Properties

Label 252.8.k.e.109.6
Level $252$
Weight $8$
Character 252.109
Analytic conductor $78.721$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 89566 x^{14} - 207320 x^{13} + 5161603375 x^{12} - 17143558340 x^{11} + 178819626045814 x^{10} + \cdots + 34\!\cdots\!16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{13}\cdot 7^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.6
Root \(62.2223 + 107.772i\) of defining polynomial
Character \(\chi\) \(=\) 252.109
Dual form 252.8.k.e.37.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(135.624 + 234.907i) q^{5} +(87.0016 - 903.313i) q^{7} +(2753.41 - 4769.04i) q^{11} +8802.63 q^{13} +(-3420.94 + 5925.24i) q^{17} +(13231.5 + 22917.6i) q^{19} +(-41328.3 - 71582.8i) q^{23} +(2274.86 - 3940.17i) q^{25} -233335. q^{29} +(19823.7 - 34335.7i) q^{31} +(223994. - 102073. i) q^{35} +(-115873. - 200699. i) q^{37} +403925. q^{41} -122932. q^{43} +(52674.9 + 91235.6i) q^{47} +(-808404. - 157179. i) q^{49} +(-665248. + 1.15224e6i) q^{53} +1.49371e6 q^{55} +(429413. - 743764. i) q^{59} +(525507. + 910205. i) q^{61} +(1.19385e6 + 2.06780e6i) q^{65} +(2.21180e6 - 3.83096e6i) q^{67} -154446. q^{71} +(1.07857e6 - 1.86813e6i) q^{73} +(-4.06838e6 - 2.90210e6i) q^{77} +(-954414. - 1.65309e6i) q^{79} +8.56018e6 q^{83} -1.85584e6 q^{85} +(-5.54046e6 - 9.59637e6i) q^{89} +(765843. - 7.95153e6i) q^{91} +(-3.58900e6 + 6.21634e6i) q^{95} +1.13502e6 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 1680 q^{7} - 28280 q^{13} + 42224 q^{19} - 80460 q^{25} + 164752 q^{31} - 647980 q^{37} + 1341440 q^{43} + 230104 q^{49} - 323120 q^{55} - 4319336 q^{61} - 3905760 q^{67} + 6471780 q^{73} - 6093104 q^{79}+ \cdots - 27141240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 135.624 + 234.907i 0.485223 + 0.840430i 0.999856 0.0169803i \(-0.00540526\pi\)
−0.514633 + 0.857410i \(0.672072\pi\)
\(6\) 0 0
\(7\) 87.0016 903.313i 0.0958703 0.995394i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2753.41 4769.04i 0.623729 1.08033i −0.365056 0.930985i \(-0.618950\pi\)
0.988785 0.149345i \(-0.0477164\pi\)
\(12\) 0 0
\(13\) 8802.63 1.11125 0.555624 0.831434i \(-0.312479\pi\)
0.555624 + 0.831434i \(0.312479\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3420.94 + 5925.24i −0.168878 + 0.292506i −0.938026 0.346565i \(-0.887348\pi\)
0.769147 + 0.639071i \(0.220681\pi\)
\(18\) 0 0
\(19\) 13231.5 + 22917.6i 0.442558 + 0.766533i 0.997879 0.0651034i \(-0.0207377\pi\)
−0.555320 + 0.831636i \(0.687404\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −41328.3 71582.8i −0.708273 1.22676i −0.965497 0.260413i \(-0.916141\pi\)
0.257224 0.966352i \(-0.417192\pi\)
\(24\) 0 0
\(25\) 2274.86 3940.17i 0.0291182 0.0504342i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −233335. −1.77659 −0.888295 0.459274i \(-0.848110\pi\)
−0.888295 + 0.459274i \(0.848110\pi\)
\(30\) 0 0
\(31\) 19823.7 34335.7i 0.119514 0.207005i −0.800061 0.599919i \(-0.795200\pi\)
0.919575 + 0.392914i \(0.128533\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 223994. 102073.i 0.883077 0.402415i
\(36\) 0 0
\(37\) −115873. 200699.i −0.376078 0.651386i 0.614410 0.788987i \(-0.289394\pi\)
−0.990488 + 0.137601i \(0.956061\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 403925. 0.915287 0.457643 0.889136i \(-0.348694\pi\)
0.457643 + 0.889136i \(0.348694\pi\)
\(42\) 0 0
\(43\) −122932. −0.235791 −0.117895 0.993026i \(-0.537615\pi\)
−0.117895 + 0.993026i \(0.537615\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 52674.9 + 91235.6i 0.0740050 + 0.128180i 0.900653 0.434539i \(-0.143089\pi\)
−0.826648 + 0.562719i \(0.809755\pi\)
\(48\) 0 0
\(49\) −808404. 157179.i −0.981618 0.190857i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −665248. + 1.15224e6i −0.613788 + 1.06311i 0.376808 + 0.926291i \(0.377022\pi\)
−0.990596 + 0.136820i \(0.956312\pi\)
\(54\) 0 0
\(55\) 1.49371e6 1.21059
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 429413. 743764.i 0.272203 0.471469i −0.697223 0.716855i \(-0.745581\pi\)
0.969426 + 0.245385i \(0.0789145\pi\)
\(60\) 0 0
\(61\) 525507. + 910205.i 0.296431 + 0.513434i 0.975317 0.220810i \(-0.0708701\pi\)
−0.678886 + 0.734244i \(0.737537\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.19385e6 + 2.06780e6i 0.539202 + 0.933926i
\(66\) 0 0
\(67\) 2.21180e6 3.83096e6i 0.898432 1.55613i 0.0689321 0.997621i \(-0.478041\pi\)
0.829499 0.558508i \(-0.188626\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −154446. −0.0512121 −0.0256060 0.999672i \(-0.508152\pi\)
−0.0256060 + 0.999672i \(0.508152\pi\)
\(72\) 0 0
\(73\) 1.07857e6 1.86813e6i 0.324502 0.562054i −0.656910 0.753969i \(-0.728137\pi\)
0.981411 + 0.191916i \(0.0614700\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.06838e6 2.90210e6i −1.01556 0.724427i
