Properties

Label 252.8.t.a.17.2
Level $252$
Weight $8$
Character 252.17
Analytic conductor $78.721$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(17,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.17");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) \(=\) 252.17
Dual form 252.8.t.a.89.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-219.318 - 379.869i) q^{5} +(-692.530 + 586.468i) q^{7} +(800.099 + 461.937i) q^{11} +953.385i q^{13} +(839.723 - 1454.44i) q^{17} +(-46643.8 + 26929.8i) q^{19} +(17245.2 - 9956.50i) q^{23} +(-57137.9 + 98965.8i) q^{25} +128175. i q^{29} +(-68359.9 - 39467.6i) q^{31} +(374665. + 134448. i) q^{35} +(-5749.72 - 9958.80i) q^{37} -173758. q^{41} +533517. q^{43} +(13529.2 + 23433.3i) q^{47} +(135653. - 812294. i) q^{49} +(-689588. - 398134. i) q^{53} -405244. i q^{55} +(683859. - 1.18448e6i) q^{59} +(1.73937e6 - 1.00423e6i) q^{61} +(362162. - 209094. i) q^{65} +(83680.5 - 144939. i) q^{67} +616804. i q^{71} +(-2.89674e6 - 1.67243e6i) q^{73} +(-825004. + 149327. i) q^{77} +(969407. + 1.67906e6i) q^{79} +8.54857e6 q^{83} -736664. q^{85} +(3.46905e6 + 6.00857e6i) q^{89} +(-559130. - 660248. i) q^{91} +(2.04596e7 + 1.18124e7i) q^{95} -6.45974e6i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2634 q^{7} - 47862 q^{19} - 360762 q^{25} + 486018 q^{31} - 972270 q^{37} + 298788 q^{43} + 1556886 q^{49} + 4324644 q^{61} - 2969562 q^{67} - 5157378 q^{73} + 7676514 q^{79} - 15214128 q^{85} - 6114678 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −219.318 379.869i −0.784654 1.35906i −0.929205 0.369564i \(-0.879507\pi\)
0.144551 0.989497i \(-0.453826\pi\)
\(6\) 0 0
\(7\) −692.530 + 586.468i −0.763125 + 0.646251i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 800.099 + 461.937i 0.181246 + 0.104643i 0.587878 0.808950i \(-0.299963\pi\)
−0.406632 + 0.913592i \(0.633297\pi\)
\(12\) 0 0
\(13\) 953.385i 0.120356i 0.998188 + 0.0601779i \(0.0191668\pi\)
−0.998188 + 0.0601779i \(0.980833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 839.723 1454.44i 0.0414538 0.0718001i −0.844554 0.535470i \(-0.820134\pi\)
0.886008 + 0.463670i \(0.153468\pi\)
\(18\) 0 0
\(19\) −46643.8 + 26929.8i −1.56011 + 0.900732i −0.562870 + 0.826545i \(0.690303\pi\)
−0.997244 + 0.0741870i \(0.976364\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 17245.2 9956.50i 0.295542 0.170631i −0.344896 0.938641i \(-0.612086\pi\)
0.640439 + 0.768009i \(0.278753\pi\)
\(24\) 0 0
\(25\) −57137.9 + 98965.8i −0.731365 + 1.26676i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 128175.i 0.975911i 0.872869 + 0.487956i \(0.162257\pi\)
−0.872869 + 0.487956i \(0.837743\pi\)
\(30\) 0 0
\(31\) −68359.9 39467.6i −0.412131 0.237944i 0.279574 0.960124i \(-0.409807\pi\)
−0.691705 + 0.722180i \(0.743140\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 374665. + 134448.i 1.47708 + 0.530049i
\(36\) 0 0
\(37\) −5749.72 9958.80i −0.0186612 0.0323222i 0.856544 0.516074i \(-0.172607\pi\)
−0.875205 + 0.483752i \(0.839274\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −173758. −0.393732 −0.196866 0.980430i \(-0.563076\pi\)
−0.196866 + 0.980430i \(0.563076\pi\)
\(42\) 0 0
\(43\) 533517. 1.02331 0.511657 0.859190i \(-0.329032\pi\)
0.511657 + 0.859190i \(0.329032\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13529.2 + 23433.3i 0.0190077 + 0.0329223i 0.875373 0.483448i \(-0.160616\pi\)
−0.856365 + 0.516371i \(0.827283\pi\)
\(48\) 0 0
\(49\) 135653. 812294.i 0.164719 0.986341i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −689588. 398134.i −0.636245 0.367336i 0.146922 0.989148i \(-0.453063\pi\)
−0.783166 + 0.621812i \(0.786397\pi\)
\(54\) 0 0
\(55\) 405244.i 0.328433i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 683859. 1.18448e6i 0.433495 0.750836i −0.563676 0.825996i \(-0.690613\pi\)
0.997171 + 0.0751598i \(0.0239467\pi\)
\(60\) 0 0
\(61\) 1.73937e6 1.00423e6i 0.981156 0.566471i 0.0785369 0.996911i \(-0.474975\pi\)
0.902619 + 0.430441i \(0.141642\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 362162. 209094.i 0.163571 0.0944377i
\(66\) 0 0
\(67\) 83680.5 144939.i 0.0339909 0.0588740i −0.848530 0.529148i \(-0.822512\pi\)
0.882520 + 0.470274i \(0.155845\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 616804.i 0.204523i 0.994758 + 0.102262i \(0.0326079\pi\)
−0.994758 + 0.102262i \(0.967392\pi\)
\(72\) 0 0
\(73\) −2.89674e6 1.67243e6i −0.871525 0.503175i −0.00367025 0.999993i \(-0.501168\pi\)
−0.867855 + 0.496818i \(0.834502\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −825004. + 149327.i −0.205939 + 0.0372753i
\(78\) 0 0
\(79\) 969407. + 1.67906e6i 0.221213 + 0.383153i 0.955177 0.296036i \(-0.0956650\pi\)
−0.733963 + 0.679189i \(0.762332\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.54857e6 1.64104 0.820521 0.571616i \(-0.193683\pi\)
