Properties

Label 252.8.t.a.17.14
Level $252$
Weight $8$
Character 252.17
Analytic conductor $78.721$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(17,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.17");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.14
Character \(\chi\) \(=\) 252.17
Dual form 252.8.t.a.89.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(148.283 + 256.835i) q^{5} +(-446.098 - 790.278i) q^{7} +(4160.98 + 2402.34i) q^{11} -15004.6i q^{13} +(-8187.77 + 14181.6i) q^{17} +(-11329.0 + 6540.82i) q^{19} +(-11372.4 + 6565.88i) q^{23} +(-4913.48 + 8510.40i) q^{25} +133505. i q^{29} +(-151075. - 87223.4i) q^{31} +(136822. - 231759. i) q^{35} +(-93136.1 - 161316. i) q^{37} -490565. q^{41} +233538. q^{43} +(-244830. - 424058. i) q^{47} +(-425536. + 705083. i) q^{49} +(188584. + 108879. i) q^{53} +1.42491e6i q^{55} +(779780. - 1.35062e6i) q^{59} +(2.26287e6 - 1.30647e6i) q^{61} +(3.85370e6 - 2.22493e6i) q^{65} +(220911. - 382629. i) q^{67} +3.92314e6i q^{71} +(-3.41550e6 - 1.97194e6i) q^{73} +(42312.4 - 4.36001e6i) q^{77} +(-1.22413e6 - 2.12026e6i) q^{79} -7.62261e6 q^{83} -4.85645e6 q^{85} +(-3.82575e6 - 6.62639e6i) q^{89} +(-1.18578e7 + 6.69353e6i) q^{91} +(-3.35982e6 - 1.93979e6i) q^{95} -5.40637e6i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2634 q^{7} - 47862 q^{19} - 360762 q^{25} + 486018 q^{31} - 972270 q^{37} + 298788 q^{43} + 1556886 q^{49} + 4324644 q^{61} - 2969562 q^{67} - 5157378 q^{73} + 7676514 q^{79} - 15214128 q^{85} - 6114678 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 148.283 + 256.835i 0.530515 + 0.918879i 0.999366 + 0.0356018i \(0.0113348\pi\)
−0.468851 + 0.883277i \(0.655332\pi\)
\(6\) 0 0
\(7\) −446.098 790.278i −0.491572 0.870837i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4160.98 + 2402.34i 0.942587 + 0.544203i 0.890770 0.454454i \(-0.150166\pi\)
0.0518164 + 0.998657i \(0.483499\pi\)
\(12\) 0 0
\(13\) 15004.6i 1.89419i −0.320958 0.947093i \(-0.604005\pi\)
0.320958 0.947093i \(-0.395995\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −8187.77 + 14181.6i −0.404198 + 0.700092i −0.994228 0.107290i \(-0.965783\pi\)
0.590029 + 0.807382i \(0.299116\pi\)
\(18\) 0 0
\(19\) −11329.0 + 6540.82i −0.378927 + 0.218773i −0.677351 0.735660i \(-0.736872\pi\)
0.298424 + 0.954433i \(0.403539\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −11372.4 + 6565.88i −0.194897 + 0.112524i −0.594273 0.804263i \(-0.702560\pi\)
0.399376 + 0.916787i \(0.369227\pi\)
\(24\) 0 0
\(25\) −4913.48 + 8510.40i −0.0628926 + 0.108933i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 133505.i 1.01650i 0.861211 + 0.508248i \(0.169707\pi\)
−0.861211 + 0.508248i \(0.830293\pi\)
\(30\) 0 0
\(31\) −151075. 87223.4i −0.910810 0.525856i −0.0301183 0.999546i \(-0.509588\pi\)
−0.880692 + 0.473690i \(0.842922\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 136822. 231759.i 0.539407 0.913688i
\(36\) 0 0
\(37\) −93136.1 161316.i −0.302282 0.523567i 0.674371 0.738393i \(-0.264415\pi\)
−0.976652 + 0.214826i \(0.931082\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −490565. −1.11161 −0.555806 0.831312i \(-0.687590\pi\)
−0.555806 + 0.831312i \(0.687590\pi\)
\(42\) 0 0
\(43\) 233538. 0.447939 0.223969 0.974596i \(-0.428098\pi\)
0.223969 + 0.974596i \(0.428098\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −244830. 424058.i −0.343971 0.595776i 0.641195 0.767378i \(-0.278439\pi\)
−0.985166 + 0.171602i \(0.945106\pi\)
\(48\) 0 0
\(49\) −425536. + 705083.i −0.516713 + 0.856159i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 188584. + 108879.i 0.173996 + 0.100457i 0.584469 0.811416i \(-0.301303\pi\)
−0.410473 + 0.911873i \(0.634636\pi\)
\(54\) 0 0
\(55\) 1.42491e6i 1.15483i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 779780. 1.35062e6i 0.494299 0.856151i −0.505679 0.862722i \(-0.668758\pi\)
0.999978 + 0.00657014i \(0.00209136\pi\)
\(60\) 0 0
\(61\) 2.26287e6 1.30647e6i 1.27645 0.736960i 0.300258 0.953858i \(-0.402927\pi\)
0.976194 + 0.216898i \(0.0695938\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.85370e6 2.22493e6i 1.74053 1.00489i
\(66\) 0 0
\(67\) 220911. 382629.i 0.0897336 0.155423i −0.817665 0.575694i \(-0.804732\pi\)
0.907398 + 0.420271i \(0.138065\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.92314e6i 1.30086i 0.759568 + 0.650428i \(0.225410\pi\)
−0.759568 + 0.650428i \(0.774590\pi\)
\(72\) 0 0
\(73\) −3.41550e6 1.97194e6i −1.02760 0.593285i −0.111304 0.993786i \(-0.535503\pi\)
−0.916296 + 0.400501i \(0.868836\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 42312.4 4.36001e6i 0.0105621 1.08835i
\(78\) 0 0
\(79\) −1.22413e6 2.12026e6i −0.279340 0.483831i 0.691881 0.722012i \(-0.256782\pi\)
