Properties

Label 252.8.k.b.109.1
Level $252$
Weight $8$
Character 252.109
Analytic conductor $78.721$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 659x^{6} + 12718x^{5} + 417701x^{4} + 3735784x^{3} + 32480596x^{2} + 479136x + 7056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{5}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(-0.00737575 + 0.0127752i\) of defining polynomial
Character \(\chi\) \(=\) 252.109
Dual form 252.8.k.b.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-80.0854 - 138.712i) q^{5} +(-254.682 - 871.022i) q^{7} +(1581.93 - 2739.98i) q^{11} -4771.53 q^{13} +(-6504.73 + 11266.5i) q^{17} +(-22058.1 - 38205.8i) q^{19} +(-32533.0 - 56348.8i) q^{23} +(26235.2 - 45440.6i) q^{25} +246115. q^{29} +(-150328. + 260376. i) q^{31} +(-100425. + 105084. i) q^{35} +(-258479. - 447698. i) q^{37} +377844. q^{41} -71420.3 q^{43} +(558378. + 967140. i) q^{47} +(-693817. + 443667. i) q^{49} +(-184365. + 319330. i) q^{53} -506758. q^{55} +(515977. - 893698. i) q^{59} +(161341. + 279450. i) q^{61} +(382130. + 661869. i) q^{65} +(11763.8 - 20375.5i) q^{67} -2.84199e6 q^{71} +(-336523. + 582875. i) q^{73} +(-2.78947e6 - 680072. i) q^{77} +(429448. + 743826. i) q^{79} -7.32276e6 q^{83} +2.08373e6 q^{85} +(2.31400e6 + 4.00797e6i) q^{89} +(1.21522e6 + 4.15611e6i) q^{91} +(-3.53307e6 + 6.11946e6i) q^{95} +951821. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 196 q^{5} - 434 q^{7} - 406 q^{11} + 3948 q^{13} + 7436 q^{17} + 15874 q^{19} + 6788 q^{23} + 69898 q^{25} + 189088 q^{29} - 55890 q^{31} + 750596 q^{35} + 93742 q^{37} - 13944 q^{41} - 487844 q^{43}+ \cdots + 23722580 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −80.0854 138.712i −0.286522 0.496271i 0.686455 0.727172i \(-0.259166\pi\)
−0.972977 + 0.230901i \(0.925833\pi\)
\(6\) 0 0
\(7\) −254.682 871.022i −0.280644 0.959812i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1581.93 2739.98i 0.358354 0.620688i −0.629332 0.777137i \(-0.716671\pi\)
0.987686 + 0.156449i \(0.0500046\pi\)
\(12\) 0 0
\(13\) −4771.53 −0.602360 −0.301180 0.953567i \(-0.597380\pi\)
−0.301180 + 0.953567i \(0.597380\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6504.73 + 11266.5i −0.321113 + 0.556184i −0.980718 0.195429i \(-0.937390\pi\)
0.659605 + 0.751612i \(0.270724\pi\)
\(18\) 0 0
\(19\) −22058.1 38205.8i −0.737787 1.27789i −0.953490 0.301426i \(-0.902537\pi\)
0.215702 0.976459i \(-0.430796\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −32533.0 56348.8i −0.557541 0.965690i −0.997701 0.0677701i \(-0.978412\pi\)
0.440160 0.897919i \(-0.354922\pi\)
\(24\) 0 0
\(25\) 26235.2 45440.6i 0.335810 0.581640i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 246115. 1.87390 0.936949 0.349466i \(-0.113637\pi\)
0.936949 + 0.349466i \(0.113637\pi\)
\(30\) 0 0
\(31\) −150328. + 260376.i −0.906306 + 1.56977i −0.0871514 + 0.996195i \(0.527776\pi\)
−0.819155 + 0.573573i \(0.805557\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −100425. + 105084.i −0.395916 + 0.414283i
\(36\) 0 0
\(37\) −258479. 447698.i −0.838916 1.45305i −0.890801 0.454393i \(-0.849856\pi\)
0.0518851 0.998653i \(-0.483477\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 377844. 0.856188 0.428094 0.903734i \(-0.359185\pi\)
0.428094 + 0.903734i \(0.359185\pi\)
\(42\) 0 0
\(43\) −71420.3 −0.136988 −0.0684940 0.997652i \(-0.521819\pi\)
−0.0684940 + 0.997652i \(0.521819\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 558378. + 967140.i 0.784488 + 1.35877i 0.929305 + 0.369314i \(0.120407\pi\)
−0.144817 + 0.989458i \(0.546259\pi\)
\(48\) 0 0
\(49\) −693817. + 443667.i −0.842478 + 0.538730i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −184365. + 319330.i −0.170104 + 0.294628i −0.938456 0.345399i \(-0.887744\pi\)
0.768352 + 0.640027i \(0.221077\pi\)
\(54\) 0 0
\(55\) −506758. −0.410706
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 515977. 893698.i 0.327076 0.566512i −0.654855 0.755755i \(-0.727270\pi\)
0.981930 + 0.189243i \(0.0606035\pi\)
\(60\) 0 0
\(61\) 161341. + 279450.i 0.0910101 + 0.157634i 0.907936 0.419108i \(-0.137657\pi\)
−0.816926 + 0.576742i \(0.804324\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 382130. + 661869.i 0.172590 + 0.298934i
\(66\) 0 0
\(67\) 11763.8 20375.5i 0.00477844 0.00827650i −0.863626 0.504133i \(-0.831812\pi\)
0.868405 + 0.495856i \(0.165146\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.84199e6 −0.942363 −0.471181 0.882036i \(-0.656172\pi\)
−0.471181 + 0.882036i \(0.656172\pi\)
\(72\) 0 0
\(73\) −336523. + 582875.i −0.101248 + 0.175366i −0.912199 0.409748i \(-0.865617\pi\)
0.810951 + 0.585114i \(0.198950\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.78947e6 680072.i −0.696314 0.169761i
\(78\) 0 0
\(79\) 429448. + 743826.i 0.0979977 + 0.169737i 0.910856 0.412725i \(-0.135423\pi\)