0.820521 + 0.571616i \(0.193683\pi\)
\(84\) 0 0
\(85\) −736664. −0.130108
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.46905e6 + 6.00857e6i 0.521610 + 0.903455i 0.999684 + 0.0251353i \(0.00800166\pi\)
−0.478074 + 0.878319i \(0.658665\pi\)
\(90\) 0 0
\(91\) −559130. 660248.i −0.0777800 0.0918464i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.04596e7 + 1.18124e7i 2.44830 + 1.41353i
\(96\) 0 0
\(97\) 6.45974e6i 0.718644i −0.933214 0.359322i \(-0.883008\pi\)
0.933214 0.359322i \(-0.116992\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.19425e6 + 1.41928e7i −0.791378 + 1.37071i 0.133735 + 0.991017i \(0.457303\pi\)
−0.925114 + 0.379690i \(0.876031\pi\)
\(102\) 0 0
\(103\) 3.23869e6 1.86986e6i 0.292038 0.168608i −0.346823 0.937931i \(-0.612739\pi\)
0.638860 + 0.769323i \(0.279406\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.72520e7 9.96042e6i 1.36143 0.786022i 0.371615 0.928387i \(-0.378804\pi\)
0.989814 + 0.142365i \(0.0454708\pi\)
\(108\) 0 0
\(109\) 3.69069e6 6.39247e6i 0.272970 0.472798i −0.696651 0.717410i \(-0.745327\pi\)
0.969621 + 0.244612i \(0.0786606\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.55547e7i 1.01412i −0.861912 0.507058i \(-0.830733\pi\)
0.861912 0.507058i \(-0.169267\pi\)
\(114\) 0 0
\(115\) −7.56433e6 4.36727e6i −0.463797 0.267773i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 271451. + 1.49972e6i 0.0147665 + 0.0815820i
\(120\) 0 0
\(121\) −9.31681e6 1.61372e7i −0.478100 0.828093i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.58570e7 0.726167
\(126\) 0 0
\(127\) 3.94656e7 1.70965 0.854823 0.518920i \(-0.173666\pi\)
0.854823 + 0.518920i \(0.173666\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.56489e6 1.13707e7i −0.255140 0.441915i 0.709794 0.704410i \(-0.248788\pi\)
−0.964933 + 0.262495i \(0.915455\pi\)
\(132\) 0 0
\(133\) 1.65088e7 4.60048e7i 0.608462 1.69560i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.31739e7 + 1.91530e7i 1.10224 + 0.636377i 0.936808 0.349845i \(-0.113766\pi\)
0.165429 + 0.986222i \(0.447099\pi\)
\(138\) 0 0
\(139\) 2.49090e7i 0.786691i −0.919391 0.393345i \(-0.871318\pi\)
0.919391 0.393345i \(-0.128682\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −440404. + 762803.i −0.0125943 + 0.0218140i
\(144\) 0 0
\(145\) 4.86897e7 2.81110e7i 1.32632 0.765753i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.26648e7 2.46326e7i 1.05662 0.610039i 0.132123 0.991233i \(-0.457820\pi\)
0.924495 + 0.381194i \(0.124487\pi\)
\(150\) 0 0
\(151\) −2.32405e7 + 4.02538e7i −0.549322 + 0.951453i 0.448999 + 0.893532i \(0.351781\pi\)
−0.998321 + 0.0579211i \(0.981553\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.46237e7i 0.746815i
\(156\) 0 0
\(157\) −8.03468e7 4.63883e7i −1.65699 0.956664i −0.974092 0.226150i \(-0.927386\pi\)
−0.682898 0.730514i \(-0.739281\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.10362e6 + 1.70089e7i −0.115265 + 0.321208i
\(162\) 0 0
\(163\) 2.14996e7 + 3.72383e7i 0.388842 + 0.673493i 0.992294 0.123906i \(-0.0395420\pi\)
−0.603452 + 0.797399i \(0.706209\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.56737e7 1.42344 0.711721 0.702462i \(-0.247916\pi\)
0.711721 + 0.702462i \(0.247916\pi\)
\(168\) 0 0
\(169\) 6.18396e7 0.985514
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.16950e7 + 1.06859e8i 0.905917 + 1.56909i 0.819681 + 0.572820i \(0.194151\pi\)
0.0862361 + 0.996275i \(0.472516\pi\)
\(174\) 0 0
\(175\) −1.84706e7 1.02046e8i −0.260523 1.43934i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.10108e7 + 5.25451e7i 1.18606 + 0.684773i 0.957409 0.288735i \(-0.0932347\pi\)
0.228653 + 0.973508i \(0.426568\pi\)
\(180\) 0 0
\(181\) 6.85865e7i 0.859733i 0.902893 + 0.429866i \(0.141439\pi\)
−0.902893 + 0.429866i \(0.858561\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.52203e6 + 4.36828e6i −0.0292852 + 0.0507235i
\(186\) 0 0
\(187\) 1.34372e6 775798.i 0.0150267 0.00867567i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.83159e7 + 2.78952e7i −0.501734 + 0.289676i −0.729429 0.684056i \(-0.760214\pi\)
0.227695 + 0.973732i \(0.426881\pi\)
\(192\) 0 0
\(193\) −7.61119e7 + 1.31830e8i −0.762082 + 1.31997i 0.179693 + 0.983723i \(0.442490\pi\)
−0.941775 + 0.336243i \(0.890844\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.13704e8i 1.05960i −0.848122 0.529802i \(-0.822266\pi\)
0.848122 0.529802i \(-0.177734\pi\)
\(198\) 0 0
\(199\) −1.67973e8 9.69794e7i −1.51097 0.872356i −0.999918 0.0128038i \(-0.995924\pi\)
−0.511047 0.859553i \(-0.670742\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.51705e7 8.87650e7i −0.630684 0.744742i
\(204\) 0 0
\(205\) 3.81081e7 + 6.60052e7i 0.308944 + 0.535106i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.97595e7 −0.377020