−0.971221 + 0.238181i \(0.923449\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.62261e6 −1.46329 −0.731645 0.681686i \(-0.761247\pi\)
−0.731645 + 0.681686i \(0.761247\pi\)
\(84\) 0 0
\(85\) −4.85645e6 −0.857733
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.82575e6 6.62639e6i −0.575243 0.996349i −0.996015 0.0891833i \(-0.971574\pi\)
0.420773 0.907166i \(-0.361759\pi\)
\(90\) 0 0
\(91\) −1.18578e7 + 6.69353e6i −1.64953 + 0.931130i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.35982e6 1.93979e6i −0.402053 0.232125i
\(96\) 0 0
\(97\) 5.40637e6i 0.601457i −0.953710 0.300728i \(-0.902770\pi\)
0.953710 0.300728i \(-0.0972298\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.28145e6 7.41569e6i 0.413491 0.716188i −0.581777 0.813348i \(-0.697643\pi\)
0.995269 + 0.0971600i \(0.0309759\pi\)
\(102\) 0 0
\(103\) −1.10821e7 + 6.39828e6i −0.999294 + 0.576943i −0.908039 0.418885i \(-0.862421\pi\)
−0.0912547 + 0.995828i \(0.529088\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.02378e7 5.91082e6i 0.807913 0.466449i −0.0383174 0.999266i \(-0.512200\pi\)
0.846231 + 0.532817i \(0.178866\pi\)
\(108\) 0 0
\(109\) 6.79395e6 1.17675e7i 0.502492 0.870342i −0.497504 0.867462i \(-0.665750\pi\)
0.999996 0.00288017i \(-0.000916787\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.63304e7i 1.71666i −0.513101 0.858328i \(-0.671503\pi\)
0.513101 0.858328i \(-0.328497\pi\)
\(114\) 0 0
\(115\) −3.37269e6 1.94722e6i −0.206792 0.119391i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.48600e7 + 144211.i 0.808359 + 0.00784484i
\(120\) 0 0
\(121\) 1.79892e6 + 3.11582e6i 0.0923131 + 0.159891i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.02549e7 0.927568
\(126\) 0 0
\(127\) −3.17578e7 −1.37574 −0.687872 0.725832i \(-0.741455\pi\)
−0.687872 + 0.725832i \(0.741455\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.99677e6 1.55829e7i −0.349653 0.605616i 0.636535 0.771248i \(-0.280367\pi\)
−0.986188 + 0.165631i \(0.947034\pi\)
\(132\) 0 0
\(133\) 1.02229e7 + 6.03524e6i 0.376786 + 0.222440i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.31159e7 2.48930e7i −1.43257 0.827094i −0.435253 0.900308i \(-0.643341\pi\)
−0.997316 + 0.0732144i \(0.976674\pi\)
\(138\) 0 0
\(139\) 1.98029e7i 0.625428i −0.949847 0.312714i \(-0.898762\pi\)
0.949847 0.312714i \(-0.101238\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.60462e7 6.24339e7i 1.03082 1.78544i
\(144\) 0 0
\(145\) −3.42888e7 + 1.97967e7i −0.934038 + 0.539267i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.15664e7 + 6.67788e6i −0.286449 + 0.165381i −0.636339 0.771409i \(-0.719552\pi\)
0.349890 + 0.936791i \(0.386219\pi\)
\(150\) 0 0
\(151\) −7.99215e6 + 1.38428e7i −0.188905 + 0.327194i −0.944886 0.327401i \(-0.893827\pi\)
0.755980 + 0.654595i \(0.227161\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.17352e7i 1.11590i
\(156\) 0 0
\(157\) 4.88079e7 + 2.81792e7i 1.00656 + 0.581140i 0.910184 0.414205i \(-0.135940\pi\)
0.0963797 + 0.995345i \(0.469274\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.02621e7 + 6.05836e6i 0.193796 + 0.114410i
\(162\) 0 0
\(163\) −3.51998e7 6.09678e7i −0.636624 1.10267i −0.986169 0.165746i \(-0.946997\pi\)
0.349544 0.936920i \(-0.386336\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.75806e7 0.956685 0.478342 0.878173i \(-0.341238\pi\)
0.478342 + 0.878173i \(0.341238\pi\)
\(168\) 0 0
\(169\) −1.62390e8 −2.58794
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.31540e6 7.47450e6i −0.0633665 0.109754i 0.832602 0.553872i \(-0.186850\pi\)
−0.895968 + 0.444118i \(0.853517\pi\)
\(174\) 0 0
\(175\) 8.91748e6 + 86541.0i 0.125779 + 0.00122064i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.24589e7 4.76077e7i −1.07461 0.620428i −0.145175 0.989406i \(-0.546374\pi\)
−0.929438 + 0.368978i \(0.879708\pi\)
\(180\) 0 0
\(181\) 2.15791e7i 0.270495i −0.990812 0.135247i \(-0.956817\pi\)
0.990812 0.135247i \(-0.0431829\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.76211e7 4.78411e7i 0.320730 0.555521i
\(186\) 0 0
\(187\) −6.81383e7 + 3.93397e7i −0.761984 + 0.439932i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.52177e8 + 8.78597e7i −1.58028 + 0.912374i −0.585460 + 0.810702i \(0.699086\pi\)
−0.994818 + 0.101672i \(0.967581\pi\)
\(192\) 0 0
\(193\) 4.11839e7 7.13325e7i 0.412360 0.714228i −0.582787 0.812625i \(-0.698038\pi\)
0.995147 + 0.0983963i \(0.0313713\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.20671e7i 0.764781i 0.924001 + 0.382391i \(0.124899\pi\)
−0.924001 + 0.382391i \(0.875101\pi\)
\(198\) 0 0
\(199\) 4.00491e7 + 2.31223e7i 0.360252 + 0.207992i 0.669191 0.743090i \(-0.266641\pi\)
−0.308939 + 0.951082i \(0.599974\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.05506e8 5.95566e7i 0.885203 0.499682i
\(204\) 0 0