\(78\) 0 0
\(79\) −954414. 1.65309e6i −0.217792 0.377227i 0.736341 0.676611i \(-0.236552\pi\)
−0.954133 + 0.299384i \(0.903219\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.56018e6 1.64327 0.821637 0.570012i \(-0.193061\pi\)
0.821637 + 0.570012i \(0.193061\pi\)
\(84\) 0 0
\(85\) −1.85584e6 −0.327774
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.54046e6 9.59637e6i −0.833069 1.44292i −0.895593 0.444875i \(-0.853248\pi\)
0.0625233 0.998044i \(-0.480085\pi\)
\(90\) 0 0
\(91\) 765843. 7.95153e6i 0.106536 1.10613i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.58900e6 + 6.21634e6i −0.429478 + 0.743878i
\(96\) 0 0
\(97\) 1.13502e6 0.126270 0.0631352 0.998005i \(-0.479890\pi\)
0.0631352 + 0.998005i \(0.479890\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.16132e6 + 7.20762e6i −0.401889 + 0.696092i −0.993954 0.109798i \(-0.964980\pi\)
0.592065 + 0.805890i \(0.298313\pi\)
\(102\) 0 0
\(103\) −5.20374e6 9.01315e6i −0.469230 0.812730i 0.530151 0.847903i \(-0.322135\pi\)
−0.999381 + 0.0351731i \(0.988802\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.54590e6 1.30699e7i −0.595481 1.03140i −0.993479 0.114017i \(-0.963628\pi\)
0.397998 0.917386i \(-0.369705\pi\)
\(108\) 0 0
\(109\) 1.33676e7 2.31534e7i 0.988694 1.71247i 0.364489 0.931208i \(-0.381244\pi\)
0.624205 0.781261i \(-0.285423\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −54643.3 −0.00356256 −0.00178128 0.999998i \(-0.500567\pi\)
−0.00178128 + 0.999998i \(0.500567\pi\)
\(114\) 0 0
\(115\) 1.12102e7 1.94167e7i 0.687340 1.19051i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.05472e6 + 3.60568e6i 0.274968 + 0.196143i
\(120\) 0 0
\(121\) −5.41890e6 9.38582e6i −0.278075 0.481641i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.24253e7 1.02696
\(126\) 0 0
\(127\) 2.99538e7 1.29760 0.648798 0.760961i \(-0.275272\pi\)
0.648798 + 0.760961i \(0.275272\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.29309e7 + 3.97174e7i 0.891191 + 1.54359i 0.838449 + 0.544980i \(0.183463\pi\)
0.0527416 + 0.998608i \(0.483204\pi\)
\(132\) 0 0
\(133\) 2.18529e7 9.95828e6i 0.805431 0.367032i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.37558e7 + 2.38257e7i −0.457049 + 0.791631i −0.998803 0.0489051i \(-0.984427\pi\)
0.541755 + 0.840537i \(0.317760\pi\)
\(138\) 0 0
\(139\) 1.41540e7 0.447021 0.223510 0.974702i \(-0.428248\pi\)
0.223510 + 0.974702i \(0.428248\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.42372e7 4.19801e7i 0.693117 1.20051i
\(144\) 0 0
\(145\) −3.16458e7 5.48121e7i −0.862041 1.49310i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.57625e7 2.73014e7i −0.390367 0.676135i 0.602131 0.798397i \(-0.294319\pi\)
−0.992498 + 0.122262i \(0.960985\pi\)
\(150\) 0 0
\(151\) −5.45008e6 + 9.43982e6i −0.128820 + 0.223123i −0.923220 0.384272i \(-0.874452\pi\)
0.794400 + 0.607396i \(0.207786\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.07543e7 0.231964
\(156\) 0 0
\(157\) 4.48305e7 7.76486e7i 0.924537 1.60135i 0.132233 0.991219i \(-0.457785\pi\)
0.792304 0.610127i \(-0.208881\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.82573e7 + 3.11046e7i −1.28902 + 0.587400i
\(162\) 0 0
\(163\) −4.56018e7 7.89846e7i −0.824755 1.42852i −0.902106 0.431514i \(-0.857980\pi\)
0.0773509 0.997004i \(-0.475354\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.72822e7 −0.785579 −0.392789 0.919628i \(-0.628490\pi\)
−0.392789 + 0.919628i \(0.628490\pi\)
\(168\) 0 0
\(169\) 1.47378e7 0.234872
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.07168e7 + 1.85621e7i 0.157364 + 0.272562i 0.933917 0.357489i \(-0.116367\pi\)
−0.776553 + 0.630051i \(0.783034\pi\)
\(174\) 0 0
\(175\) −3.36129e6 2.39771e6i −0.0474103 0.0338192i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.11093e7 3.65624e7i 0.275099 0.476485i −0.695061 0.718951i \(-0.744623\pi\)
0.970160 + 0.242465i \(0.0779561\pi\)
\(180\) 0 0
\(181\) 4.62466e6 0.0579702 0.0289851 0.999580i \(-0.490772\pi\)
0.0289851 + 0.999580i \(0.490772\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.14304e7 5.44390e7i 0.364963 0.632134i
\(186\) 0 0
\(187\) 1.88385e7 + 3.26292e7i 0.210669 + 0.364889i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.94101e7 1.54863e8i −0.928474 1.60816i −0.785877 0.618383i \(-0.787788\pi\)
−0.142597 0.989781i \(-0.545545\pi\)
\(192\) 0 0
\(193\) 2.05863e7 3.56566e7i 0.206124 0.357017i −0.744366 0.667771i \(-0.767248\pi\)
0.950490 + 0.310754i \(0.100582\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.97492e7 0.836370 0.418185 0.908362i \(-0.362666\pi\)
0.418185 + 0.908362i \(0.362666\pi\)
\(198\) 0 0
\(199\) −1.51247e7 + 2.61968e7i −0.136051 + 0.235647i −0.925998 0.377527i \(-0.876774\pi\)