\(210\) 0 0
\(211\) 1.45609e8 1.06709 0.533543 0.845773i \(-0.320860\pi\)
0.533543 + 0.845773i \(0.320860\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.17010e8 2.02667e8i −0.802948 1.39075i
\(216\) 0 0
\(217\) 7.04878e7 1.27584e7i 0.468279 0.0847593i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.38664e6 + 800579.i 0.00864156 + 0.00498921i
\(222\) 0 0
\(223\) 1.07368e8i 0.648350i −0.945997 0.324175i \(-0.894913\pi\)
0.945997 0.324175i \(-0.105087\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.55616e8 + 2.69535e8i −0.883006 + 1.52941i −0.0350247 + 0.999386i \(0.511151\pi\)
−0.847982 + 0.530025i \(0.822182\pi\)
\(228\) 0 0
\(229\) −121331. + 70050.7i −0.000667650 + 0.000385468i −0.500334 0.865833i \(-0.666789\pi\)
0.499666 + 0.866218i \(0.333456\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.37071e8 7.91380e7i 0.709904 0.409863i −0.101121 0.994874i \(-0.532243\pi\)
0.811026 + 0.585011i \(0.198910\pi\)
\(234\) 0 0
\(235\) 5.93439e6 1.02787e7i 0.0298290 0.0516653i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.49554e8i 1.18242i −0.806517 0.591211i \(-0.798650\pi\)
0.806517 0.591211i \(-0.201350\pi\)
\(240\) 0 0
\(241\) 1.58394e8 + 9.14488e7i 0.728918 + 0.420841i 0.818026 0.575181i \(-0.195068\pi\)
−0.0891080 + 0.996022i \(0.528402\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.38317e8 + 1.26620e8i −1.46974 + 0.550074i
\(246\) 0 0
\(247\) −2.56745e7 4.44695e7i −0.108408 0.187769i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.42709e8 −0.569631 −0.284815 0.958582i \(-0.591932\pi\)
−0.284815 + 0.958582i \(0.591932\pi\)
\(252\) 0 0
\(253\) 1.83971e7 0.0714213
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.56486e8 2.71042e8i −0.575055 0.996025i −0.996036 0.0889553i \(-0.971647\pi\)
0.420980 0.907070i \(-0.361686\pi\)
\(258\) 0 0
\(259\) 9.82237e6 + 3.52474e6i 0.0351291 + 0.0126060i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.60111e6 + 3.23380e6i 0.0189858 + 0.0109615i 0.509463 0.860493i \(-0.329844\pi\)
−0.490477 + 0.871454i \(0.663177\pi\)
\(264\) 0 0
\(265\) 3.49271e8i 1.15293i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.11896e8 + 1.93810e8i −0.350496 + 0.607077i −0.986336 0.164744i \(-0.947320\pi\)
0.635840 + 0.771821i \(0.280654\pi\)
\(270\) 0 0
\(271\) −1.78985e8 + 1.03337e8i −0.546291 + 0.315401i −0.747625 0.664121i \(-0.768806\pi\)
0.201333 + 0.979523i \(0.435473\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.14319e7 + 5.27883e7i −0.265115 + 0.153064i
\(276\) 0 0
\(277\) −2.66507e8 + 4.61603e8i −0.753406 + 1.30494i 0.192757 + 0.981247i \(0.438257\pi\)
−0.946163 + 0.323691i \(0.895076\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.69161e8i 0.723668i 0.932242 + 0.361834i \(0.117849\pi\)
−0.932242 + 0.361834i \(0.882151\pi\)
\(282\) 0 0
\(283\) −7.75191e7 4.47556e7i −0.203309 0.117380i 0.394889 0.918729i \(-0.370783\pi\)
−0.598198 + 0.801348i \(0.704116\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.20333e8 1.01903e8i 0.300467 0.254450i
\(288\) 0 0
\(289\) 2.03759e8 + 3.52921e8i 0.496563 + 0.860073i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.51978e8 −0.585230 −0.292615 0.956230i \(-0.594525\pi\)
−0.292615 + 0.956230i \(0.594525\pi\)
\(294\) 0 0
\(295\) −5.99929e8 −1.36058
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.49238e6 + 1.64413e7i 0.0205365 + 0.0355702i
\(300\) 0 0
\(301\) −3.69477e8 + 3.12891e8i −0.780916 + 0.661318i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.62950e8 4.40489e8i −1.53974 0.888967i
\(306\) 0 0
\(307\) 3.89412e8i 0.768112i 0.923310 + 0.384056i \(0.125473\pi\)
−0.923310 + 0.384056i \(0.874527\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.50469e8 7.80236e8i 0.849188 1.47084i −0.0327457 0.999464i \(-0.510425\pi\)
0.881934 0.471373i \(-0.156242\pi\)
\(312\) 0 0
\(313\) −2.22284e8 + 1.28336e8i −0.409735 + 0.236560i −0.690676 0.723165i \(-0.742687\pi\)
0.280941 + 0.959725i \(0.409353\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.85342e8 + 5.11153e8i −1.56100 + 0.901246i −0.563847 + 0.825879i \(0.690679\pi\)
−0.997156 + 0.0753667i \(0.975987\pi\)
\(318\) 0 0
\(319\) −5.92088e7 + 1.02553e8i −0.102122 + 0.176880i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.04543e7i 0.149355i
\(324\) 0 0
\(325\) −9.43525e7 5.44744e7i −0.152462 0.0880240i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.31123e7 8.29380e6i −0.0357814 0.0128401i
\(330\) 0 0
\(331\) −3.66905e6 6.35498e6i −0.00556103 0.00963199i 0.863231 0.504808i \(-0.168437\pi\)
−0.868793 + 0.495176i \(0.835103\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.34104e7 −0.106684
\(336\) 0 0
\(337\) 7.95420e8 1.13212 0.566059 0.824365i \(-0.308467\pi\)