−0.812858 + 0.582462i \(0.802090\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.32276e6 −1.40573 −0.702864 0.711324i \(-0.748096\pi\)
−0.702864 + 0.711324i \(0.748096\pi\)
\(84\) 0 0
\(85\) 2.08373e6 0.368024
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.31400e6 + 4.00797e6i 0.347935 + 0.602641i 0.985883 0.167439i \(-0.0535496\pi\)
−0.637947 + 0.770080i \(0.720216\pi\)
\(90\) 0 0
\(91\) 1.21522e6 + 4.15611e6i 0.169048 + 0.578152i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.53307e6 + 6.11946e6i −0.422785 + 0.732285i
\(96\) 0 0
\(97\) 951821. 0.105890 0.0529449 0.998597i \(-0.483139\pi\)
0.0529449 + 0.998597i \(0.483139\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.54896e6 + 1.48072e7i −0.825635 + 1.43004i 0.0757975 + 0.997123i \(0.475850\pi\)
−0.901433 + 0.432919i \(0.857484\pi\)
\(102\) 0 0
\(103\) 2.02111e6 + 3.50067e6i 0.182247 + 0.315661i 0.942645 0.333796i \(-0.108330\pi\)
−0.760398 + 0.649457i \(0.774996\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.96974e6 6.87579e6i −0.313270 0.542600i 0.665798 0.746132i \(-0.268091\pi\)
−0.979068 + 0.203532i \(0.934758\pi\)
\(108\) 0 0
\(109\) 3.49719e6 6.05732e6i 0.258659 0.448010i −0.707224 0.706989i \(-0.750053\pi\)
0.965883 + 0.258979i \(0.0833862\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.09031e7 −1.36281 −0.681407 0.731904i \(-0.738632\pi\)
−0.681407 + 0.731904i \(0.738632\pi\)
\(114\) 0 0
\(115\) −5.21084e6 + 9.02544e6i −0.319496 + 0.553383i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.14700e7 + 2.79638e6i 0.623950 + 0.152119i
\(120\) 0 0
\(121\) 4.73858e6 + 8.20747e6i 0.243164 + 0.421173i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.09176e7 −0.957913
\(126\) 0 0
\(127\) −1.32156e7 −0.572496 −0.286248 0.958155i \(-0.592408\pi\)
−0.286248 + 0.958155i \(0.592408\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.97459e6 + 1.38124e7i 0.309926 + 0.536808i 0.978346 0.206976i \(-0.0663622\pi\)
−0.668420 + 0.743784i \(0.733029\pi\)
\(132\) 0 0
\(133\) −2.76603e7 + 2.89435e7i −1.01947 + 1.06677i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.78389e7 + 3.08978e7i −0.592714 + 1.02661i 0.401151 + 0.916012i \(0.368610\pi\)
−0.993865 + 0.110599i \(0.964723\pi\)
\(138\) 0 0
\(139\) −1.12444e7 −0.355127 −0.177563 0.984109i \(-0.556821\pi\)
−0.177563 + 0.984109i \(0.556821\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.54823e6 + 1.30739e7i −0.215858 + 0.373878i
\(144\) 0 0
\(145\) −1.97103e7 3.41392e7i −0.536913 0.929961i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.72724e6 + 1.68481e7i 0.240900 + 0.417252i 0.960971 0.276649i \(-0.0892240\pi\)
−0.720071 + 0.693901i \(0.755891\pi\)
\(150\) 0 0
\(151\) −4.01078e7 + 6.94687e7i −0.948002 + 1.64199i −0.198375 + 0.980126i \(0.563566\pi\)
−0.749627 + 0.661861i \(0.769767\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.81564e7 1.03871
\(156\) 0 0
\(157\) 2.44031e7 4.22674e7i 0.503264 0.871679i −0.496729 0.867906i \(-0.665466\pi\)
0.999993 0.00377328i \(-0.00120108\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.07955e7 + 4.26880e7i −0.770410 + 0.806149i
\(162\) 0 0
\(163\) −6.59019e6 1.14145e7i −0.119190 0.206444i 0.800257 0.599658i \(-0.204697\pi\)
−0.919447 + 0.393214i \(0.871363\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.54304e7 1.08711 0.543553 0.839375i \(-0.317079\pi\)
0.543553 + 0.839375i \(0.317079\pi\)
\(168\) 0 0
\(169\) −3.99810e7 −0.637163
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.07134e6 + 1.39800e7i 0.118518 + 0.205279i 0.919181 0.393836i \(-0.128852\pi\)
−0.800663 + 0.599116i \(0.795519\pi\)
\(174\) 0 0
\(175\) −4.62614e7 1.12785e7i −0.652508 0.159081i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.82833e7 + 8.36291e7i −0.629233 + 1.08986i 0.358473 + 0.933540i \(0.383297\pi\)
−0.987706 + 0.156323i \(0.950036\pi\)
\(180\) 0 0
\(181\) 7.18706e7 0.900899 0.450450 0.892802i \(-0.351264\pi\)
0.450450 + 0.892802i \(0.351264\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.14007e7 + 7.17082e7i −0.480736 + 0.832660i
\(186\) 0 0
\(187\) 2.05800e7 + 3.56457e7i 0.230144 + 0.398622i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.37396e7 1.45041e8i −0.869589 1.50617i −0.862417 0.506198i \(-0.831050\pi\)
−0.00717183 0.999974i \(-0.502283\pi\)
\(192\) 0 0
\(193\) −8.45041e6 + 1.46365e7i −0.0846111 + 0.146551i −0.905225 0.424932i \(-0.860298\pi\)
0.820614 + 0.571482i \(0.193631\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.41597e7 0.504713 0.252357 0.967634i \(-0.418794\pi\)
0.252357 + 0.967634i \(0.418794\pi\)
\(198\) 0 0
\(199\) −7.69956e6 + 1.33360e7i −0.0692596 + 0.119961i −0.898576 0.438819i \(-0.855397\pi\)
0.829316 + 0.558780i \(0.188730\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.26812e7 2.14372e8i −0.525897 1.79859i