\(205\) −7.27427e7 1.25994e8i −0.589727 1.02144i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.28532e7 −0.476228
\(210\) 0 0
\(211\) 2.26680e8 1.66121 0.830603 0.556864i \(-0.187996\pi\)
0.830603 + 0.556864i \(0.187996\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.46299e7 + 5.99807e7i 0.237638 + 0.411602i
\(216\) 0 0
\(217\) −1.53626e6 + 1.58302e8i −0.0102060 + 1.05166i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.12790e8 + 1.22854e8i 1.32611 + 0.765627i
\(222\) 0 0
\(223\) 7.95339e7i 0.480270i 0.970740 + 0.240135i \(0.0771917\pi\)
−0.970740 + 0.240135i \(0.922808\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.00255e7 1.03967e8i 0.340601 0.589938i −0.643944 0.765073i \(-0.722703\pi\)
0.984544 + 0.175135i \(0.0560363\pi\)
\(228\) 0 0
\(229\) 6.00167e7 3.46507e7i 0.330254 0.190672i −0.325700 0.945473i \(-0.605600\pi\)
0.655954 + 0.754801i \(0.272267\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.65882e8 1.53507e8i 1.37703 0.795027i 0.385227 0.922822i \(-0.374123\pi\)
0.991801 + 0.127795i \(0.0407899\pi\)
\(234\) 0 0
\(235\) 7.26085e7 1.25762e8i 0.364964 0.632136i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.28399e8i 1.55600i 0.628264 + 0.778000i \(0.283766\pi\)
−0.628264 + 0.778000i \(0.716234\pi\)
\(240\) 0 0
\(241\) 2.98238e8 + 1.72188e8i 1.37247 + 0.792397i 0.991239 0.132083i \(-0.0421665\pi\)
0.381232 + 0.924479i \(0.375500\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.44190e8 4.74000e6i −1.06083 0.0205919i
\(246\) 0 0
\(247\) 9.81424e7 + 1.69988e8i 0.414398 + 0.717758i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.83927e8 −1.53246 −0.766232 0.642564i \(-0.777871\pi\)
−0.766232 + 0.642564i \(0.777871\pi\)
\(252\) 0 0
\(253\) −6.30940e7 −0.244944
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.07212e8 + 1.85696e8i 0.393982 + 0.682397i 0.992971 0.118361i \(-0.0377639\pi\)
−0.598989 + 0.800758i \(0.704431\pi\)
\(258\) 0 0
\(259\) −8.59370e7 + 1.45566e8i −0.307348 + 0.520609i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.73266e8 2.15505e8i −1.26524 0.730488i −0.291158 0.956675i \(-0.594041\pi\)
−0.974084 + 0.226187i \(0.927374\pi\)
\(264\) 0 0
\(265\) 6.45799e7i 0.213175i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.52919e8 + 4.38069e8i −0.792226 + 1.37218i 0.132360 + 0.991202i \(0.457745\pi\)
−0.924586 + 0.380974i \(0.875589\pi\)
\(270\) 0 0
\(271\) 1.45499e8 8.40041e7i 0.444087 0.256394i −0.261242 0.965273i \(-0.584132\pi\)
0.705330 + 0.708879i \(0.250799\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.08898e7 + 2.36077e7i −0.118563 + 0.0684526i
\(276\) 0 0
\(277\) 2.11263e8 3.65917e8i 0.597232 1.03444i −0.395995 0.918253i \(-0.629600\pi\)
0.993228 0.116184i \(-0.0370663\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.51528e8i 1.75170i 0.482580 + 0.875852i \(0.339700\pi\)
−0.482580 + 0.875852i \(0.660300\pi\)
\(282\) 0 0
\(283\) −3.46880e8 2.00271e8i −0.909759 0.525250i −0.0294055 0.999568i \(-0.509361\pi\)
−0.880354 + 0.474318i \(0.842695\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.18840e8 + 3.87683e8i 0.546438 + 0.968033i
\(288\) 0 0
\(289\) 7.10901e7 + 1.23132e8i 0.173247 + 0.300073i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.68434e8 0.855702 0.427851 0.903849i \(-0.359271\pi\)
0.427851 + 0.903849i \(0.359271\pi\)
\(294\) 0 0
\(295\) 4.62514e8 1.04893
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.85184e7 + 1.70639e8i 0.213142 + 0.369172i
\(300\) 0 0
\(301\) −1.04181e8 1.84560e8i −0.220194 0.390082i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.71092e8 + 3.87455e8i 1.35435 + 0.781937i
\(306\) 0 0
\(307\) 2.43861e8i 0.481014i −0.970647 0.240507i \(-0.922686\pi\)
0.970647 0.240507i \(-0.0773137\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.74225e8 + 3.01767e8i −0.328435 + 0.568866i −0.982201 0.187830i \(-0.939855\pi\)
0.653767 + 0.756696i \(0.273188\pi\)
\(312\) 0 0
\(313\) 6.50847e8 3.75767e8i 1.19970 0.692649i 0.239214 0.970967i \(-0.423110\pi\)
0.960489 + 0.278318i \(0.0897769\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.33330e8 + 1.92448e8i −0.587716 + 0.339318i −0.764194 0.644987i \(-0.776863\pi\)
0.176478 + 0.984305i \(0.443530\pi\)
\(318\) 0 0
\(319\) −3.20726e8 + 5.55514e8i −0.553180 + 0.958136i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.14219e8i 0.353711i
\(324\) 0 0
\(325\) 1.27695e8 + 7.37249e7i 0.206340 + 0.119130i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.25906e8 + 3.82656e8i −0.349737 + 0.592410i
\(330\) 0 0
\(331\) 4.66662e8 + 8.08282e8i 0.707301 + 1.22508i 0.965855 + 0.259084i \(0.0834208\pi\)
−0.258554 + 0.965997i \(0.583246\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.31030e8 0.190420
\(336\) 0 0
\(337\) 2.67531e8 0.380776 0.190388 0.981709i \(-0.439025\pi\)