0.789948 + 0.613174i \(0.210108\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.03005e7 + 2.10775e8i −0.170322 + 1.76841i
\(204\) 0 0
\(205\) 5.47819e7 + 9.48850e7i 0.444118 + 0.769235i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.45726e8 1.10415
\(210\) 0 0
\(211\) 4.15724e7 0.304661 0.152331 0.988330i \(-0.451322\pi\)
0.152331 + 0.988330i \(0.451322\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.66726e7 2.88777e7i −0.114411 0.198166i
\(216\) 0 0
\(217\) −2.92912e7 2.08943e7i −0.194593 0.138809i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.01133e7 + 5.21577e7i −0.187666 + 0.325047i
\(222\) 0 0
\(223\) 1.48057e7 0.0894052 0.0447026 0.999000i \(-0.485766\pi\)
0.0447026 + 0.999000i \(0.485766\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.63163e7 + 1.66825e8i −0.546524 + 0.946607i 0.451985 + 0.892025i \(0.350716\pi\)
−0.998509 + 0.0545820i \(0.982617\pi\)
\(228\) 0 0
\(229\) 1.58823e7 + 2.75090e7i 0.0873956 + 0.151374i 0.906409 0.422400i \(-0.138812\pi\)
−0.819014 + 0.573774i \(0.805479\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.65294e6 4.59502e6i −0.0137398 0.0237981i 0.859074 0.511852i \(-0.171040\pi\)
−0.872814 + 0.488054i \(0.837707\pi\)
\(234\) 0 0
\(235\) −1.42879e7 + 2.47474e7i −0.0718178 + 0.124392i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.84527e7 −0.276957 −0.138478 0.990365i \(-0.544221\pi\)
−0.138478 + 0.990365i \(0.544221\pi\)
\(240\) 0 0
\(241\) −1.49460e8 + 2.58872e8i −0.687803 + 1.19131i 0.284743 + 0.958604i \(0.408092\pi\)
−0.972547 + 0.232707i \(0.925242\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.27163e7 2.11217e8i −0.315901 0.917589i
\(246\) 0 0
\(247\) 1.16472e8 + 2.01735e8i 0.491792 + 0.851808i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.54841e8 1.01721 0.508606 0.860999i \(-0.330161\pi\)
0.508606 + 0.860999i \(0.330161\pi\)
\(252\) 0 0
\(253\) −4.55175e8 −1.76708
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.67755e8 + 2.90560e8i 0.616467 + 1.06775i 0.990125 + 0.140185i \(0.0447698\pi\)
−0.373659 + 0.927566i \(0.621897\pi\)
\(258\) 0 0
\(259\) −1.91375e8 + 8.72088e7i −0.684440 + 0.311897i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.52202e8 + 2.63622e8i −0.515912 + 0.893585i 0.483918 + 0.875114i \(0.339213\pi\)
−0.999829 + 0.0184718i \(0.994120\pi\)
\(264\) 0 0
\(265\) −3.60894e8 −1.19129
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.75579e8 4.77317e8i 0.863204 1.49511i −0.00561523 0.999984i \(-0.501787\pi\)
0.868819 0.495129i \(-0.164879\pi\)
\(270\) 0 0
\(271\) 3.05360e8 + 5.28899e8i 0.932008 + 1.61429i 0.779884 + 0.625924i \(0.215278\pi\)
0.152124 + 0.988361i \(0.451389\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.25272e7 2.16978e7i −0.0363237 0.0629146i
\(276\) 0 0
\(277\) −8.96395e7 + 1.55260e8i −0.253408 + 0.438915i −0.964462 0.264222i \(-0.914885\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.22014e8 −0.328048 −0.164024 0.986456i \(-0.552447\pi\)
−0.164024 + 0.986456i \(0.552447\pi\)
\(282\) 0 0
\(283\) −1.24497e8 + 2.15635e8i −0.326518 + 0.565546i −0.981818 0.189823i \(-0.939209\pi\)
0.655300 + 0.755368i \(0.272542\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.51421e7 3.64871e8i 0.0877488 0.911071i
\(288\) 0 0
\(289\) 1.81764e8 + 3.14824e8i 0.442960 + 0.767229i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.74504e8 −1.10205 −0.551027 0.834487i \(-0.685764\pi\)
−0.551027 + 0.834487i \(0.685764\pi\)
\(294\) 0 0
\(295\) 2.32954e8 0.528316
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.63798e8 6.30117e8i −0.787067 1.36324i
\(300\) 0 0
\(301\) −1.06953e7 + 1.11046e8i −0.0226053 + 0.234705i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.42543e8 + 2.46891e8i −0.287670 + 0.498260i
\(306\) 0 0
\(307\) 3.83066e8 0.755595 0.377798 0.925888i \(-0.376682\pi\)
0.377798 + 0.925888i \(0.376682\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.36877e8 + 4.10282e8i −0.446540 + 0.773431i −0.998158 0.0606664i \(-0.980677\pi\)
0.551618 + 0.834097i \(0.314011\pi\)
\(312\) 0 0
\(313\) −1.10694e8 1.91728e8i −0.204042 0.353411i 0.745785 0.666187i \(-0.232075\pi\)
−0.949827 + 0.312776i \(0.898741\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.36623e8 + 4.09843e8i 0.417205 + 0.722620i 0.995657 0.0930963i \(-0.0296764\pi\)
−0.578452 + 0.815716i \(0.696343\pi\)
\(318\) 0 0
\(319\) −6.42466e8 + 1.11278e9i −1.10811 + 1.91930i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.81056e8 −0.298954
\(324\) 0 0
\(325\) 2.00248e7 3.46839e7i 0.0323575 0.0560449i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.69970e7 3.96442e7i 0.134685 0.0613754i
\(330\) 0 0
\(331\) −4.58900e7 7.94838e7i −0.0695537 0.120471i 0.829151 0.559024i \(-0.188824\pi\)
−0.898705 + 0.438554i \(0.855491\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.19989e9 1.74376