\(204\) 0 0
\(205\) −3.02598e7 5.24115e7i −0.245317 0.424901i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.39578e8 −1.05756
\(210\) 0 0
\(211\) −1.35532e8 −0.993238 −0.496619 0.867969i \(-0.665425\pi\)
−0.496619 + 0.867969i \(0.665425\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.71973e6 + 9.90686e6i 0.0392501 + 0.0679832i
\(216\) 0 0
\(217\) 2.65079e8 + 6.46262e7i 1.76103 + 0.429338i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.10375e7 5.37585e7i 0.193426 0.335023i
\(222\) 0 0
\(223\) 2.14853e8 1.29740 0.648701 0.761044i \(-0.275313\pi\)
0.648701 + 0.761044i \(0.275313\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.08630e7 + 8.80973e7i −0.288610 + 0.499887i −0.973478 0.228780i \(-0.926526\pi\)
0.684868 + 0.728667i \(0.259860\pi\)
\(228\) 0 0
\(229\) 6.57822e7 + 1.13938e8i 0.361980 + 0.626967i 0.988287 0.152610i \(-0.0487677\pi\)
−0.626307 + 0.779576i \(0.715434\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.75854e7 + 4.77793e7i 0.142867 + 0.247454i 0.928575 0.371144i \(-0.121034\pi\)
−0.785708 + 0.618598i \(0.787701\pi\)
\(234\) 0 0
\(235\) 8.94359e7 1.54908e8i 0.449546 0.778637i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.89001e8 0.895513 0.447757 0.894155i \(-0.352223\pi\)
0.447757 + 0.894155i \(0.352223\pi\)
\(240\) 0 0
\(241\) 1.49348e8 2.58678e8i 0.687290 1.19042i −0.285422 0.958402i \(-0.592134\pi\)
0.972711 0.232019i \(-0.0745330\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.17107e8 + 6.07095e7i 0.508745 + 0.263739i
\(246\) 0 0
\(247\) 1.05251e8 + 1.82300e8i 0.444414 + 0.769747i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.63594e7 −0.105215 −0.0526074 0.998615i \(-0.516753\pi\)
−0.0526074 + 0.998615i \(0.516753\pi\)
\(252\) 0 0
\(253\) −2.05860e8 −0.799189
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.05761e7 7.02799e7i −0.149109 0.258265i 0.781789 0.623543i \(-0.214307\pi\)
−0.930899 + 0.365278i \(0.880974\pi\)
\(258\) 0 0
\(259\) −3.24125e8 + 3.39161e8i −1.15921 + 1.21299i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.71901e8 4.70947e8i 0.921651 1.59635i 0.124790 0.992183i \(-0.460174\pi\)
0.796861 0.604163i \(-0.206492\pi\)
\(264\) 0 0
\(265\) 5.90599e7 0.194954
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.06642e7 + 1.84709e7i −0.0334037 + 0.0578569i −0.882244 0.470793i \(-0.843968\pi\)
0.848840 + 0.528649i \(0.177301\pi\)
\(270\) 0 0
\(271\) −2.35124e8 4.07246e8i −0.717636 1.24298i −0.961934 0.273281i \(-0.911891\pi\)
0.244298 0.969700i \(-0.421442\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.30043e7 1.43768e8i −0.240678 0.416866i
\(276\) 0 0
\(277\) 4.46999e7 7.74225e7i 0.126365 0.218871i −0.795901 0.605427i \(-0.793002\pi\)
0.922266 + 0.386557i \(0.126336\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.84556e8 1.84051 0.920253 0.391324i \(-0.127983\pi\)
0.920253 + 0.391324i \(0.127983\pi\)
\(282\) 0 0
\(283\) 3.43984e8 5.95798e8i 0.902165 1.56260i 0.0774878 0.996993i \(-0.475310\pi\)
0.824678 0.565603i \(-0.191357\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.62300e7 3.29111e8i −0.240284 0.821779i
\(288\) 0 0
\(289\) 1.20546e8 + 2.08793e8i 0.293773 + 0.508830i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.46969e8 1.27036 0.635179 0.772365i \(-0.280926\pi\)
0.635179 + 0.772365i \(0.280926\pi\)
\(294\) 0 0
\(295\) −1.65289e8 −0.374858
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.55232e8 + 2.68870e8i 0.335840 + 0.581693i
\(300\) 0 0
\(301\) 1.81895e7 + 6.22087e7i 0.0384448 + 0.131483i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.58421e7 4.47598e7i 0.0521529 0.0903314i
\(306\) 0 0
\(307\) −5.33032e8 −1.05140 −0.525702 0.850669i \(-0.676197\pi\)
−0.525702 + 0.850669i \(0.676197\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.53305e7 1.30476e8i 0.142007 0.245963i −0.786245 0.617914i \(-0.787978\pi\)
0.928252 + 0.371951i \(0.121311\pi\)
\(312\) 0 0
\(313\) −2.13226e8 3.69318e8i −0.393038 0.680762i 0.599810 0.800142i \(-0.295243\pi\)
−0.992849 + 0.119380i \(0.961909\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.17845e8 8.96934e8i −0.913045 1.58144i −0.809738 0.586791i \(-0.800391\pi\)
−0.103307 0.994650i \(-0.532942\pi\)
\(318\) 0 0
\(319\) 3.89337e8 6.74352e8i 0.671519 1.16311i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.73929e8 0.947652
\(324\) 0 0
\(325\) −1.25182e8 + 2.16821e8i −0.202278 + 0.350357i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.00192e8 7.32673e8i 1.08400 1.13429i
\(330\) 0 0
\(331\) −7.15548e7 1.23937e8i −0.108453 0.187846i 0.806691 0.590974i \(-0.201256\pi\)
−0.915144 + 0.403128i \(0.867923\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.76844e6 −0.00547652
\(336\) 0 0
\(337\) −8.02807e8 −1.14263 −0.571316 0.820730i \(-0.693567\pi\)
