi\)
\(984\) 0 0
\(985\) 9.38644e9 1.62578e10i 0.312949 0.542044i
\(986\) 0 0
\(987\) 5.58152e8 1.38263e9i 0.0184775 0.0457715i
\(988\) 0 0
\(989\) 6.88568e9 0.226339
\(990\) 0 0
\(991\) 8.12712e9 0.265264 0.132632 0.991165i \(-0.457657\pi\)
0.132632 + 0.991165i \(0.457657\pi\)
\(992\) 0 0
\(993\) 4.65665e9 + 5.95668e9i 0.150921 + 0.193055i
\(994\) 0 0
\(995\) −1.95704e9 + 3.38968e9i −0.0629822 + 0.109088i
\(996\) 0 0
\(997\) 1.12329e10 + 1.94559e10i 0.358970 + 0.621755i 0.987789 0.155797i \(-0.0497946\pi\)
−0.628819 + 0.777552i \(0.716461\pi\)
\(998\) 0 0
\(999\) −3.44727e10 + 1.53841e10i −1.09395 + 0.488195i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.j.b.85.1 42
9.7 even 3 inner 252.8.j.b.169.1 yes 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.j.b.85.1 42 1.1 even 1 trivial
252.8.j.b.169.1 yes 42 9.7 even 3 inner