0.190388 + 0.981709i \(0.439025\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.19081e8 7.25870e8i −0.572345 0.991330i
\(342\) 0 0
\(343\) 7.47043e8 + 2.17548e7i 0.999576 + 0.0291089i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.03799e8 2.33134e8i −0.518815 0.299538i 0.217635 0.976030i \(-0.430166\pi\)
−0.736450 + 0.676492i \(0.763499\pi\)
\(348\) 0 0
\(349\) 5.70673e8i 0.718618i −0.933219 0.359309i \(-0.883012\pi\)
0.933219 0.359309i \(-0.116988\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.80978e8 + 3.13463e8i −0.218985 + 0.379293i −0.954498 0.298218i \(-0.903608\pi\)
0.735513 + 0.677510i \(0.236941\pi\)
\(354\) 0 0
\(355\) −1.00760e9 + 5.81737e8i −1.19533 + 0.690124i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.63579e8 + 2.67647e8i −0.528802 + 0.305304i −0.740528 0.672025i \(-0.765425\pi\)
0.211727 + 0.977329i \(0.432091\pi\)
\(360\) 0 0
\(361\) −3.61371e8 + 6.25913e8i −0.404276 + 0.700227i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.16962e9i 1.25899i
\(366\) 0 0
\(367\) −5.84564e8 3.37498e8i −0.617306 0.356402i 0.158513 0.987357i \(-0.449330\pi\)
−0.775820 + 0.630955i \(0.782663\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.91768e6 1.97605e8i 0.00194970 0.200904i
\(372\) 0 0
\(373\) −1.31502e7 2.27767e7i −0.0131205 0.0227253i 0.859391 0.511320i \(-0.170843\pi\)
−0.872511 + 0.488594i \(0.837510\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00320e9 1.92543
\(378\) 0 0
\(379\) 8.80005e7 0.0830325 0.0415162 0.999138i \(-0.486781\pi\)
0.0415162 + 0.999138i \(0.486781\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.74302e8 3.01899e8i −0.158528 0.274579i 0.775810 0.630966i \(-0.217341\pi\)
−0.934338 + 0.356388i \(0.884008\pi\)
\(384\) 0 0
\(385\) 1.12608e9 6.35651e8i 1.00567 0.567683i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.83947e8 + 2.21672e8i 0.330710 + 0.190936i 0.656156 0.754625i \(-0.272181\pi\)
−0.325446 + 0.945561i \(0.605515\pi\)
\(390\) 0 0
\(391\) 2.15040e8i 0.181928i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.63037e8 6.28798e8i 0.296388 0.513359i
\(396\) 0 0
\(397\) 8.43601e8 4.87053e8i 0.676660 0.390670i −0.121936 0.992538i \(-0.538910\pi\)
0.798595 + 0.601868i \(0.205577\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.53739e8 2.61967e8i 0.351400 0.202881i −0.313902 0.949455i \(-0.601636\pi\)
0.665302 + 0.746575i \(0.268303\pi\)
\(402\) 0 0
\(403\) −1.30875e9 + 2.26683e9i −0.996070 + 1.72524i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.94979e8i 0.658010i
\(408\) 0 0
\(409\) −6.22353e8 3.59316e8i −0.449785 0.259684i 0.257954 0.966157i \(-0.416952\pi\)
−0.707740 + 0.706473i \(0.750285\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.41522e9 1.37342e7i −0.988552 0.00959355i
\(414\) 0 0
\(415\) −1.13031e9 1.95775e9i −0.776297 1.34459i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.52574e8 −0.499804 −0.249902 0.968271i \(-0.580398\pi\)
−0.249902 + 0.968271i \(0.580398\pi\)
\(420\) 0 0
\(421\) −2.00300e8 −0.130826 −0.0654131 0.997858i \(-0.520837\pi\)
−0.0654131 + 0.997858i \(0.520837\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8.04610e7 1.39362e8i −0.0508422 0.0880612i
\(426\) 0 0
\(427\) −2.04193e9 1.20548e9i −1.26924 0.749312i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.17582e8 6.78858e7i −0.0707407 0.0408422i 0.464212 0.885724i \(-0.346337\pi\)
−0.534953 + 0.844882i \(0.679671\pi\)
\(432\) 0 0
\(433\) 1.37105e9i 0.811606i 0.913961 + 0.405803i \(0.133008\pi\)
−0.913961 + 0.405803i \(0.866992\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.58925e7 1.48770e8i 0.0492346 0.0852768i
\(438\) 0 0
\(439\) −2.44096e9 + 1.40929e9i −1.37700 + 0.795012i −0.991798 0.127819i \(-0.959202\pi\)
−0.385204 + 0.922831i \(0.625869\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.02780e9 1.17075e9i 1.10819 0.639812i 0.169828 0.985474i \(-0.445679\pi\)
0.938359 + 0.345662i \(0.112346\pi\)
\(444\) 0 0
\(445\) 1.13459e9 1.96517e9i 0.610350 1.05716i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.28435e9i 0.669608i 0.942288 + 0.334804i \(0.108670\pi\)
−0.942288 + 0.334804i \(0.891330\pi\)
\(450\) 0 0
\(451\) −2.04123e9 1.17851e9i −1.04779 0.604942i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.47745e9 2.05295e9i −1.73069 1.02174i
\(456\) 0 0
\(457\) −9.63551e8 1.66892e9i −0.472246 0.817953i 0.527250 0.849710i \(-0.323223\pi\)
−0.999496 + 0.0317569i \(0.989890\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.06415e9 0.981270 0.490635 0.871365i \(-0.336765\pi\)
0.490635 + 0.871365i \(0.336765\pi\)
\(462\) 0 0
\(463\) 2.12484e9 0.994932 0.497466 0.867483i \(-0.334264\pi\)
0.497466 + 0.867483i \(0.334264\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.60319e9 2.77681e9i −0.728412 1.26165i −0.957554 0.288254i \(-0.906925\pi\)