−0.571316 + 0.820730i \(0.693567\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.75618e8 + 8.23794e8i 0.649557 + 1.12507i
\(342\) 0 0
\(343\) 5.63147e8 + 4.91336e8i 0.753516 + 0.657430i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.45919e8 + 9.45559e8i −0.701415 + 1.21489i 0.266555 + 0.963820i \(0.414115\pi\)
−0.967970 + 0.251066i \(0.919219\pi\)
\(348\) 0 0
\(349\) 1.03523e9 1.30361 0.651805 0.758386i \(-0.274012\pi\)
0.651805 + 0.758386i \(0.274012\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.35935e8 + 1.27468e9i −0.890487 + 1.54237i −0.0511955 + 0.998689i \(0.516303\pi\)
−0.839292 + 0.543681i \(0.817030\pi\)
\(354\) 0 0
\(355\) 2.27602e8 + 3.94218e8i 0.270008 + 0.467667i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.08408e8 8.80589e8i −0.579939 1.00448i −0.995486 0.0949118i \(-0.969743\pi\)
0.415547 0.909572i \(-0.363590\pi\)
\(360\) 0 0
\(361\) −5.26187e8 + 9.11383e8i −0.588661 + 1.01959i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.07802e8 0.116039
\(366\) 0 0
\(367\) 3.81967e8 6.61586e8i 0.403362 0.698643i −0.590768 0.806842i \(-0.701175\pi\)
0.994129 + 0.108199i \(0.0345084\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.25099e8 + 7.92588e7i 0.330527 + 0.0805821i
\(372\) 0 0
\(373\) 5.15720e8 + 8.93254e8i 0.514557 + 0.891239i 0.999857 + 0.0168911i \(0.00537687\pi\)
−0.485301 + 0.874347i \(0.661290\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.17435e9 −1.12876
\(378\) 0 0
\(379\) 5.88248e8 0.555038 0.277519 0.960720i \(-0.410488\pi\)
0.277519 + 0.960720i \(0.410488\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.19545e8 1.07308e9i −0.563479 0.975974i −0.997189 0.0749216i \(-0.976129\pi\)
0.433711 0.901052i \(-0.357204\pi\)
\(384\) 0 0
\(385\) 1.29062e8 + 4.41398e8i 0.115262 + 0.394201i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.55841e8 4.43130e8i 0.220367 0.381687i −0.734552 0.678552i \(-0.762608\pi\)
0.954920 + 0.296865i \(0.0959411\pi\)
\(390\) 0 0
\(391\) 8.46473e8 0.716135
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.87850e7 1.19139e8i 0.0561570 0.0972668i
\(396\) 0 0
\(397\) −6.28008e8 1.08774e9i −0.503730 0.872487i −0.999991 0.00431285i \(-0.998627\pi\)
0.496260 0.868174i \(-0.334706\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.87326e8 + 1.01728e9i 0.454856 + 0.787833i 0.998680 0.0513658i \(-0.0163575\pi\)
−0.543824 + 0.839199i \(0.683024\pi\)
\(402\) 0 0
\(403\) 7.17296e8 1.24239e9i 0.545922 0.945565i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.63558e9 −1.20252
\(408\) 0 0
\(409\) −1.08611e9 + 1.88120e9i −0.784953 + 1.35958i 0.144075 + 0.989567i \(0.453979\pi\)
−0.929027 + 0.370011i \(0.879354\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.09841e8 2.21819e8i −0.635536 0.154943i
\(414\) 0 0
\(415\) 5.86446e8 + 1.01575e9i 0.402772 + 0.697622i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.97088e9 −1.30892 −0.654458 0.756098i \(-0.727103\pi\)
−0.654458 + 0.756098i \(0.727103\pi\)
\(420\) 0 0
\(421\) −1.34491e9 −0.878430 −0.439215 0.898382i \(-0.644743\pi\)
−0.439215 + 0.898382i \(0.644743\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.41305e8 + 5.91157e8i 0.215666 + 0.373544i
\(426\) 0 0
\(427\) 2.02317e8 2.11702e8i 0.125758 0.131592i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.40654e8 + 5.90031e8i −0.204948 + 0.354980i −0.950116 0.311896i \(-0.899036\pi\)
0.745168 + 0.666877i \(0.232369\pi\)
\(432\) 0 0
\(433\) −1.29953e9 −0.769272 −0.384636 0.923068i \(-0.625673\pi\)
−0.384636 + 0.923068i \(0.625673\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.43524e9 + 2.48590e9i −0.822694 + 1.42495i
\(438\) 0 0
\(439\) −8.64679e8 1.49767e9i −0.487786 0.844870i 0.512115 0.858917i \(-0.328862\pi\)
−0.999901 + 0.0140465i \(0.995529\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.60591e8 + 7.97768e8i 0.251711 + 0.435977i 0.963997 0.265913i \(-0.0856733\pi\)
−0.712286 + 0.701890i \(0.752340\pi\)
\(444\) 0 0
\(445\) 3.70635e8 6.41959e8i 0.199382 0.345340i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.26736e9 0.660751 0.330376 0.943850i \(-0.392825\pi\)
0.330376 + 0.943850i \(0.392825\pi\)
\(450\) 0 0
\(451\) 5.97722e8 1.03529e9i 0.306819 0.531425i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.79181e8 5.01410e8i 0.238484 0.249547i
\(456\) 0 0
\(457\) 6.62958e8 + 1.14828e9i 0.324922 + 0.562782i 0.981497 0.191479i \(-0.0613285\pi\)
−0.656574 + 0.754261i \(0.727995\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.44980e9 0.689215 0.344608 0.938747i \(-0.388012\pi\)
0.344608 + 0.938747i \(0.388012\pi\)
\(462\) 0 0
\(463\) −3.49096e9 −1.63460 −0.817299 0.576214i \(-0.804530\pi\)
−0.817299 + 0.576214i \(0.804530\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.23615e8 7.33723e8i −0.192470 0.333368i 0.753598 0.657335i \(-0.228316\pi\)