\(336\) 0 0
\(337\) 4.12466e8 0.587061 0.293530 0.955950i \(-0.405170\pi\)
0.293530 + 0.955950i \(0.405170\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.09166e8 1.89080e8i −0.149089 0.258230i
\(342\) 0 0
\(343\) −2.12315e8 + 7.16567e8i −0.284086 + 0.958799i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.94162e8 8.55913e8i 0.634916 1.09971i −0.351617 0.936144i \(-0.614368\pi\)
0.986533 0.163562i \(-0.0522985\pi\)
\(348\) 0 0
\(349\) −1.13371e9 −1.42762 −0.713812 0.700337i \(-0.753033\pi\)
−0.713812 + 0.700337i \(0.753033\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.88180e8 + 1.01876e9i −0.711703 + 1.23271i 0.252514 + 0.967593i \(0.418743\pi\)
−0.964217 + 0.265113i \(0.914591\pi\)
\(354\) 0 0
\(355\) −2.09466e7 3.62805e7i −0.0248493 0.0430402i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.65381e8 + 6.32858e8i 0.416788 + 0.721898i 0.995614 0.0935532i \(-0.0298225\pi\)
−0.578827 + 0.815451i \(0.696489\pi\)
\(360\) 0 0
\(361\) 9.67926e7 1.67650e8i 0.108285 0.187555i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.85118e8 0.629822
\(366\) 0 0
\(367\) 3.06230e8 5.30405e8i 0.323382 0.560114i −0.657802 0.753191i \(-0.728513\pi\)
0.981184 + 0.193077i \(0.0618468\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.82959e8 + 7.01174e8i 0.999371 + 0.712882i
\(372\) 0 0
\(373\) −2.75024e8 4.76356e8i −0.274404 0.475281i 0.695581 0.718448i \(-0.255147\pi\)
−0.969985 + 0.243167i \(0.921814\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.05396e9 −1.97423
\(378\) 0 0
\(379\) 1.77173e8 0.167171 0.0835853 0.996501i \(-0.473363\pi\)
0.0835853 + 0.996501i \(0.473363\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.41656e8 + 2.45356e8i 0.128837 + 0.223152i 0.923226 0.384257i \(-0.125542\pi\)
−0.794389 + 0.607409i \(0.792209\pi\)
\(384\) 0 0
\(385\) 1.29955e8 1.34929e9i 0.116060 1.20501i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.25354e8 1.25635e9i 0.624779 1.08215i −0.363805 0.931475i \(-0.618523\pi\)
0.988584 0.150673i \(-0.0481442\pi\)
\(390\) 0 0
\(391\) 5.65527e8 0.478448
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.58882e8 4.48398e8i 0.211355 0.366078i
\(396\) 0 0
\(397\) −5.93238e8 1.02752e9i −0.475842 0.824182i 0.523775 0.851856i \(-0.324523\pi\)
−0.999617 + 0.0276745i \(0.991190\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.92674e8 + 5.06926e8i 0.226662 + 0.392590i 0.956817 0.290692i \(-0.0938854\pi\)
−0.730155 + 0.683282i \(0.760552\pi\)
\(402\) 0 0
\(403\) 1.74501e8 3.02245e8i 0.132810 0.230034i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.27619e9 −0.938283
\(408\) 0 0
\(409\) 1.05156e9 1.82135e9i 0.759978 1.31632i −0.182882 0.983135i \(-0.558543\pi\)
0.942861 0.333187i \(-0.108124\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.34492e8 4.52603e8i −0.443201 0.316149i
\(414\) 0 0
\(415\) 1.16096e9 + 2.01085e9i 0.797353 + 1.38106i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.71830e9 −1.80530 −0.902648 0.430380i \(-0.858380\pi\)
−0.902648 + 0.430380i \(0.858380\pi\)
\(420\) 0 0
\(421\) 5.29822e8 0.346053 0.173027 0.984917i \(-0.444645\pi\)
0.173027 + 0.984917i \(0.444645\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.55643e7 + 2.69582e7i 0.00983488 + 0.0170345i
\(426\) 0 0
\(427\) 8.67919e8 3.95508e8i 0.539488 0.245843i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.01224e8 1.75325e8i 0.0608995 0.105481i −0.833968 0.551812i \(-0.813936\pi\)
0.894868 + 0.446331i \(0.147270\pi\)
\(432\) 0 0
\(433\) −6.56435e8 −0.388584 −0.194292 0.980944i \(-0.562241\pi\)
−0.194292 + 0.980944i \(0.562241\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.09367e9 1.89429e9i 0.626904 1.08583i
\(438\) 0 0
\(439\) 4.19575e8 + 7.26724e8i 0.236692 + 0.409962i 0.959763 0.280811i \(-0.0906035\pi\)
−0.723071 + 0.690774i \(0.757270\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.11299e7 1.05880e8i −0.0334072 0.0578630i 0.848838 0.528652i \(-0.177303\pi\)
−0.882246 + 0.470789i \(0.843969\pi\)
\(444\) 0 0
\(445\) 1.50284e9 2.60299e9i 0.808448 1.40027i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.95736e9 1.02049 0.510244 0.860030i \(-0.329555\pi\)
0.510244 + 0.860030i \(0.329555\pi\)
\(450\) 0 0
\(451\) 1.11217e9 1.92633e9i 0.570891 0.988812i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.97174e9 8.98515e8i 0.981318 0.447183i
\(456\) 0 0
\(457\) −1.37930e9 2.38901e9i −0.676007 1.17088i −0.976174 0.216991i \(-0.930376\pi\)
0.300167 0.953887i \(-0.402958\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.05133e9 −0.499788 −0.249894 0.968273i \(-0.580396\pi\)
−0.249894 + 0.968273i \(0.580396\pi\)
\(462\) 0 0
\(463\) 1.67036e9 0.782127 0.391063 0.920364i \(-0.372107\pi\)