0.229142 0.973393i \(-0.426408\pi\)
\(468\) 0 0
\(469\) −4.00931e8 3.89090e6i −0.179459 0.00174159i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.71749e8 + 5.61039e8i 0.422221 + 0.243770i
\(474\) 0 0
\(475\) 1.28553e8i 0.0550369i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.72905e9 2.99481e9i 0.718842 1.24507i −0.242616 0.970122i \(-0.578006\pi\)
0.961459 0.274949i \(-0.0886611\pi\)
\(480\) 0 0
\(481\) −2.42049e9 + 1.39747e9i −0.991734 + 0.572578i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.38854e9 8.01675e8i 0.552666 0.319082i
\(486\) 0 0
\(487\) −4.45520e8 + 7.71663e8i −0.174790 + 0.302744i −0.940088 0.340931i \(-0.889258\pi\)
0.765299 + 0.643675i \(0.222591\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.37391e9i 0.523807i −0.965094 0.261904i \(-0.915650\pi\)
0.965094 0.261904i \(-0.0843503\pi\)
\(492\) 0 0
\(493\) −1.89333e9 1.09311e9i −0.711641 0.410866i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.10037e9 1.75011e9i 1.13283 0.639465i
\(498\) 0 0
\(499\) 2.75111e9 + 4.76506e9i 0.991188 + 1.71679i 0.610310 + 0.792163i \(0.291045\pi\)
0.380878 + 0.924625i \(0.375622\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.14208e9 −1.45121 −0.725606 0.688110i \(-0.758441\pi\)
−0.725606 + 0.688110i \(0.758441\pi\)
\(504\) 0 0
\(505\) 2.53948e9 0.877454
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.37541e8 7.57844e8i −0.147064 0.254723i 0.783077 0.621925i \(-0.213649\pi\)
−0.930141 + 0.367202i \(0.880316\pi\)
\(510\) 0 0
\(511\) −3.47317e7 + 3.57887e9i −0.0115147 + 1.18651i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.28660e9 1.89752e9i −1.06028 0.612154i
\(516\) 0 0
\(517\) 2.35266e9i 0.748761i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.26369e9 3.92083e9i 0.701270 1.21463i −0.266751 0.963765i \(-0.585950\pi\)
0.968021 0.250869i \(-0.0807165\pi\)
\(522\) 0 0
\(523\) −1.68534e8 + 9.73032e7i −0.0515148 + 0.0297421i −0.525536 0.850771i \(-0.676135\pi\)
0.474021 + 0.880513i \(0.342802\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.47394e9 1.42833e9i 0.736296 0.425101i
\(528\) 0 0
\(529\) −1.61619e9 + 2.79933e9i −0.474677 + 0.822164i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7.36074e9i 2.10560i
\(534\) 0 0
\(535\) 3.03620e9 + 1.75295e9i 0.857221 + 0.494916i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.46450e9 + 1.91156e9i −0.952971 + 0.525807i
\(540\) 0 0
\(541\) −3.07229e9 5.32136e9i −0.834203 1.44488i −0.894678 0.446712i \(-0.852595\pi\)
0.0604749 0.998170i \(-0.480738\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.02972e9 1.06632
\(546\) 0 0
\(547\) −2.19151e9 −0.572517 −0.286258 0.958152i \(-0.592412\pi\)
−0.286258 + 0.958152i \(0.592412\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.73235e8 1.51249e9i −0.222382 0.385178i
\(552\) 0 0
\(553\) −1.12951e9 + 1.91325e9i −0.284022 + 0.481097i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.65472e9 + 9.55351e8i 0.405724 + 0.234245i 0.688951 0.724808i \(-0.258072\pi\)
−0.283227 + 0.959053i \(0.591405\pi\)
\(558\) 0 0
\(559\) 3.50415e9i 0.848480i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.88736e9 + 5.00105e9i −0.681901 + 1.18109i 0.292499 + 0.956266i \(0.405513\pi\)
−0.974400 + 0.224821i \(0.927820\pi\)
\(564\) 0 0
\(565\) 6.76256e9 3.90437e9i 1.57740 0.910712i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.31588e9 + 7.59725e8i −0.299450 + 0.172887i −0.642196 0.766541i \(-0.721976\pi\)
0.342746 + 0.939428i \(0.388643\pi\)
\(570\) 0 0
\(571\) 3.72410e9 6.45034e9i 0.837135 1.44996i −0.0551452 0.998478i \(-0.517562\pi\)
0.892280 0.451482i \(-0.149104\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.29045e8i 0.0283077i
\(576\) 0 0
\(577\) −5.29913e9 3.05945e9i −1.14839 0.663023i −0.199895 0.979817i \(-0.564060\pi\)
−0.948494 + 0.316795i \(0.897393\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.40043e9 + 6.02398e9i 0.719313 + 1.27429i
\(582\) 0 0
\(583\) 5.23130e8 + 9.06088e8i 0.109338 + 0.189378i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.69324e9 1.56992 0.784958 0.619549i \(-0.212685\pi\)
0.784958 + 0.619549i \(0.212685\pi\)
\(588\) 0 0
\(589\) 2.28205e9 0.460174
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.19701e8 + 2.07328e8i 0.0235725 + 0.0408288i 0.877571 0.479447i \(-0.159163\pi\)
−0.853998 + 0.520275i \(0.825829\pi\)
\(594\) 0 0
\(595\) 2.16645e9 + 3.83794e9i 0.421638 + 0.746946i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.80378e9 3.92816e9i −1.29347 0.746785i −0.314202 0.949356i \(-0.601737\pi\)
−0.979268 + 0.202571i \(0.935070\pi\)
\(600\) 0 0
\(601\) 3.92725e9i 0.737951i −0.929439 0.368975i \(-0.879709\pi\)