0.566059 + 0.824365i \(0.308467\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.64631e7 6.31560e7i −0.0497982 0.0862530i
\(342\) 0 0
\(343\) 3.82441e8 + 6.42094e8i 0.511723 + 0.859151i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.53338e8 4.34940e8i −0.967914 0.558825i −0.0693141 0.997595i \(-0.522081\pi\)
−0.898600 + 0.438770i \(0.855414\pi\)
\(348\) 0 0
\(349\) 1.33914e9i 1.68631i −0.537674 0.843153i \(-0.680697\pi\)
0.537674 0.843153i \(-0.319303\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.65300e8 4.59513e8i 0.321016 0.556015i −0.659682 0.751545i \(-0.729309\pi\)
0.980698 + 0.195529i \(0.0626425\pi\)
\(354\) 0 0
\(355\) 2.34305e8 1.35276e8i 0.277960 0.160480i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.64282e8 2.10318e8i 0.415535 0.239909i −0.277630 0.960688i \(-0.589549\pi\)
0.693165 + 0.720779i \(0.256216\pi\)
\(360\) 0 0
\(361\) 1.00349e9 1.73810e9i 1.12264 1.94447i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.46718e9i 1.57927i
\(366\) 0 0
\(367\) 7.81478e8 + 4.51186e8i 0.825250 + 0.476458i 0.852223 0.523178i \(-0.175254\pi\)
−0.0269737 + 0.999636i \(0.508587\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.11053e8 1.28702e8i 0.722925 0.130851i
\(372\) 0 0
\(373\) −1.90564e8 3.30066e8i −0.190134 0.329322i 0.755160 0.655540i \(-0.227559\pi\)
−0.945295 + 0.326218i \(0.894226\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.22200e8 −0.117456
\(378\) 0 0
\(379\) −5.83269e8 −0.550341 −0.275170 0.961395i \(-0.588734\pi\)
−0.275170 + 0.961395i \(0.588734\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.48081e8 + 2.56484e8i 0.134680 + 0.233273i 0.925475 0.378808i \(-0.123666\pi\)
−0.790795 + 0.612081i \(0.790333\pi\)
\(384\) 0 0
\(385\) 2.37663e8 + 2.80644e8i 0.212250 + 0.250636i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.44771e8 8.35836e7i −0.124698 0.0719941i 0.436354 0.899775i \(-0.356270\pi\)
−0.561051 + 0.827781i \(0.689603\pi\)
\(390\) 0 0
\(391\) 3.34428e7i 0.0282933i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.25216e8 7.36495e8i 0.347152 0.601285i
\(396\) 0 0
\(397\) −1.34379e9 + 7.75840e8i −1.07787 + 0.622308i −0.930321 0.366747i \(-0.880471\pi\)
−0.147548 + 0.989055i \(0.547138\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.08899e8 1.78343e8i 0.239228 0.138118i −0.375594 0.926784i \(-0.622561\pi\)
0.614822 + 0.788666i \(0.289228\pi\)
\(402\) 0 0
\(403\) 3.76278e7 6.51733e7i 0.0286379 0.0496023i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.06240e7i 0.00781104i
\(408\) 0 0
\(409\) 2.13271e9 + 1.23132e9i 1.54134 + 0.889895i 0.998754 + 0.0498965i \(0.0158891\pi\)
0.542589 + 0.839998i \(0.317444\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.21066e8 + 1.22135e9i 0.154418 + 0.853129i
\(414\) 0 0
\(415\) −1.87485e9 3.24734e9i −1.28765 2.23028i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.47671e9 1.64485 0.822425 0.568874i \(-0.192621\pi\)
0.822425 + 0.568874i \(0.192621\pi\)
\(420\) 0 0
\(421\) −2.27835e9 −1.48810 −0.744052 0.668122i \(-0.767098\pi\)
−0.744052 + 0.668122i \(0.767098\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.59600e7 + 1.66208e8i 0.0606358 + 0.105024i
\(426\) 0 0
\(427\) −6.15620e8 + 1.71554e9i −0.382662 + 1.06636i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.87647e9 + 1.08338e9i 1.12894 + 0.651795i 0.943669 0.330892i \(-0.107350\pi\)
0.185273 + 0.982687i \(0.440683\pi\)
\(432\) 0 0
\(433\) 3.62409e8i 0.214531i 0.994230 + 0.107266i \(0.0342095\pi\)
−0.994230 + 0.107266i \(0.965790\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.36253e8 + 9.28818e8i −0.307387 + 0.532409i
\(438\) 0 0
\(439\) 9.72933e7 5.61723e7i 0.0548854 0.0316881i −0.472306 0.881435i \(-0.656578\pi\)
0.527192 + 0.849746i \(0.323245\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.36348e9 1.36455e9i 1.29163 0.745724i 0.312688 0.949856i \(-0.398771\pi\)
0.978943 + 0.204132i \(0.0654373\pi\)
\(444\) 0 0
\(445\) 1.52165e9 2.63557e9i 0.818567 1.41780i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.13737e9i 1.11434i 0.830398 + 0.557170i \(0.188113\pi\)
−0.830398 + 0.557170i \(0.811887\pi\)
\(450\) 0 0
\(451\) −1.39023e8 8.02652e7i −0.0713625 0.0412012i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.28181e8 + 3.57200e8i −0.0637945 + 0.177776i
\(456\) 0 0
\(457\) 1.35919e9 + 2.35419e9i 0.666153 + 1.15381i 0.978971 + 0.203997i \(0.0653934\pi\)
−0.312819 + 0.949813i \(0.601273\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.13481e9 1.01486 0.507430 0.861693i \(-0.330596\pi\)
0.507430 + 0.861693i \(0.330596\pi\)
\(462\) 0 0
\(463\) 2.18177e8 0.102159 0.0510794 0.998695i \(-0.483734\pi\)
0.0510794 + 0.998695i \(0.483734\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.26844e7 5.66110e7i −0.0148502 0.0257212i 0.858505 0.512805i \(-0.171394\pi\)