0.391063 + 0.920364i \(0.372107\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.73863e8 + 1.51357e9i 0.397040 + 0.687693i 0.993359 0.115054i \(-0.0367041\pi\)
−0.596319 + 0.802747i \(0.703371\pi\)
\(468\) 0 0
\(469\) −3.26812e9 2.33125e9i −1.46283 1.04348i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.38483e8 + 5.86269e8i −0.147070 + 0.254732i
\(474\) 0 0
\(475\) 1.20399e8 0.0515460
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.61974e8 + 1.66619e9i −0.399935 + 0.692707i −0.993717 0.111918i \(-0.964301\pi\)
0.593783 + 0.804625i \(0.297634\pi\)
\(480\) 0 0
\(481\) −1.01999e9 1.76668e9i −0.417916 0.723851i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.53935e8 + 2.66624e8i 0.0612692 + 0.106121i
\(486\) 0 0
\(487\) 1.71220e9 2.96562e9i 0.671743 1.16349i −0.305666 0.952139i \(-0.598879\pi\)
0.977409 0.211355i \(-0.0677875\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.92888e9 −1.11665 −0.558325 0.829622i \(-0.688556\pi\)
−0.558325 + 0.829622i \(0.688556\pi\)
\(492\) 0 0
\(493\) 7.98225e8 1.38257e9i 0.300028 0.519663i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.34370e7 + 1.39513e8i −0.00490972 + 0.0509762i
\(498\) 0 0
\(499\) 1.54754e9 + 2.68042e9i 0.557559 + 0.965721i 0.997699 + 0.0677918i \(0.0215953\pi\)
−0.440140 + 0.897929i \(0.645071\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.54605e9 0.892029 0.446014 0.895026i \(-0.352843\pi\)
0.446014 + 0.895026i \(0.352843\pi\)
\(504\) 0 0
\(505\) −2.25750e9 −0.780023
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.01304e8 1.75463e8i −0.0340496 0.0589757i 0.848498 0.529198i \(-0.177507\pi\)
−0.882548 + 0.470222i \(0.844174\pi\)
\(510\) 0 0
\(511\) −1.59367e9 1.13681e9i −0.528355 0.376891i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.41150e9 2.44480e9i 0.455362 0.788710i
\(516\) 0 0
\(517\) 5.80141e8 0.184636
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.74740e9 + 4.75864e9i −0.851119 + 1.47418i 0.0290803 + 0.999577i \(0.490742\pi\)
−0.880199 + 0.474604i \(0.842591\pi\)
\(522\) 0 0
\(523\) 1.84283e9 + 3.19187e9i 0.563286 + 0.975640i 0.997207 + 0.0746890i \(0.0237964\pi\)
−0.433921 + 0.900951i \(0.642870\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.35632e8 + 2.34921e8i 0.0403668 + 0.0699173i
\(528\) 0 0
\(529\) −1.71365e9 + 2.96813e9i −0.503301 + 0.871743i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.55560e9 1.01711
\(534\) 0 0
\(535\) 2.04681e9 3.54518e9i 0.577882 1.00092i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.97546e9 + 3.42253e9i −0.818452 + 0.941428i
\(540\) 0 0
\(541\) −7.06594e8 1.22386e9i −0.191858 0.332308i 0.754008 0.656865i \(-0.228118\pi\)
−0.945866 + 0.324557i \(0.894785\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.25188e9 1.91895
\(546\) 0 0
\(547\) 5.40167e9 1.41115 0.705574 0.708637i \(-0.250689\pi\)
0.705574 + 0.708637i \(0.250689\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.08736e9 5.34747e9i −0.786244 1.36181i
\(552\) 0 0
\(553\) −1.57630e9 + 7.18312e8i −0.396369 + 0.180624i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.85131e9 + 4.93861e9i −0.699118 + 1.21091i 0.269654 + 0.962957i \(0.413091\pi\)
−0.968772 + 0.247951i \(0.920243\pi\)
\(558\) 0 0
\(559\) −1.08213e9 −0.262022
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.78880e9 4.83035e9i 0.658626 1.14077i −0.322346 0.946622i \(-0.604471\pi\)
0.980972 0.194151i \(-0.0621952\pi\)
\(564\) 0 0
\(565\) −7.41094e6 1.28361e7i −0.00172864 0.00299408i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.19424e9 2.06848e9i −0.271767 0.470714i 0.697547 0.716539i \(-0.254275\pi\)
−0.969314 + 0.245824i \(0.920941\pi\)
\(570\) 0 0
\(571\) −2.78817e9 + 4.82925e9i −0.626747 + 1.08556i 0.361453 + 0.932390i \(0.382281\pi\)
−0.988200 + 0.153168i \(0.951053\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.76065e8 −0.0824946
\(576\) 0 0
\(577\) 3.88721e9 6.73285e9i 0.842409 1.45909i −0.0454440 0.998967i \(-0.514470\pi\)
0.887853 0.460128i \(-0.152196\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.44750e8 7.73252e9i 0.157541 1.63570i
\(582\) 0 0
\(583\) 3.66340e9 + 6.34519e9i 0.765675 + 1.32619i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.89217e8 −0.120238 −0.0601190 0.998191i \(-0.519148\pi\)
−0.0601190 + 0.998191i \(0.519148\pi\)
\(588\) 0 0
\(589\) 1.04919e9 0.211568
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.58290e8 1.48660e9i −0.169022 0.292754i 0.769054 0.639183i \(-0.220727\pi\)
−0.938076 + 0.346429i \(0.887394\pi\)
\(594\) 0 0
\(595\) −1.61461e8 + 1.67641e9i −0.0314238 + 0.326265i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.84213e9 + 6.65477e9i −0.730430 + 1.26514i 0.226270 + 0.974065i \(0.427347\pi\)
−0.956700 + 0.291076i \(0.905987\pi\)
\(600\) 0 0
\(601\) −1.01577e10 −1.90869 −0.954344 0.298709i \(-0.903444\pi\)