−0.946068 + 0.323968i \(0.894983\pi\)
\(468\) 0 0
\(469\) −2.07436e7 5.05726e6i −0.00928492 0.00226366i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.12982e8 + 1.95690e8i −0.0490902 + 0.0850268i
\(474\) 0 0
\(475\) −2.31479e9 −0.991026
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.41330e9 + 2.44791e9i −0.587572 + 1.01770i 0.406977 + 0.913438i \(0.366583\pi\)
−0.994549 + 0.104266i \(0.966751\pi\)
\(480\) 0 0
\(481\) 1.23334e9 + 2.13621e9i 0.505330 + 0.875257i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.62269e7 1.32029e8i −0.0303398 0.0525500i
\(486\) 0 0
\(487\) −1.92842e9 + 3.34012e9i −0.756572 + 1.31042i 0.188016 + 0.982166i \(0.439794\pi\)
−0.944589 + 0.328256i \(0.893539\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.98226e9 −0.755746 −0.377873 0.925857i \(-0.623344\pi\)
−0.377873 + 0.925857i \(0.623344\pi\)
\(492\) 0 0
\(493\) −1.60091e9 + 2.77286e9i −0.601733 + 1.04223i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.23803e8 + 2.47544e9i 0.264468 + 0.904491i
\(498\) 0 0
\(499\) −1.75830e9 3.04547e9i −0.633492 1.09724i −0.986832 0.161746i \(-0.948287\pi\)
0.353340 0.935495i \(-0.385046\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.01692e9 1.75772 0.878859 0.477081i \(-0.158305\pi\)
0.878859 + 0.477081i \(0.158305\pi\)
\(504\) 0 0
\(505\) 2.73859e9 0.946252
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.77610e9 + 4.80834e9i 0.933088 + 1.61616i 0.778008 + 0.628254i \(0.216230\pi\)
0.155080 + 0.987902i \(0.450436\pi\)
\(510\) 0 0
\(511\) 5.93404e8 + 1.44671e8i 0.196733 + 0.0479634i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.23723e8 5.60705e8i 0.104436 0.180888i
\(516\) 0 0
\(517\) 3.53326e9 1.12450
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.99849e8 + 1.55858e9i −0.278765 + 0.482835i −0.971078 0.238762i \(-0.923258\pi\)
0.692313 + 0.721597i \(0.256592\pi\)
\(522\) 0 0
\(523\) 6.38363e8 + 1.10568e9i 0.195124 + 0.337965i 0.946941 0.321407i \(-0.104156\pi\)
−0.751817 + 0.659372i \(0.770822\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.95569e9 3.38735e9i −0.582053 1.00815i
\(528\) 0 0
\(529\) −4.14382e8 + 7.17730e8i −0.121704 + 0.210798i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.80289e9 −0.515733
\(534\) 0 0
\(535\) −6.35837e8 + 1.10130e9i −0.179518 + 0.310934i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.18071e8 + 2.60290e9i 0.0324776 + 0.715973i
\(540\) 0 0
\(541\) −3.19521e9 5.53426e9i −0.867579 1.50269i −0.864464 0.502695i \(-0.832342\pi\)
−0.00311482 0.999995i \(-0.500991\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.12030e9 −0.296446
\(546\) 0 0
\(547\) −4.83104e9 −1.26207 −0.631037 0.775752i \(-0.717371\pi\)
−0.631037 + 0.775752i \(0.717371\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.42885e9 9.40304e9i −1.38254 2.39463i
\(552\) 0 0
\(553\) 5.38516e8 5.63498e8i 0.135413 0.141695i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.26607e6 + 9.12110e6i −0.00129120 + 0.00223642i −0.866670 0.498881i \(-0.833744\pi\)
0.865379 + 0.501118i \(0.167078\pi\)
\(558\) 0 0
\(559\) 3.40784e8 0.0825160
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.21000e9 2.09579e9i 0.285764 0.494957i −0.687030 0.726629i \(-0.741086\pi\)
0.972794 + 0.231671i \(0.0744194\pi\)
\(564\) 0 0
\(565\) 1.67404e9 + 2.89952e9i 0.390477 + 0.676326i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.21669e8 2.10737e8i −0.0276877 0.0479565i 0.851850 0.523787i \(-0.175481\pi\)
−0.879537 + 0.475830i \(0.842148\pi\)
\(570\) 0 0
\(571\) 2.81425e9 4.87442e9i 0.632610 1.09571i −0.354406 0.935092i \(-0.615317\pi\)
0.987016 0.160621i \(-0.0513497\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.41403e9 −0.748911
\(576\) 0 0
\(577\) 1.89860e9 3.28847e9i 0.411451 0.712653i −0.583598 0.812043i \(-0.698356\pi\)
0.995049 + 0.0993895i \(0.0316890\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.86497e9 + 6.37829e9i 0.394509 + 1.34923i
\(582\) 0 0
\(583\) 5.83306e8 + 1.01032e9i 0.121915 + 0.211163i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.00190e9 0.408516 0.204258 0.978917i \(-0.434522\pi\)
0.204258 + 0.978917i \(0.434522\pi\)
\(588\) 0 0
\(589\) 1.32639e10 2.67464
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.06563e8 1.39701e9i −0.158835 0.275111i 0.775614 0.631208i \(-0.217441\pi\)
−0.934449 + 0.356097i \(0.884107\pi\)
\(594\) 0 0
\(595\) −5.30690e8 1.81498e9i −0.103284 0.353234i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.69338e9 8.12917e9i 0.892261 1.54544i 0.0551024 0.998481i \(-0.482451\pi\)
0.837158 0.546960i \(-0.184215\pi\)
\(600\) 0 0
\(601\) −4.79642e9 −0.901274 −0.450637 0.892707i \(-0.648803\pi\)
−0.450637 + 0.892707i \(0.648803\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.58983e8 1.31460e9i 0.139344 0.241351i