−0.873355 + 0.487084i \(0.838060\pi\)
\(468\) 0 0
\(469\) 2.70508e7 + 1.49451e8i 0.0121081 + 0.0668948i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.26867e8 + 2.46452e8i 0.185472 + 0.107082i
\(474\) 0 0
\(475\) 6.15485e9i 2.63506i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.16962e9 3.75790e9i 0.902008 1.56232i 0.0771231 0.997022i \(-0.475427\pi\)
0.824884 0.565301i \(-0.191240\pi\)
\(480\) 0 0
\(481\) 9.49458e6 5.48170e6i 0.00389016 0.00224599i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.45385e9 + 1.41673e9i −0.976681 + 0.563887i
\(486\) 0 0
\(487\) 6.47502e8 1.12151e9i 0.254033 0.439997i −0.710600 0.703597i \(-0.751576\pi\)
0.964632 + 0.263599i \(0.0849096\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.50530e9i 0.955158i 0.878589 + 0.477579i \(0.158486\pi\)
−0.878589 + 0.477579i \(0.841514\pi\)
\(492\) 0 0
\(493\) 1.86423e8 + 1.07631e8i 0.0700705 + 0.0404552i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.61736e8 4.27155e8i −0.132174 0.156077i
\(498\) 0 0
\(499\) −2.17412e9 3.76569e9i −0.783308 1.35673i −0.930005 0.367548i \(-0.880198\pi\)
0.146697 0.989181i \(-0.453136\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.66394e9 1.28369 0.641845 0.766834i \(-0.278169\pi\)
0.641845 + 0.766834i \(0.278169\pi\)
\(504\) 0 0
\(505\) 7.18857e9 2.48383
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.39277e9 + 2.41235e9i 0.468131 + 0.810827i 0.999337 0.0364160i \(-0.0115941\pi\)
−0.531206 + 0.847243i \(0.678261\pi\)
\(510\) 0 0
\(511\) 2.98691e9 5.40636e8i 0.990260 0.179239i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.42060e9 8.20186e8i −0.458297 0.264598i
\(516\) 0 0
\(517\) 2.49986e7i 0.00795607i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.80207e8 1.00495e9i 0.179743 0.311323i −0.762050 0.647518i \(-0.775807\pi\)
0.941792 + 0.336195i \(0.109140\pi\)
\(522\) 0 0
\(523\) 3.66163e9 2.11404e9i 1.11923 0.646186i 0.178023 0.984026i \(-0.443030\pi\)
0.941203 + 0.337841i \(0.109696\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.14807e8 + 6.62837e7i −0.0341688 + 0.0197274i
\(528\) 0 0
\(529\) −1.50415e9 + 2.60526e9i −0.441770 + 0.765168i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.65658e8i 0.0473879i
\(534\) 0 0
\(535\) −7.56731e9 4.36899e9i −2.13650 1.23351i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.83765e8 5.87252e8i 0.133068 0.161534i
\(540\) 0 0
\(541\) 2.95692e9 + 5.12154e9i 0.802877 + 1.39062i 0.917715 + 0.397240i \(0.130032\pi\)
−0.114837 + 0.993384i \(0.536635\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.23774e9 −0.856749
\(546\) 0 0
\(547\) −1.18986e9 −0.310842 −0.155421 0.987848i \(-0.549673\pi\)
−0.155421 + 0.987848i \(0.549673\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.45173e9 5.97857e9i −0.879035 1.52253i
\(552\) 0 0
\(553\) −1.65606e9 5.94275e8i −0.416426 0.149434i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.07356e9 1.77452e9i −0.753614 0.435099i 0.0733842 0.997304i \(-0.476620\pi\)
−0.826998 + 0.562204i \(0.809953\pi\)
\(558\) 0 0
\(559\) 5.08648e8i 0.123162i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.42466e8 + 5.93169e8i −0.0808795 + 0.140087i −0.903628 0.428318i \(-0.859106\pi\)
0.822748 + 0.568406i \(0.192440\pi\)
\(564\) 0 0
\(565\) −5.90876e9 + 3.41142e9i −1.37825 + 0.795731i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.58143e9 2.64509e9i 1.04258 0.601932i 0.122015 0.992528i \(-0.461064\pi\)
0.920562 + 0.390596i \(0.127731\pi\)
\(570\) 0 0
\(571\) −3.61867e9 + 6.26772e9i −0.813435 + 1.40891i 0.0970118 + 0.995283i \(0.469072\pi\)
−0.910446 + 0.413627i \(0.864262\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.27557e9i 0.499176i
\(576\) 0 0
\(577\) 9.44590e8 + 5.45359e8i 0.204705 + 0.118186i 0.598848 0.800863i \(-0.295625\pi\)
−0.394143 + 0.919049i \(0.628959\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.92014e9 + 5.01346e9i −1.25232 + 1.06053i
\(582\) 0 0
\(583\) −3.67826e8 6.37093e8i −0.0768780 0.133157i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.59205e9 1.34520 0.672601 0.740006i \(-0.265177\pi\)
0.672601 + 0.740006i \(0.265177\pi\)
\(588\) 0 0
\(589\) 4.25142e9 0.857295
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.20101e8 7.27636e8i −0.0827298 0.143292i 0.821692 0.569932i \(-0.193031\pi\)
−0.904422 + 0.426640i \(0.859697\pi\)
\(594\) 0 0
\(595\) 5.10162e8 4.32030e8i 0.0992884 0.0840823i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.11648e9 + 2.37665e9i 0.782587 + 0.451827i 0.837346 0.546673i \(-0.184106\pi\)
−0.0547595 + 0.998500i \(0.517439\pi\)
\(600\) 0 0
\(601\) 3.92620e9i 0.737754i 0.929478 + 0.368877i \(0.120258\pi\)
−0.929478 + 0.368877i \(0.879742\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.08668e9 + 7.07834e9i −0.750286 + 1.29953i