−0.954344 + 0.298709i \(0.903444\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.46986e9 2.54588e9i 0.269857 0.467406i
\(606\) 0 0
\(607\) 1.12929e9 + 1.95598e9i 0.204948 + 0.354981i 0.950116 0.311896i \(-0.100964\pi\)
−0.745168 + 0.666877i \(0.767631\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.63678e8 + 8.03113e8i 0.0822379 + 0.142440i
\(612\) 0 0
\(613\) −3.16951e9 + 5.48975e9i −0.555752 + 0.962590i 0.442093 + 0.896969i \(0.354236\pi\)
−0.997845 + 0.0656207i \(0.979097\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.51460e9 −1.11658 −0.558290 0.829646i \(-0.688542\pi\)
−0.558290 + 0.829646i \(0.688542\pi\)
\(618\) 0 0
\(619\) −4.99392e9 + 8.64972e9i −0.846299 + 1.46583i 0.0381887 + 0.999271i \(0.487841\pi\)
−0.884488 + 0.466563i \(0.845492\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.15055e9 + 4.16987e9i −1.51614 + 0.690899i
\(624\) 0 0
\(625\) 2.86368e9 + 4.96005e9i 0.469186 + 0.812654i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.58558e9 0.254046
\(630\) 0 0
\(631\) −6.90293e8 −0.109378 −0.0546891 0.998503i \(-0.517417\pi\)
−0.0546891 + 0.998503i \(0.517417\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.06245e9 + 7.03637e9i 0.629622 + 1.09054i
\(636\) 0 0
\(637\) −7.11609e9 1.38359e9i −1.09082 0.212090i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.03158e8 6.98291e8i 0.0604606 0.104721i −0.834211 0.551446i \(-0.814076\pi\)
0.894671 + 0.446725i \(0.147410\pi\)
\(642\) 0 0
\(643\) −7.24540e9 −1.07479 −0.537395 0.843331i \(-0.680592\pi\)
−0.537395 + 0.843331i \(0.680592\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.06148e9 8.76675e9i 0.734705 1.27255i −0.220148 0.975466i \(-0.570654\pi\)
0.954853 0.297079i \(-0.0960126\pi\)
\(648\) 0 0
\(649\) −2.36469e9 4.09577e9i −0.339562 0.588138i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.23757e9 9.07174e9i −0.736095 1.27495i −0.954241 0.299038i \(-0.903334\pi\)
0.218146 0.975916i \(-0.429999\pi\)
\(654\) 0 0
\(655\) −6.21994e9 + 1.07733e10i −0.864852 + 1.49797i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.86587e9 0.798424 0.399212 0.916859i \(-0.369284\pi\)
0.399212 + 0.916859i \(0.369284\pi\)
\(660\) 0 0
\(661\) 3.88047e9 6.72116e9i 0.522611 0.905189i −0.477043 0.878880i \(-0.658291\pi\)
0.999654 0.0263091i \(-0.00837541\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.30305e9 + 3.78282e9i 0.699278 + 0.498816i
\(666\) 0 0
\(667\) 9.64335e9 + 1.67028e10i 1.25831 + 2.17946i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.78774e9 0.739571
\(672\) 0 0
\(673\) 3.37850e9 0.427239 0.213620 0.976917i \(-0.431475\pi\)
0.213620 + 0.976917i \(0.431475\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.21681e9 + 1.24999e10i 0.893891 + 1.54827i 0.835171 + 0.549991i \(0.185369\pi\)
0.0587208 + 0.998274i \(0.481298\pi\)
\(678\) 0 0
\(679\) 9.87483e7 1.02528e9i 0.0121056 0.125689i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.49427e9 2.58816e9i 0.179456 0.310827i −0.762238 0.647296i \(-0.775900\pi\)
0.941694 + 0.336470i \(0.109233\pi\)
\(684\) 0 0
\(685\) −7.46243e9 −0.887081
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.85594e9 + 1.01428e10i −0.682070 + 1.18138i
\(690\) 0 0
\(691\) 5.72440e9 + 9.91495e9i 0.660019 + 1.14319i 0.980610 + 0.195969i \(0.0627852\pi\)
−0.320591 + 0.947218i \(0.603881\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.91962e9 + 3.32488e9i 0.216904 + 0.375690i
\(696\) 0 0
\(697\) −1.38180e9 + 2.39335e9i −0.154572 + 0.267727i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.77015e9 0.303732 0.151866 0.988401i \(-0.451472\pi\)
0.151866 + 0.988401i \(0.451472\pi\)
\(702\) 0 0
\(703\) 3.06635e9 5.31107e9i 0.332873 0.576552i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.14869e9 + 4.38605e9i 0.654357 + 0.466773i
\(708\) 0 0
\(709\) 9.01249e8 + 1.56101e9i 0.0949692 + 0.164492i 0.909596 0.415494i \(-0.136391\pi\)
−0.814627 + 0.579986i \(0.803058\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.27713e9 −0.338595
\(714\) 0 0
\(715\) 1.31486e10 1.34526
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.56454e9 7.90602e9i −0.457979 0.793244i 0.540875 0.841103i \(-0.318093\pi\)
−0.998854 + 0.0478595i \(0.984760\pi\)
\(720\) 0 0
\(721\) −8.59442e9 + 3.91645e9i −0.853972 + 0.389152i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.30805e8 + 9.19381e8i −0.0517311 + 0.0896009i
\(726\) 0 0
\(727\) −1.21081e10 −1.16871 −0.584354 0.811499i \(-0.698652\pi\)
−0.584354 + 0.811499i \(0.698652\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.20544e8 7.28404e8i 0.0398200 0.0689702i
\(732\) 0 0
\(733\) 6.82100e9 + 1.18143e10i 0.639711 + 1.10801i 0.985496 + 0.169699i \(0.0542795\pi\)
−0.345785 + 0.938314i \(0.612387\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.21800e10 2.10964e10i −1.12076 1.94121i