\(606\) 0 0
\(607\) 2.00844e9 + 3.47872e9i 0.364500 + 0.631333i 0.988696 0.149935i \(-0.0479064\pi\)
−0.624195 + 0.781268i \(0.714573\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.66432e9 4.61474e9i −0.472544 0.818470i
\(612\) 0 0
\(613\) −1.16046e9 + 2.00997e9i −0.203478 + 0.352434i −0.949647 0.313323i \(-0.898558\pi\)
0.746169 + 0.665757i \(0.231891\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.65061e9 −1.31129 −0.655644 0.755070i \(-0.727603\pi\)
−0.655644 + 0.755070i \(0.727603\pi\)
\(618\) 0 0
\(619\) −2.52375e9 + 4.37126e9i −0.427689 + 0.740780i −0.996667 0.0815729i \(-0.974006\pi\)
0.568978 + 0.822353i \(0.307339\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.90169e9 3.03630e9i 0.480777 0.503080i
\(624\) 0 0
\(625\) −3.74430e8 6.48532e8i −0.0613466 0.106255i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.72533e9 1.07755
\(630\) 0 0
\(631\) 9.61793e9 1.52398 0.761989 0.647590i \(-0.224223\pi\)
0.761989 + 0.647590i \(0.224223\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.05837e9 + 1.83316e9i 0.164033 + 0.284113i
\(636\) 0 0
\(637\) 3.31057e9 2.11697e9i 0.507475 0.324509i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.57668e9 + 4.46294e9i −0.386418 + 0.669296i −0.991965 0.126514i \(-0.959621\pi\)
0.605547 + 0.795810i \(0.292955\pi\)
\(642\) 0 0
\(643\) 6.36581e9 0.944311 0.472155 0.881515i \(-0.343476\pi\)
0.472155 + 0.881515i \(0.343476\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.22790e9 3.85884e9i 0.323394 0.560134i −0.657792 0.753199i \(-0.728510\pi\)
0.981186 + 0.193065i \(0.0618428\pi\)
\(648\) 0 0
\(649\) −1.63248e9 2.82753e9i −0.234418 0.406024i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.47326e8 + 4.28382e8i 0.0347596 + 0.0602053i 0.882882 0.469595i \(-0.155600\pi\)
−0.848122 + 0.529801i \(0.822267\pi\)
\(654\) 0 0
\(655\) 1.27730e9 2.21234e9i 0.177602 0.307615i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.33078e9 0.997818 0.498909 0.866654i \(-0.333734\pi\)
0.498909 + 0.866654i \(0.333734\pi\)
\(660\) 0 0
\(661\) −3.49714e9 + 6.05723e9i −0.470986 + 0.815772i −0.999449 0.0331843i \(-0.989435\pi\)
0.528463 + 0.848956i \(0.322769\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.22999e9 + 1.51887e9i 0.821508 + 0.200283i
\(666\) 0 0
\(667\) −8.00688e9 1.38683e10i −1.04478 1.80960i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.02092e9 0.130455
\(672\) 0 0
\(673\) −2.05913e9 −0.260394 −0.130197 0.991488i \(-0.541561\pi\)
−0.130197 + 0.991488i \(0.541561\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.01355e9 1.75552e9i −0.125541 0.217443i 0.796403 0.604766i \(-0.206733\pi\)
−0.921944 + 0.387323i \(0.873400\pi\)
\(678\) 0 0
\(679\) −2.42412e8 8.29057e8i −0.0297173 0.101634i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.72964e9 8.19198e9i 0.568009 0.983821i −0.428753 0.903422i \(-0.641047\pi\)
0.996763 0.0803996i \(-0.0256196\pi\)
\(684\) 0 0
\(685\) 5.71454e9 0.679304
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.79706e8 1.52370e9i 0.102464 0.177472i
\(690\) 0 0
\(691\) −5.57572e9 9.65742e9i −0.642876 1.11349i −0.984788 0.173762i \(-0.944408\pi\)
0.341911 0.939732i \(-0.388926\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.00510e8 + 1.55973e9i 0.101752 + 0.176239i
\(696\) 0 0
\(697\) −2.45777e9 + 4.25698e9i −0.274933 + 0.476198i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.01555e10 −1.11349 −0.556746 0.830683i \(-0.687950\pi\)
−0.556746 + 0.830683i \(0.687950\pi\)
\(702\) 0 0
\(703\) −1.14031e10 + 1.97508e10i −1.23788 + 2.14408i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.50747e10 + 3.67520e9i 1.60428 + 0.391122i
\(708\) 0 0
\(709\) −5.65609e9 9.79664e9i −0.596012 1.03232i −0.993403 0.114674i \(-0.963418\pi\)
0.397391 0.917649i \(-0.369916\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.95625e10 2.02121
\(714\) 0 0
\(715\) 2.41801e9 0.247393
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.36466e9 7.55981e9i −0.437924 0.758507i 0.559605 0.828760i \(-0.310953\pi\)
−0.997529 + 0.0702522i \(0.977620\pi\)
\(720\) 0 0
\(721\) 2.53442e9 2.65199e9i 0.251829 0.263511i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.45688e9 1.11836e10i 0.629274 1.08993i
\(726\) 0 0
\(727\) 5.43142e9 0.524255 0.262128 0.965033i \(-0.415576\pi\)
0.262128 + 0.965033i \(0.415576\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.64570e8 8.04658e8i 0.0439886 0.0761905i
\(732\) 0 0
\(733\) −1.84738e9 3.19976e9i −0.173258 0.300092i 0.766299 0.642484i \(-0.222096\pi\)
−0.939557 + 0.342392i \(0.888763\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.72190e7 6.44652e7i −0.00342475 0.00593184i
\(738\) 0 0
\(739\) 5.50425e9 9.53363e9i 0.501698 0.868966i −0.498300 0.867005i \(-0.666042\pi\)