0.929439 0.368975i \(-0.120291\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.33501e8 + 9.24050e8i −0.0979470 + 0.169649i
\(606\) 0 0
\(607\) −8.90080e9 + 5.13888e9i −1.61536 + 0.932627i −0.627257 + 0.778812i \(0.715823\pi\)
−0.988100 + 0.153815i \(0.950844\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.36283e9 + 3.67358e9i −1.12851 + 0.651546i
\(612\) 0 0
\(613\) −2.34777e9 + 4.06645e9i −0.411665 + 0.713024i −0.995072 0.0991557i \(-0.968386\pi\)
0.583407 + 0.812180i \(0.301719\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.05312e10i 1.80501i 0.430683 + 0.902503i \(0.358273\pi\)
−0.430683 + 0.902503i \(0.641727\pi\)
\(618\) 0 0
\(619\) 7.12145e9 + 4.11157e9i 1.20684 + 0.696772i 0.962069 0.272808i \(-0.0879523\pi\)
0.244776 + 0.969580i \(0.421286\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.53003e9 + 5.97942e9i −0.584884 + 0.990720i
\(624\) 0 0
\(625\) 3.38734e9 + 5.86704e9i 0.554982 + 0.961256i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.05031e9 0.488727
\(630\) 0 0
\(631\) −9.93041e9 −1.57349 −0.786746 0.617277i \(-0.788236\pi\)
−0.786746 + 0.617277i \(0.788236\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.70916e9 8.15650e9i −0.729853 1.26414i
\(636\) 0 0
\(637\) 1.05795e10 + 6.38499e9i 1.62172 + 0.978751i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.59992e9 2.07842e9i −0.539871 0.311695i 0.205156 0.978729i \(-0.434230\pi\)
−0.745027 + 0.667035i \(0.767563\pi\)
\(642\) 0 0
\(643\) 3.36943e9i 0.499826i −0.968268 0.249913i \(-0.919598\pi\)
0.968268 0.249913i \(-0.0804020\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.84561e9 3.19669e9i 0.267901 0.464018i −0.700419 0.713732i \(-0.747003\pi\)
0.968320 + 0.249714i \(0.0803366\pi\)
\(648\) 0 0
\(649\) 6.48930e9 3.74660e9i 0.931840 0.537998i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.77199e9 + 4.48716e9i −1.09229 + 0.630631i −0.934184 0.356792i \(-0.883871\pi\)
−0.158101 + 0.987423i \(0.550537\pi\)
\(654\) 0 0
\(655\) 2.66814e9 4.62136e9i 0.370992 0.642577i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.41379e9i 1.14523i 0.819825 + 0.572615i \(0.194071\pi\)
−0.819825 + 0.572615i \(0.805929\pi\)
\(660\) 0 0
\(661\) 1.10340e10 + 6.37050e9i 1.48604 + 0.857963i 0.999874 0.0159054i \(-0.00506306\pi\)
0.486162 + 0.873869i \(0.338396\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.41655e7 + 3.52053e9i −0.00450518 + 0.464229i
\(666\) 0 0
\(667\) −8.76581e8 1.51828e9i −0.114380 0.198113i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.25543e10 1.60422
\(672\) 0 0
\(673\) 1.25069e10 1.58161 0.790803 0.612070i \(-0.209663\pi\)
0.790803 + 0.612070i \(0.209663\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.32371e9 + 4.02479e9i 0.287821 + 0.498520i 0.973289 0.229582i \(-0.0737360\pi\)
−0.685469 + 0.728102i \(0.740403\pi\)
\(678\) 0 0
\(679\) −4.27253e9 + 2.41177e9i −0.523771 + 0.295660i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.23635e9 + 4.17791e9i 0.869054 + 0.501749i 0.867034 0.498249i \(-0.166024\pi\)
0.00202047 + 0.999998i \(0.499357\pi\)
\(684\) 0 0
\(685\) 1.47649e10i 1.75514i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.63369e9 2.82963e9i 0.190284 0.329581i
\(690\) 0 0
\(691\) −1.03606e10 + 5.98169e9i −1.19457 + 0.689685i −0.959340 0.282254i \(-0.908918\pi\)
−0.235230 + 0.971940i \(0.575584\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.08607e9 2.93644e9i 0.574693 0.331799i
\(696\) 0 0
\(697\) 4.01664e9 6.95702e9i 0.449312 0.778231i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.07994e10i 1.18410i 0.805903 + 0.592048i \(0.201680\pi\)
−0.805903 + 0.592048i \(0.798320\pi\)
\(702\) 0 0
\(703\) 2.11028e9 + 1.21837e9i 0.229085 + 0.132262i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.77041e9 7.54091e7i −0.826944 0.00802520i
\(708\) 0 0
\(709\) −2.62754e9 4.55103e9i −0.276878 0.479566i 0.693730 0.720236i \(-0.255966\pi\)
−0.970607 + 0.240670i \(0.922633\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.29079e9 0.236686
\(714\) 0 0
\(715\) 2.13802e10 2.18747
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.32117e9 + 7.48448e9i 0.433561 + 0.750949i 0.997177 0.0750878i \(-0.0239237\pi\)
−0.563616 + 0.826037i \(0.690590\pi\)
\(720\) 0 0
\(721\) 1.00001e10 + 5.90371e9i 0.993648 + 0.586613i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.13618e9 6.55977e8i −0.110730 0.0639301i
\(726\) 0 0
\(727\) 1.14277e10i 1.10304i 0.834163 + 0.551518i \(0.185951\pi\)
−0.834163 + 0.551518i \(0.814049\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.91216e9 + 3.31196e9i −0.181056 + 0.313598i
\(732\) 0 0
\(733\) −1.48014e10 + 8.54561e9i −1.38816 + 0.801455i −0.993108 0.117203i \(-0.962607\pi\)
−0.395053 + 0.918658i \(0.629274\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.83841e9 1.06141e9i 0.169163 0.0976666i