\(738\) 0 0
\(739\) −2.37583e9 + 4.11506e9i −0.216551 + 0.375077i −0.953751 0.300597i \(-0.902814\pi\)
0.737200 + 0.675674i \(0.236147\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.47115e9 −0.399907 −0.199953 0.979805i \(-0.564079\pi\)
−0.199953 + 0.979805i \(0.564079\pi\)
\(744\) 0 0
\(745\) 4.27554e9 7.40545e9i 0.378830 0.656152i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.24627e10 + 5.67921e9i −1.08374 + 0.493857i
\(750\) 0 0
\(751\) 7.08632e9 + 1.22739e10i 0.610494 + 1.05741i 0.991157 + 0.132693i \(0.0423623\pi\)
−0.380663 + 0.924714i \(0.624304\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.95664e9 −0.250026
\(756\) 0 0
\(757\) −1.37310e10 −1.15045 −0.575223 0.817997i \(-0.695085\pi\)
−0.575223 + 0.817997i \(0.695085\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.17090e8 5.49216e8i −0.0260817 0.0451749i 0.852690 0.522417i \(-0.174970\pi\)
−0.878772 + 0.477242i \(0.841636\pi\)
\(762\) 0 0
\(763\) −1.97518e10 1.40895e10i −1.60979 1.14831i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.77996e9 6.54709e9i 0.302485 0.523919i
\(768\) 0 0
\(769\) 8.38079e9 0.664573 0.332287 0.943178i \(-0.392180\pi\)
0.332287 + 0.943178i \(0.392180\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.91233e9 + 6.77635e9i −0.304654 + 0.527676i −0.977184 0.212393i \(-0.931874\pi\)
0.672530 + 0.740070i \(0.265207\pi\)
\(774\) 0 0
\(775\) −9.01925e7 1.56218e8i −0.00696008 0.0120552i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.34452e9 + 9.25698e9i 0.405068 + 0.701598i
\(780\) 0 0
\(781\) −4.25252e8 + 7.36559e8i −0.0319425 + 0.0553260i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.43203e10 1.79443
\(786\) 0 0
\(787\) 1.28524e10 2.22609e10i 0.939878 1.62792i 0.174181 0.984714i \(-0.444272\pi\)
0.765696 0.643202i \(-0.222395\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.75406e6 + 4.93600e7i −0.000341544 + 0.00354615i
\(792\) 0 0
\(793\) 4.62585e9 + 8.01220e9i 0.329409 + 0.570552i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.31351e10 −1.61870 −0.809352 0.587324i \(-0.800182\pi\)
−0.809352 + 0.587324i \(0.800182\pi\)
\(798\) 0 0
\(799\) −7.20790e8 −0.0499914
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.93947e9 1.02875e10i −0.404802 0.701138i
\(804\) 0 0
\(805\) −1.65640e10 1.18156e10i −1.11913 0.798308i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.55541e9 1.65504e10i 0.634497 1.09898i −0.352125 0.935953i \(-0.614541\pi\)
0.986622 0.163027i \(-0.0521259\pi\)
\(810\) 0 0
\(811\) −2.86864e9 −0.188844 −0.0944219 0.995532i \(-0.530100\pi\)
−0.0944219 + 0.995532i \(0.530100\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.23694e10 2.14244e10i 0.800380 1.38630i
\(816\) 0 0
\(817\) −1.62658e9 2.81731e9i −0.104351 0.180741i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.05325e10 + 1.82429e10i 0.664250 + 1.15051i 0.979488 + 0.201502i \(0.0645821\pi\)
−0.315239 + 0.949012i \(0.602085\pi\)
\(822\) 0 0
\(823\) 1.06065e10 1.83710e10i 0.663243 1.14877i −0.316515 0.948588i \(-0.602513\pi\)
0.979758 0.200184i \(-0.0641539\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.41630e10 −0.870735 −0.435368 0.900253i \(-0.643382\pi\)
−0.435368 + 0.900253i \(0.643382\pi\)
\(828\) 0 0
\(829\) 1.10354e10 1.91138e10i 0.672738 1.16522i −0.304387 0.952548i \(-0.598452\pi\)
0.977125 0.212667i \(-0.0682150\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.69683e9 4.25229e9i 0.221601 0.254897i
\(834\) 0 0
\(835\) −6.41259e9 1.11069e10i −0.381180 0.660224i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.97333e8 0.0115354 0.00576771 0.999983i \(-0.498164\pi\)
0.00576771 + 0.999983i \(0.498164\pi\)
\(840\) 0 0
\(841\) 3.71954e10 2.15627
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.99880e9 + 3.46203e9i 0.113965 + 0.197393i
\(846\) 0 0
\(847\) −8.94978e9 + 4.07838e9i −0.506081 + 0.230620i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −9.57771e9 + 1.65891e10i −0.532732 + 0.922718i
\(852\) 0 0
\(853\) −2.85016e10 −1.57234 −0.786171 0.618009i \(-0.787940\pi\)
−0.786171 + 0.618009i \(0.787940\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.52798e9 + 1.47709e10i −0.462821 + 0.801630i −0.999100 0.0424108i \(-0.986496\pi\)
0.536279 + 0.844041i \(0.319830\pi\)
\(858\) 0 0
\(859\) 3.70608e8 + 6.41913e8i 0.0199498 + 0.0345541i 0.875828 0.482623i \(-0.160316\pi\)
−0.855878 + 0.517178i \(0.826983\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.07828e10 + 1.86764e10i 0.571078 + 0.989136i 0.996456 + 0.0841198i \(0.0268078\pi\)
−0.425378 + 0.905016i \(0.639859\pi\)
\(864\) 0 0
\(865\) −2.90691e9 + 5.03492e9i −0.152713 + 0.264506i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.05116e10 −0.543373
\(870\) 0 0