0.999998 0.00196163i \(-0.000624407\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.40281e10 −1.25469 −0.627346 0.778741i \(-0.715859\pi\)
−0.627346 + 0.778741i \(0.715859\pi\)
\(744\) 0 0
\(745\) 1.55802e9 2.69857e9i 0.138047 0.239104i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.97795e9 + 5.20887e9i −0.432876 + 0.452957i
\(750\) 0 0
\(751\) 2.72345e9 + 4.71716e9i 0.234628 + 0.406388i 0.959165 0.282849i \(-0.0912794\pi\)
−0.724536 + 0.689237i \(0.757946\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.28482e10 1.08649
\(756\) 0 0
\(757\) −1.04051e10 −0.871785 −0.435892 0.899999i \(-0.643567\pi\)
−0.435892 + 0.899999i \(0.643567\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.35065e8 + 7.53554e8i 0.0357855 + 0.0619823i 0.883363 0.468689i \(-0.155273\pi\)
−0.847578 + 0.530671i \(0.821940\pi\)
\(762\) 0 0
\(763\) −6.16673e9 1.50344e9i −0.502596 0.122533i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.46200e9 + 4.26431e9i −0.197017 + 0.341244i
\(768\) 0 0
\(769\) 1.17740e9 0.0933643 0.0466822 0.998910i \(-0.485135\pi\)
0.0466822 + 0.998910i \(0.485135\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.40843e9 + 1.45638e10i −0.654767 + 1.13409i 0.327185 + 0.944960i \(0.393900\pi\)
−0.981952 + 0.189129i \(0.939433\pi\)
\(774\) 0 0
\(775\) 7.88777e9 + 1.36620e10i 0.608693 + 1.05429i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.33453e9 1.44358e10i −0.631684 1.09411i
\(780\) 0 0
\(781\) −4.49583e9 + 7.78700e9i −0.337700 + 0.584913i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.81733e9 −0.576786
\(786\) 0 0
\(787\) 7.43513e9 1.28780e10i 0.543722 0.941755i −0.454964 0.890510i \(-0.650348\pi\)
0.998686 0.0512448i \(-0.0163189\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.32365e9 + 1.82071e10i 0.382465 + 1.30805i
\(792\) 0 0
\(793\) −7.69843e8 1.33341e9i −0.0548208 0.0949525i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.62043e10 1.13377 0.566886 0.823796i \(-0.308148\pi\)
0.566886 + 0.823796i \(0.308148\pi\)
\(798\) 0 0
\(799\) −1.45284e10 −1.00764
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.06471e9 + 1.84414e9i 0.0725651 + 0.125686i
\(804\) 0 0
\(805\) 9.18847e9 + 2.24014e9i 0.620808 + 0.151353i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.10784e9 1.91883e9i 0.0735624 0.127414i −0.826898 0.562352i \(-0.809897\pi\)
0.900460 + 0.434938i \(0.143230\pi\)
\(810\) 0 0
\(811\) 4.87572e9 0.320971 0.160485 0.987038i \(-0.448694\pi\)
0.160485 + 0.987038i \(0.448694\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.05556e9 + 1.82828e9i −0.0683014 + 0.118301i
\(816\) 0 0
\(817\) 1.57540e9 + 2.72867e9i 0.101068 + 0.175055i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.48439e9 9.49925e9i −0.345882 0.599084i 0.639632 0.768681i \(-0.279087\pi\)
−0.985514 + 0.169597i \(0.945753\pi\)
\(822\) 0 0
\(823\) −1.08079e8 + 1.87198e8i −0.00675834 + 0.0117058i −0.869385 0.494136i \(-0.835485\pi\)
0.862626 + 0.505841i \(0.168818\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.31243e10 −1.42167 −0.710836 0.703357i \(-0.751683\pi\)
−0.710836 + 0.703357i \(0.751683\pi\)
\(828\) 0 0
\(829\) −1.17820e10 + 2.04071e10i −0.718256 + 1.24406i 0.243434 + 0.969917i \(0.421726\pi\)
−0.961690 + 0.274139i \(0.911607\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.85496e8 1.07028e10i −0.0291024 0.641566i
\(834\) 0 0
\(835\) −5.24002e9 9.07598e9i −0.311480 0.539499i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.50625e10 −1.46507 −0.732534 0.680730i \(-0.761663\pi\)
−0.732534 + 0.680730i \(0.761663\pi\)
\(840\) 0 0
\(841\) 4.33229e10 2.51149
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.20190e9 + 5.54585e9i 0.182561 + 0.316205i
\(846\) 0 0
\(847\) 5.94206e9 6.21771e9i 0.336004 0.351591i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.68182e10 + 2.91299e10i −0.935461 + 1.62027i
\(852\) 0 0
\(853\) −1.90748e10 −1.05230 −0.526149 0.850392i \(-0.676365\pi\)
−0.526149 + 0.850392i \(0.676365\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.67098e10 + 2.89422e10i −0.906856 + 1.57072i −0.0884496 + 0.996081i \(0.528191\pi\)
−0.818406 + 0.574640i \(0.805142\pi\)
\(858\) 0 0
\(859\) 3.98428e9 + 6.90097e9i 0.214473 + 0.371479i 0.953110 0.302625i \(-0.0978631\pi\)
−0.738636 + 0.674104i \(0.764530\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.08562e10 1.88034e10i −0.574961 0.995861i −0.996046 0.0888399i \(-0.971684\pi\)
0.421085 0.907021i \(-0.361649\pi\)
\(864\) 0 0
\(865\) 1.29279e9 2.23918e9i 0.0679161 0.117634i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.71743e9 0.140472
\(870\) 0 0
\(871\) −5.61314e7 + 9.72224e7i −0.00287834 + 0.00498543i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.32733e9 + 1.82197e10i 0.268832 + 0.919416i
\(876\) 0 0
\(877\) 9.33106e9 + 1.61619e10i 0.467124 + 0.809083i 0.999295 0.0375541i \(-0.0119567\pi\)