\(738\) 0 0
\(739\) 4.82373e8 8.35495e8i 0.0439671 0.0761533i −0.843204 0.537593i \(-0.819334\pi\)
0.887171 + 0.461440i \(0.152667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.20799e10i 1.08045i 0.841522 + 0.540223i \(0.181660\pi\)
−0.841522 + 0.540223i \(0.818340\pi\)
\(744\) 0 0
\(745\) −3.43022e9 1.98044e9i −0.303931 0.175475i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.23827e9 5.45393e9i −0.803349 0.474267i
\(750\) 0 0
\(751\) 5.45370e8 + 9.44609e8i 0.0469842 + 0.0813790i 0.888561 0.458758i \(-0.151706\pi\)
−0.841577 + 0.540137i \(0.818372\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.74042e9 −0.400869
\(756\) 0 0
\(757\) 6.24346e9 0.523106 0.261553 0.965189i \(-0.415765\pi\)
0.261553 + 0.965189i \(0.415765\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.59752e8 1.14272e9i −0.0542668 0.0939929i 0.837616 0.546260i \(-0.183949\pi\)
−0.891883 + 0.452267i \(0.850615\pi\)
\(762\) 0 0
\(763\) −1.23303e10 1.19662e8i −1.00494 0.00975256i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.02655e10 1.17003e10i −1.62171 0.936295i
\(768\) 0 0
\(769\) 6.37720e9i 0.505694i −0.967506 0.252847i \(-0.918633\pi\)
0.967506 0.252847i \(-0.0813670\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.07507e10 1.86208e10i 0.837164 1.45001i −0.0550928 0.998481i \(-0.517545\pi\)
0.892257 0.451529i \(-0.149121\pi\)
\(774\) 0 0
\(775\) 1.48461e9 8.57141e8i 0.114566 0.0661449i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.55763e9 3.20870e9i 0.421220 0.243191i
\(780\) 0 0
\(781\) −9.42472e9 + 1.63241e10i −0.707929 + 1.22617i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.67141e10i 1.23321i
\(786\) 0 0
\(787\) −1.14934e10 6.63569e9i −0.840495 0.485260i 0.0169373 0.999857i \(-0.494608\pi\)
−0.857433 + 0.514596i \(0.827942\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.08084e10 + 1.17460e10i −1.49493 + 0.843861i
\(792\) 0 0
\(793\) −1.96030e10 3.39534e10i −1.39594 2.41784i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.43558e10 1.00444 0.502218 0.864741i \(-0.332517\pi\)
0.502218 + 0.864741i \(0.332517\pi\)
\(798\) 0 0
\(799\) 8.01846e9 0.556131
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.47455e9 1.64104e10i −0.645735 1.11845i
\(804\) 0 0
\(805\) −3.42964e7 + 3.53402e9i −0.00231720 + 0.238772i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.18343e10 + 6.83256e9i 0.785822 + 0.453695i 0.838490 0.544917i \(-0.183439\pi\)
−0.0526675 + 0.998612i \(0.516772\pi\)
\(810\) 0 0
\(811\) 9.51125e9i 0.626130i −0.949732 0.313065i \(-0.898644\pi\)
0.949732 0.313065i \(-0.101356\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.04391e10 1.80810e10i 0.675478 1.16996i
\(816\) 0 0
\(817\) −2.64576e9 + 1.52753e9i −0.169736 + 0.0979971i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.74213e9 3.89257e9i 0.425203 0.245491i −0.272098 0.962270i \(-0.587717\pi\)
0.697301 + 0.716779i \(0.254384\pi\)
\(822\) 0 0
\(823\) −3.36811e9 + 5.83374e9i −0.210614 + 0.364794i −0.951907 0.306388i \(-0.900880\pi\)
0.741293 + 0.671182i \(0.234213\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.20211e10i 1.35385i 0.736054 + 0.676923i \(0.236687\pi\)
−0.736054 + 0.676923i \(0.763313\pi\)
\(828\) 0 0
\(829\) −1.93019e10 1.11439e10i −1.17668 0.679357i −0.221436 0.975175i \(-0.571074\pi\)
−0.955244 + 0.295818i \(0.904408\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.51505e9 1.18079e10i −0.390535 0.707805i
\(834\) 0 0
\(835\) 8.53826e9 + 1.47887e10i 0.507536 + 0.879078i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.95746e9 0.406709 0.203354 0.979105i \(-0.434816\pi\)
0.203354 + 0.979105i \(0.434816\pi\)
\(840\) 0 0
\(841\) −5.73827e8 −0.0332656
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.40797e10 4.17072e10i −1.37294 2.37801i
\(846\) 0 0
\(847\) 1.65987e9 2.81161e9i 0.0938604 0.158988i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.11837e9 + 1.22304e9i 0.117828 + 0.0680280i
\(852\) 0 0
\(853\) 7.56137e9i 0.417137i 0.978008 + 0.208569i \(0.0668804\pi\)
−0.978008 + 0.208569i \(0.933120\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.21090e9 + 1.07576e10i −0.337071 + 0.583824i −0.983880 0.178828i \(-0.942770\pi\)
0.646809 + 0.762652i \(0.276103\pi\)
\(858\) 0 0
\(859\) −1.36107e10 + 7.85815e9i −0.732664 + 0.423004i −0.819396 0.573228i \(-0.805691\pi\)
0.0867322 + 0.996232i \(0.472358\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.60910e10 1.50637e10i 1.38183 0.797798i 0.389451 0.921047i \(-0.372665\pi\)
0.992376 + 0.123249i \(0.0393313\pi\)
\(864\) 0 0
\(865\) 1.27981e9 2.21669e9i 0.0672338 0.116452i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.17631e10i 0.608070i
\(870\) 0 0
\(871\) −5.74119e9 3.31468e9i −0.294401 0.169972i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9.03570e9 1.60070e10i −0.455967 0.807761i