\(871\) 1.94697e10 3.37225e10i 0.998380 1.72924i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.95104e9 2.02571e10i 0.0984550 1.02223i
\(876\) 0 0
\(877\) 1.91711e10 + 3.32053e10i 0.959728 + 1.66230i 0.723158 + 0.690683i \(0.242690\pi\)
0.236570 + 0.971614i \(0.423977\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.03208e10 1.00121 0.500605 0.865676i \(-0.333111\pi\)
0.500605 + 0.865676i \(0.333111\pi\)
\(882\) 0 0
\(883\) 2.54529e10 1.24415 0.622077 0.782956i \(-0.286289\pi\)
0.622077 + 0.782956i \(0.286289\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.37821e10 + 2.38713e10i 0.663105 + 1.14853i 0.979795 + 0.200002i \(0.0640950\pi\)
−0.316691 + 0.948529i \(0.602572\pi\)
\(888\) 0 0
\(889\) 2.60603e9 2.70577e10i 0.124401 1.29162i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.39393e9 + 2.41436e9i −0.0655030 + 0.113455i
\(894\) 0 0
\(895\) 1.14517e10 0.533937
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.62557e9 + 8.01173e9i −0.212328 + 0.367762i
\(900\) 0 0
\(901\) −4.55155e9 7.88352e9i −0.207311 0.359073i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.27214e8 + 1.08637e9i 0.0281284 + 0.0487199i
\(906\) 0 0
\(907\) −4.18519e9 + 7.24896e9i −0.186247 + 0.322589i −0.943996 0.329957i \(-0.892966\pi\)
0.757749 + 0.652546i \(0.226299\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.69466e10 −1.61905 −0.809526 0.587085i \(-0.800276\pi\)
−0.809526 + 0.587085i \(0.800276\pi\)
\(912\) 0 0
\(913\) 2.35697e10 4.08238e10i 1.02496 1.77528i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.78723e10 1.72583e10i 1.62192 0.739102i
\(918\) 0 0
\(919\) 2.32414e9 + 4.02553e9i 0.0987774 + 0.171087i 0.911179 0.412011i \(-0.135173\pi\)
−0.812401 + 0.583099i \(0.801840\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.35953e9 −0.0569093
\(924\) 0 0
\(925\) −1.05438e9 −0.0438029
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.94340e10 3.36606e10i −0.795256 1.37742i −0.922677 0.385575i \(-0.874003\pi\)
0.127421 0.991849i \(-0.459330\pi\)
\(930\) 0 0
\(931\) −7.09421e9 2.06064e10i −0.288124 0.836908i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.10989e9 + 8.85059e9i −0.204442 + 0.354105i
\(936\) 0 0
\(937\) −3.56802e10 −1.41690 −0.708448 0.705763i \(-0.750604\pi\)
−0.708448 + 0.705763i \(0.750604\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.53266e9 + 6.11875e9i −0.138210 + 0.239386i −0.926819 0.375508i \(-0.877468\pi\)
0.788609 + 0.614895i \(0.210801\pi\)
\(942\) 0 0
\(943\) −1.66936e10 2.89141e10i −0.648273 1.12284i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.83189e9 + 1.01011e10i 0.223144 + 0.386496i 0.955761 0.294145i \(-0.0950347\pi\)
−0.732617 + 0.680641i \(0.761701\pi\)
\(948\) 0 0
\(949\) 9.49423e9 1.64445e10i 0.360602 0.624581i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.29165e10 0.857675 0.428837 0.903382i \(-0.358923\pi\)
0.428837 + 0.903382i \(0.358923\pi\)
\(954\) 0 0
\(955\) 2.42523e10 4.20062e10i 0.901033 1.56063i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.03253e10 + 1.44986e10i 0.744168 + 0.530837i
\(960\) 0 0
\(961\) 1.29703e10 + 2.24653e10i 0.471433 + 0.816545i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.11680e10 0.400064
\(966\) 0 0
\(967\) 2.42924e9 0.0863928 0.0431964 0.999067i \(-0.486246\pi\)
0.0431964 + 0.999067i \(0.486246\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.48392e10 4.30227e10i −0.870703 1.50810i −0.861271 0.508146i \(-0.830331\pi\)
−0.00943237 0.999956i \(-0.503002\pi\)
\(972\) 0 0
\(973\) 1.23142e9 1.27855e10i 0.0428560 0.444962i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.26462e9 1.43147e10i 0.283525 0.491080i −0.688725 0.725022i \(-0.741829\pi\)
0.972250 + 0.233942i \(0.0751627\pi\)
\(978\) 0 0
\(979\) −6.10206e10 −2.07844
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.02453e10 + 1.77454e10i −0.344023 + 0.595864i −0.985176 0.171548i \(-0.945123\pi\)
0.641153 + 0.767413i \(0.278456\pi\)
\(984\) 0 0
\(985\) 1.21721e10 + 2.10827e10i 0.405826 + 0.702911i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.08059e9 + 8.79985e9i 0.167004 + 0.289260i
\(990\) 0 0
\(991\) −1.87248e10 + 3.24322e10i −0.611165 + 1.05857i 0.379879 + 0.925036i \(0.375966\pi\)
−0.991044 + 0.133533i \(0.957368\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.20508e9 −0.264060
\(996\) 0 0
\(997\) −1.57909e9 + 2.73507e9i −0.0504632 + 0.0874049i −0.890154 0.455661i \(-0.849403\pi\)
0.839690 + 0.543065i \(0.182736\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.k.e.109.6 yes 16
3.2 odd 2 inner 252.8.k.e.109.3 yes 16
7.2 even 3 inner 252.8.k.e.37.6 yes 16
21.2 odd 6 inner 252.8.k.e.37.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.k.e.37.3 16 21.2 odd 6 inner
252.8.k.e.37.6 yes 16 7.2 even 3 inner
252.8.k.e.109.3 yes 16 3.2 odd 2 inner
252.8.k.e.109.6 yes 16 1.1 even 1 trivial