−0.532170 + 0.846637i \(0.678623\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.50045e10 −0.739273 −0.369636 0.929176i \(-0.620518\pi\)
−0.369636 + 0.929176i \(0.620518\pi\)
\(882\) 0 0
\(883\) −2.65989e10 −1.30017 −0.650086 0.759861i \(-0.725267\pi\)
−0.650086 + 0.759861i \(0.725267\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.16407e9 1.06765e10i −0.296575 0.513683i 0.678775 0.734346i \(-0.262511\pi\)
−0.975350 + 0.220663i \(0.929178\pi\)
\(888\) 0 0
\(889\) 3.36577e9 + 1.15111e10i 0.160667 + 0.549489i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.46336e10 4.26666e10i 1.15757 2.00497i
\(894\) 0 0
\(895\) 1.54672e10 0.721157
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.69981e10 + 6.40826e10i −1.69832 + 2.94158i
\(900\) 0 0
\(901\) −2.39849e9 4.15431e9i −0.109245 0.189218i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.75579e9 9.96932e9i −0.258128 0.447090i
\(906\) 0 0
\(907\) 2.27456e9 3.93965e9i 0.101221 0.175320i −0.810967 0.585092i \(-0.801058\pi\)
0.912188 + 0.409772i \(0.134392\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 8.78309e9 0.384887 0.192443 0.981308i \(-0.438359\pi\)
0.192443 + 0.981308i \(0.438359\pi\)
\(912\) 0 0
\(913\) −1.15841e10 + 2.00642e10i −0.503749 + 0.872519i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.99992e9 1.04638e10i 0.428256 0.448123i
\(918\) 0 0
\(919\) 1.15521e10 + 2.00088e10i 0.490971 + 0.850388i 0.999946 0.0103940i \(-0.00330859\pi\)
−0.508974 + 0.860782i \(0.669975\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.35606e10 0.567642
\(924\) 0 0
\(925\) −2.71249e10 −1.12687
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.42081e10 2.46091e10i −0.581407 1.00703i −0.995313 0.0967070i \(-0.969169\pi\)
0.413906 0.910320i \(-0.364164\pi\)
\(930\) 0 0
\(931\) 3.22550e10 + 1.67214e10i 1.31001 + 0.679122i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.29632e9 5.70940e9i 0.131883 0.228428i
\(936\) 0 0
\(937\) −2.66810e10 −1.05953 −0.529766 0.848144i \(-0.677720\pi\)
−0.529766 + 0.848144i \(0.677720\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.47193e10 + 4.28151e10i −0.967103 + 1.67507i −0.263249 + 0.964728i \(0.584794\pi\)
−0.703854 + 0.710344i \(0.748539\pi\)
\(942\) 0 0
\(943\) −1.22924e10 2.12911e10i −0.477360 0.826811i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.04792e10 + 1.81505e10i 0.400961 + 0.694486i 0.993842 0.110805i \(-0.0353428\pi\)
−0.592881 + 0.805290i \(0.702009\pi\)
\(948\) 0 0
\(949\) 1.60573e9 2.78121e9i 0.0609875 0.105634i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.44763e10 0.541791 0.270895 0.962609i \(-0.412680\pi\)
0.270895 + 0.962609i \(0.412680\pi\)
\(954\) 0 0
\(955\) −1.34126e10 + 2.32314e10i −0.498313 + 0.863104i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.14560e10 + 7.66894e9i 1.15170 + 0.280782i
\(960\) 0 0
\(961\) −3.14409e10 5.44572e10i −1.14278 1.97935i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.70702e9 0.0969718
\(966\) 0 0
\(967\) −3.47169e10 −1.23466 −0.617332 0.786703i \(-0.711786\pi\)
−0.617332 + 0.786703i \(0.711786\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.62040e9 + 1.14669e10i 0.232069 + 0.401955i 0.958417 0.285372i \(-0.0921172\pi\)
−0.726348 + 0.687327i \(0.758784\pi\)
\(972\) 0 0
\(973\) 2.86374e9 + 9.79409e9i 0.0996640 + 0.340855i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.03510e10 + 1.79284e10i −0.355099 + 0.615050i −0.987135 0.159890i \(-0.948886\pi\)
0.632036 + 0.774939i \(0.282220\pi\)
\(978\) 0 0
\(979\) 1.46423e10 0.498736
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.02622e9 3.50951e9i 0.0680376 0.117845i −0.830000 0.557764i \(-0.811660\pi\)
0.898037 + 0.439919i \(0.144993\pi\)
\(984\) 0 0
\(985\) −4.33741e9 7.51261e9i −0.144612 0.250475i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.32352e9 + 4.02445e9i 0.0763764 + 0.132288i
\(990\) 0 0
\(991\) 2.45811e10 4.25757e10i 0.802313 1.38965i −0.115778 0.993275i \(-0.536936\pi\)
0.918090 0.396371i \(-0.129731\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.46649e9 0.0793777
\(996\) 0 0
\(997\) 5.36989e9 9.30093e9i 0.171606 0.297230i −0.767375 0.641198i \(-0.778438\pi\)
0.938981 + 0.343968i \(0.111771\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.k.b.109.1 8
3.2 odd 2 84.8.i.a.25.4 8
7.2 even 3 inner 252.8.k.b.37.1 8
21.2 odd 6 84.8.i.a.37.4 yes 8
21.5 even 6 588.8.i.o.373.1 8
21.11 odd 6 588.8.a.i.1.1 4
21.17 even 6 588.8.a.j.1.4 4
21.20 even 2 588.8.i.o.361.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.8.i.a.25.4 8 3.2 odd 2
84.8.i.a.37.4 yes 8 21.2 odd 6
252.8.k.b.37.1 8 7.2 even 3 inner
252.8.k.b.109.1 8 1.1 even 1 trivial
588.8.a.i.1.1 4 21.11 odd 6
588.8.a.j.1.4 4 21.17 even 6
588.8.i.o.361.1 8 21.20 even 2
588.8.i.o.373.1 8 21.5 even 6