\(606\) 0 0
\(607\) −3.70044e9 + 2.13645e9i −0.671572 + 0.387732i −0.796672 0.604412i \(-0.793408\pi\)
0.125100 + 0.992144i \(0.460075\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.23410e7 + 1.28986e7i −0.00396239 + 0.00228769i
\(612\) 0 0
\(613\) −3.47209e9 + 6.01384e9i −0.608806 + 1.05448i 0.382631 + 0.923901i \(0.375018\pi\)
−0.991437 + 0.130582i \(0.958315\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.70403e9i 0.806255i 0.915144 + 0.403127i \(0.132077\pi\)
−0.915144 + 0.403127i \(0.867923\pi\)
\(618\) 0 0
\(619\) −5.24157e9 3.02622e9i −0.888269 0.512842i −0.0148931 0.999889i \(-0.504741\pi\)
−0.873376 + 0.487047i \(0.838074\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.92626e9 2.12663e9i −0.981912 0.352358i
\(624\) 0 0
\(625\) 9.86177e8 + 1.70811e9i 0.161575 + 0.279856i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.93127e7 −0.00309432
\(630\) 0 0
\(631\) 6.17668e9 0.978707 0.489353 0.872086i \(-0.337233\pi\)
0.489353 + 0.872086i \(0.337233\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.65551e9 1.49918e10i −1.34148 2.32351i
\(636\) 0 0
\(637\) 7.74429e8 + 1.29330e8i 0.118712 + 0.0198248i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.64927e9 1.52956e9i −0.397304 0.229383i 0.288016 0.957626i \(-0.407004\pi\)
−0.685320 + 0.728242i \(0.740338\pi\)
\(642\) 0 0
\(643\) 1.31512e9i 0.195086i 0.995231 + 0.0975430i \(0.0310983\pi\)
−0.995231 + 0.0975430i \(0.968902\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.03171e9 + 1.78697e9i −0.149758 + 0.259389i −0.931138 0.364667i \(-0.881183\pi\)
0.781380 + 0.624056i \(0.214516\pi\)
\(648\) 0 0
\(649\) 1.09431e9 6.31800e8i 0.157139 0.0907242i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.71504e9 1.56753e9i 0.381575 0.220302i −0.296929 0.954900i \(-0.595962\pi\)
0.678503 + 0.734598i \(0.262629\pi\)
\(654\) 0 0
\(655\) −2.87959e9 + 4.98760e9i −0.400393 + 0.693501i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.30749e9i 0.450194i −0.974336 0.225097i \(-0.927730\pi\)
0.974336 0.225097i \(-0.0722698\pi\)
\(660\) 0 0
\(661\) −1.75333e9 1.01228e9i −0.236134 0.136332i 0.377265 0.926105i \(-0.376865\pi\)
−0.613398 + 0.789774i \(0.710198\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.10965e10 + 3.81850e9i −2.78185 + 0.503520i
\(666\) 0 0
\(667\) 1.27617e9 + 2.21040e9i 0.166521 + 0.288423i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.85556e9 0.237108
\(672\) 0 0
\(673\) 9.94913e9 1.25815 0.629075 0.777344i \(-0.283434\pi\)
0.629075 + 0.777344i \(0.283434\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.99749e9 5.19180e9i −0.371276 0.643069i 0.618486 0.785796i \(-0.287746\pi\)
−0.989762 + 0.142727i \(0.954413\pi\)
\(678\) 0 0
\(679\) 3.78843e9 + 4.47356e9i 0.464424 + 0.548415i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.74010e9 + 2.15935e9i 0.449170 + 0.259328i 0.707480 0.706734i \(-0.249832\pi\)
−0.258310 + 0.966062i \(0.583165\pi\)
\(684\) 0 0
\(685\) 1.68023e10i 1.99734i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.79575e8 6.57443e8i 0.0442110 0.0765757i
\(690\) 0 0
\(691\) −2.23630e9 + 1.29113e9i −0.257844 + 0.148866i −0.623351 0.781942i \(-0.714229\pi\)
0.365507 + 0.930809i \(0.380896\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.46215e9 + 5.46298e9i −1.06916 + 0.617280i
\(696\) 0 0
\(697\) −1.45908e8 + 2.52721e8i −0.0163217 + 0.0282700i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.48518e9i 1.04000i −0.854167 0.519999i \(-0.825932\pi\)
0.854167 0.519999i \(-0.174068\pi\)
\(702\) 0 0
\(703\) 5.36377e8 + 3.09678e8i 0.0582273 + 0.0336176i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.64889e9 1.46346e10i −0.281901 1.55745i
\(708\) 0 0
\(709\) 2.78014e9 + 4.81535e9i 0.292958 + 0.507418i 0.974508 0.224354i \(-0.0720271\pi\)
−0.681550 + 0.731772i \(0.738694\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.57184e9 −0.162403
\(714\) 0 0
\(715\) 3.86354e8 0.0395288
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.44576e9 7.70028e9i −0.446061 0.772601i 0.552064 0.833802i \(-0.313840\pi\)
−0.998125 + 0.0612008i \(0.980507\pi\)
\(720\) 0 0
\(721\) −1.14628e9 + 3.19432e9i −0.113898 + 0.317399i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.26849e10 7.32365e9i −1.23625 0.713747i
\(726\) 0 0
\(727\) 8.49812e9i 0.820262i 0.912027 + 0.410131i \(0.134517\pi\)
−0.912027 + 0.410131i \(0.865483\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.48006e8 7.75970e8i 0.0424203 0.0734741i
\(732\) 0 0
\(733\) −1.31884e10 + 7.61435e9i −1.23688 + 0.714116i −0.968456 0.249184i \(-0.919838\pi\)
−0.268429 + 0.963300i \(0.586504\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.33905e8 7.73103e7i 0.0123215 0.00711379i