\(876\) 0 0
\(877\) 1.44954e10 + 2.51068e10i 0.725659 + 1.25688i 0.958702 + 0.284412i \(0.0917985\pi\)
−0.233043 + 0.972467i \(0.574868\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.49222e10 1.22792 0.613960 0.789337i \(-0.289576\pi\)
0.613960 + 0.789337i \(0.289576\pi\)
\(882\) 0 0
\(883\) 2.17555e10 1.06343 0.531713 0.846925i \(-0.321549\pi\)
0.531713 + 0.846925i \(0.321549\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.21111e9 9.02590e9i −0.250725 0.434268i 0.713001 0.701163i \(-0.247336\pi\)
−0.963726 + 0.266895i \(0.914002\pi\)
\(888\) 0 0
\(889\) 1.41671e10 + 2.50975e10i 0.676278 + 1.19805i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.54738e9 + 3.20278e9i 0.260680 + 0.150504i
\(894\) 0 0
\(895\) 2.82377e10i 1.31659i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.16448e10 2.01694e10i 0.534531 0.925835i
\(900\) 0 0
\(901\) −3.08817e9 + 1.78295e9i −0.140658 + 0.0812089i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.54227e9 3.19983e9i 0.248552 0.143502i
\(906\) 0 0
\(907\) −1.23802e10 + 2.14431e10i −0.550937 + 0.954251i 0.447270 + 0.894399i \(0.352396\pi\)
−0.998207 + 0.0598523i \(0.980937\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.88957e10i 0.828034i −0.910269 0.414017i \(-0.864125\pi\)
0.910269 0.414017i \(-0.135875\pi\)
\(912\) 0 0
\(913\) −3.17175e10 1.83121e10i −1.37928 0.796326i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.30135e9 + 1.40614e10i −0.355513 + 0.602195i
\(918\) 0 0
\(919\) −8.39687e9 1.45438e10i −0.356873 0.618122i 0.630564 0.776137i \(-0.282824\pi\)
−0.987437 + 0.158016i \(0.949490\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.88651e10 2.46406
\(924\) 0 0
\(925\) 1.83049e9 0.0760451
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.27996e10 3.94901e10i −0.932980 1.61597i −0.778198 0.628019i \(-0.783866\pi\)
−0.154782 0.987949i \(-0.549468\pi\)
\(930\) 0 0
\(931\) 2.09082e8 1.07713e10i 0.00849168 0.437464i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.02076e10 1.16668e10i −0.808488 0.466781i
\(936\) 0 0
\(937\) 3.94197e10i 1.56540i −0.622401 0.782699i \(-0.713843\pi\)
0.622401 0.782699i \(-0.286157\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.42415e10 + 2.46670e10i −0.557175 + 0.965056i 0.440556 + 0.897725i \(0.354781\pi\)
−0.997731 + 0.0673303i \(0.978552\pi\)
\(942\) 0 0
\(943\) 5.57892e9 3.22099e9i 0.216650 0.125083i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.82461e9 + 5.67224e9i −0.375916 + 0.217035i −0.676040 0.736865i \(-0.736305\pi\)
0.300124 + 0.953900i \(0.402972\pi\)
\(948\) 0 0
\(949\) −2.95882e10 + 5.12482e10i −1.12379 + 1.94647i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.80193e10i 0.674394i −0.941434 0.337197i \(-0.890521\pi\)
0.941434 0.337197i \(-0.109479\pi\)
\(954\) 0 0
\(955\) −4.51308e10 2.60563e10i −1.67672 0.968056i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.38439e8 + 4.51783e10i −0.0160526 + 1.65411i
\(960\) 0 0
\(961\) 1.45954e9 + 2.52800e9i 0.0530498 + 0.0918850i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.44275e10 0.875053
\(966\) 0 0
\(967\) 1.31545e10 0.467822 0.233911 0.972258i \(-0.424848\pi\)
0.233911 + 0.972258i \(0.424848\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.50229e10 2.60204e10i −0.526607 0.912110i −0.999519 0.0310006i \(-0.990131\pi\)
0.472912 0.881109i \(-0.343203\pi\)
\(972\) 0 0
\(973\) −1.56498e10 + 8.83404e9i −0.544645 + 0.307443i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.03800e10 1.75399e10i −1.04221 0.601722i −0.121754 0.992560i \(-0.538852\pi\)
−0.920459 + 0.390838i \(0.872185\pi\)
\(978\) 0 0
\(979\) 3.67630e10i 1.25219i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.59535e9 6.22732e9i 0.120727 0.209105i −0.799328 0.600895i \(-0.794811\pi\)
0.920054 + 0.391790i \(0.128144\pi\)
\(984\) 0 0
\(985\) −2.10777e10 + 1.21692e10i −0.702742 + 0.405728i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.65590e9 + 1.53339e9i −0.0873022 + 0.0504039i
\(990\) 0 0
\(991\) 6.35818e9 1.10127e10i 0.207527 0.359448i −0.743408 0.668839i \(-0.766792\pi\)
0.950935 + 0.309391i \(0.100125\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.37146e10i 0.441371i
\(996\) 0 0
\(997\) 1.11315e10 + 6.42679e9i 0.355731 + 0.205381i 0.667207 0.744873i \(-0.267490\pi\)
−0.311475 + 0.950254i \(0.600823\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.t.a.17.14 yes 36
3.2 odd 2 inner 252.8.t.a.17.5 36
7.5 odd 6 inner 252.8.t.a.89.5 yes 36
21.5 even 6 inner 252.8.t.a.89.14 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.t.a.17.5 36 3.2 odd 2 inner
252.8.t.a.17.14 yes 36 1.1 even 1 trivial
252.8.t.a.89.5 yes 36 7.5 odd 6 inner
252.8.t.a.89.14 yes 36 21.5 even 6 inner