\(738\) 0 0
\(739\) −7.65585e9 + 1.32603e10i −0.697811 + 1.20864i 0.271413 + 0.962463i \(0.412509\pi\)
−0.969224 + 0.246181i \(0.920824\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.33226e10i 1.19160i 0.803135 + 0.595798i \(0.203164\pi\)
−0.803135 + 0.595798i \(0.796836\pi\)
\(744\) 0 0
\(745\) −1.87143e10 1.08047e10i −1.65816 0.957339i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.10603e9 + 1.70156e10i −0.530973 + 1.47966i
\(750\) 0 0
\(751\) −1.67547e9 2.90200e9i −0.144343 0.250010i 0.784784 0.619769i \(-0.212774\pi\)
−0.929128 + 0.369759i \(0.879440\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.03882e10 1.72411
\(756\) 0 0
\(757\) 1.76437e10 1.47827 0.739137 0.673555i \(-0.235233\pi\)
0.739137 + 0.673555i \(0.235233\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.13252e9 + 7.15773e9i 0.339914 + 0.588747i 0.984416 0.175855i \(-0.0562689\pi\)
−0.644503 + 0.764602i \(0.722936\pi\)
\(762\) 0 0
\(763\) 1.19306e9 + 6.59145e9i 0.0972362 + 0.537212i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.12926e9 + 6.51981e8i 0.0903674 + 0.0521737i
\(768\) 0 0
\(769\) 3.98977e9i 0.316378i −0.987409 0.158189i \(-0.949434\pi\)
0.987409 0.158189i \(-0.0505655\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.10559e9 1.40393e10i 0.631184 1.09324i −0.356126 0.934438i \(-0.615902\pi\)
0.987310 0.158805i \(-0.0507642\pi\)
\(774\) 0 0
\(775\) 7.81188e9 4.51019e9i 0.602837 0.348048i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.10473e9 4.67927e9i 0.614267 0.354647i
\(780\) 0 0
\(781\) −2.84925e8 + 4.93504e8i −0.0214019 + 0.0370691i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.06951e10i 3.00260i
\(786\) 0 0
\(787\) −2.99721e9 1.73044e9i −0.219183 0.126545i 0.386389 0.922336i \(-0.373722\pi\)
−0.605572 + 0.795791i \(0.707056\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.12235e9 + 1.07721e10i 0.655374 + 0.773897i
\(792\) 0 0
\(793\) 9.57415e8 + 1.65829e9i 0.0681780 + 0.118088i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.85903e10 1.30071 0.650357 0.759629i \(-0.274619\pi\)
0.650357 + 0.759629i \(0.274619\pi\)
\(798\) 0 0
\(799\) 4.54432e7 0.00315177
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.54512e9 2.67623e9i −0.105307 0.182397i
\(804\) 0 0
\(805\) 7.79979e9 1.41177e9i 0.526984 0.0953850i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.14014e10 6.58259e9i −0.757073 0.437096i 0.0711712 0.997464i \(-0.477326\pi\)
−0.828244 + 0.560368i \(0.810660\pi\)
\(810\) 0 0
\(811\) 1.72854e10i 1.13790i −0.822371 0.568952i \(-0.807349\pi\)
0.822371 0.568952i \(-0.192651\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.43046e9 1.63340e10i 0.610213 1.05692i
\(816\) 0 0
\(817\) −2.48853e10 + 1.43675e10i −1.59649 + 0.921732i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.69551e9 3.86565e9i 0.422262 0.243793i −0.273782 0.961792i \(-0.588275\pi\)
0.696045 + 0.717998i \(0.254941\pi\)
\(822\) 0 0
\(823\) −2.54038e9 + 4.40007e9i −0.158855 + 0.275144i −0.934456 0.356079i \(-0.884113\pi\)
0.775601 + 0.631223i \(0.217447\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.75664e10i 1.69477i 0.530980 + 0.847384i \(0.321824\pi\)
−0.530980 + 0.847384i \(0.678176\pi\)
\(828\) 0 0
\(829\) 2.18567e10 + 1.26189e10i 1.33242 + 0.769276i 0.985671 0.168680i \(-0.0539505\pi\)
0.346754 + 0.937956i \(0.387284\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.06752e9 8.79401e8i −0.0639912 0.0527144i
\(834\) 0 0
\(835\) −1.87898e10 3.25448e10i −1.11691 1.93455i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.82396e10 1.06623 0.533113 0.846044i \(-0.321022\pi\)
0.533113 + 0.846044i \(0.321022\pi\)
\(840\) 0 0
\(841\) 8.21054e8 0.0475977
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.35625e10 2.34909e10i −0.773288 1.33937i
\(846\) 0 0
\(847\) 1.59161e10 + 5.71148e9i 0.900006 + 0.322966i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.98310e8 1.14494e8i −0.0110304 0.00636839i
\(852\) 0 0
\(853\) 1.45235e10i 0.801215i −0.916250 0.400608i \(-0.868799\pi\)
0.916250 0.400608i \(-0.131201\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.50173e9 6.06518e9i 0.190042 0.329163i −0.755222 0.655469i \(-0.772471\pi\)
0.945264 + 0.326306i \(0.105804\pi\)
\(858\) 0 0
\(859\) 7.92680e9 4.57654e9i 0.426699 0.246355i −0.271240 0.962512i \(-0.587434\pi\)
0.697939 + 0.716157i \(0.254100\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.28341e9 7.40976e8i 0.0679715 0.0392433i −0.465629 0.884980i \(-0.654172\pi\)
0.533601 + 0.845737i \(0.320839\pi\)
\(864\) 0 0
\(865\) 2.70616e10 4.68721e10i 1.42166 2.46239i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.79122e9i 0.0925934i
\(870\) 0 0
\(871\) 1.38183e8 + 7.97798e7i 0.00708582 + 0.00409100i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.09815e10 + 9.29964e9i −0.554156 + 0.469286i
\(876\) 0 0
\(877\) 8.02873e9 + 1.39062e10i 0.401928 + 0.696160i 0.993959 0.109756i \(-0.0350068\pi\)
−0.592031 + 0.805916i \(0.701674\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.50565e10 1.23454 0.617270 0.786751i \(-0.288239\pi\)
0.617270 + 0.786751i \(0.288239\pi\)
\(882\) 0 0
\(883\) 1.37876e10 0.673946 0.336973 0.941514i \(-0.390597\pi\)
0.336973 + 0.941514i \(0.390597\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.73012e9 1.16569e10i −0.323810 0.560856i 0.657461 0.753489i \(-0.271631\pi\)
−0.981271 + 0.192633i \(0.938297\pi\)
\(888\) 0 0
\(889\) −2.73311e10 + 2.31453e10i −1.30467 + 1.10486i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.26211e9 7.28679e8i −0.0593085 0.0342418i
\(894\) 0 0
\(895\) 4.60963e10i 2.14924i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.05876e9 8.76203e9i 0.232212 0.402203i
\(900\) 0 0
\(901\) −1.15813e9 + 6.68644e8i −0.0527496 + 0.0304550i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.60539e10 1.50422e10i 1.16843 0.674593i
\(906\) 0 0
\(907\) 1.21813e10 2.10986e10i 0.542085 0.938919i −0.456699 0.889621i \(-0.650968\pi\)
0.998784 0.0492980i \(-0.0156984\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.88875e10i 0.827677i 0.910350 + 0.413838i \(0.135812\pi\)
−0.910350 + 0.413838i \(0.864188\pi\)
\(912\) 0 0
\(913\) 6.83970e9 + 3.94890e9i 0.297433 + 0.171723i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.12150e10 + 4.02447e9i 0.480292 + 0.172352i
\(918\) 0 0
\(919\) −1.31764e10 2.28221e10i −0.560004 0.969955i −0.997495 0.0707328i \(-0.977466\pi\)
0.437491 0.899223i \(-0.355867\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.88052e8 −0.0246156
\(924\) 0 0
\(925\) 1.31411e9 0.0545927
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.34465e10 + 2.32900e10i 0.550241 + 0.953046i 0.998257 + 0.0590200i \(0.0187976\pi\)
−0.448016 + 0.894026i \(0.647869\pi\)
\(930\) 0 0
\(931\) 1.55476e10 + 4.15416e10i 0.631449 + 1.68717i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.89404e8 3.40292e8i −0.0235815 0.0136148i
\(936\) 0 0
\(937\) 3.38586e10i 1.34456i −0.740297 0.672280i \(-0.765315\pi\)
0.740297 0.672280i \(-0.234685\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.74142e10 3.01624e10i 0.681304 1.18005i −0.293279 0.956027i \(-0.594746\pi\)
0.974583 0.224026i \(-0.0719202\pi\)
\(942\) 0 0
\(943\) −2.99648e9 + 1.73002e9i −0.116365 + 0.0671831i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.22819e10 + 1.28645e10i −0.852565 + 0.492229i −0.861516 0.507731i \(-0.830484\pi\)
0.00895017 + 0.999960i \(0.497151\pi\)
\(948\) 0 0
\(949\) 1.59447e9 2.76171e9i 0.0605600 0.104893i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.87255e10i 0.700822i 0.936596 + 0.350411i \(0.113958\pi\)
−0.936596 + 0.350411i \(0.886042\pi\)
\(954\) 0 0
\(955\) 2.11931e10 + 1.22358e10i 0.787376 + 0.454592i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.42066e10 + 6.19144e9i −1.25240 + 0.226687i
\(960\) 0 0
\(961\) −1.06409e10 1.84306e10i −0.386765 0.669897i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.67707e10 2.39189
\(966\) 0 0
\(967\) −1.68719e10 −0.600029 −0.300014 0.953935i \(-0.596992\pi\)
−0.300014 + 0.953935i \(0.596992\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.03180e9 + 1.78713e9i 0.0361683 + 0.0626453i 0.883543 0.468350i \(-0.155151\pi\)
−0.847375 + 0.530996i \(0.821818\pi\)
\(972\) 0 0
\(973\) 1.46083e10 + 1.72502e10i 0.508400 + 0.600343i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.64419e10 + 2.10398e10i 1.25017 + 0.721788i 0.971144 0.238495i \(-0.0766539\pi\)
0.279030 + 0.960283i \(0.409987\pi\)
\(978\) 0 0
\(979\) 6.40994e9i 0.218331i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.93963e8 6.82364e8i 0.0132287 0.0229128i −0.859335 0.511413i \(-0.829122\pi\)
0.872564 + 0.488500i \(0.162456\pi\)
\(984\) 0 0
\(985\) −4.31926e10 + 2.49372e10i −1.44007 + 0.831422i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.20059e9 5.31196e9i 0.302433 0.174610i
\(990\) 0 0
\(991\) 4.05407e9 7.02185e9i 0.132322 0.229189i −0.792249 0.610198i \(-0.791090\pi\)
0.924571 + 0.381009i \(0.124423\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.50772e10i 2.73799i
\(996\) 0 0
\(997\) −1.83876e10 1.06161e10i −0.587615 0.339259i 0.176539 0.984294i \(-0.443510\pi\)
−0.764154 + 0.645034i \(0.776843\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.t.a.17.2 36
3.2 odd 2 inner 252.8.t.a.17.17 yes 36
7.5 odd 6 inner 252.8.t.a.89.17 yes 36
21.5 even 6 inner 252.8.t.a.89.2 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.t.a.17.2 36 1.1 even 1 trivial
252.8.t.a.17.17 yes 36 3.2 odd 2 inner
252.8.t.a.89.2 yes 36 21.5 even 6 inner
252.8.t.a.89.17 yes 36 7.5 odd 6 inner