Properties

Label 2520.2.a.x.1.2
Level $2520$
Weight $2$
Character 2520.1
Self dual yes
Analytic conductor $20.122$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2520,2,Mod(1,2520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2520.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1223013094\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 2520.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -1.00000 q^{7} +O(q^{10})\) \(q+1.00000 q^{5} -1.00000 q^{7} -0.627719 q^{11} -1.37228 q^{13} -5.37228 q^{17} +6.74456 q^{19} -6.74456 q^{23} +1.00000 q^{25} -1.37228 q^{29} -8.00000 q^{31} -1.00000 q^{35} -2.00000 q^{37} +4.74456 q^{41} +2.74456 q^{43} -10.1168 q^{47} +1.00000 q^{49} +0.744563 q^{53} -0.627719 q^{55} -8.00000 q^{59} +8.74456 q^{61} -1.37228 q^{65} -4.00000 q^{67} -8.00000 q^{71} -6.00000 q^{73} +0.627719 q^{77} -2.11684 q^{79} -13.4891 q^{83} -5.37228 q^{85} -3.25544 q^{89} +1.37228 q^{91} +6.74456 q^{95} +18.8614 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 2 q^{7} - 7 q^{11} + 3 q^{13} - 5 q^{17} + 2 q^{19} - 2 q^{23} + 2 q^{25} + 3 q^{29} - 16 q^{31} - 2 q^{35} - 4 q^{37} - 2 q^{41} - 6 q^{43} - 3 q^{47} + 2 q^{49} - 10 q^{53} - 7 q^{55} - 16 q^{59} + 6 q^{61} + 3 q^{65} - 8 q^{67} - 16 q^{71} - 12 q^{73} + 7 q^{77} + 13 q^{79} - 4 q^{83} - 5 q^{85} - 18 q^{89} - 3 q^{91} + 2 q^{95} + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.627719 −0.189264 −0.0946322 0.995512i \(-0.530167\pi\)
−0.0946322 + 0.995512i \(0.530167\pi\)
\(12\) 0 0
\(13\) −1.37228 −0.380602 −0.190301 0.981726i \(-0.560946\pi\)
−0.190301 + 0.981726i \(0.560946\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.37228 −1.30297 −0.651485 0.758662i \(-0.725854\pi\)
−0.651485 + 0.758662i \(0.725854\pi\)
\(18\) 0 0
\(19\) 6.74456 1.54731 0.773654 0.633608i \(-0.218427\pi\)
0.773654 + 0.633608i \(0.218427\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.74456 −1.40634 −0.703169 0.711022i \(-0.748232\pi\)
−0.703169 + 0.711022i \(0.748232\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.37228 −0.254826 −0.127413 0.991850i \(-0.540667\pi\)
−0.127413 + 0.991850i \(0.540667\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.74456 0.740976 0.370488 0.928837i \(-0.379190\pi\)
0.370488 + 0.928837i \(0.379190\pi\)
\(42\) 0 0
\(43\) 2.74456 0.418542 0.209271 0.977858i \(-0.432891\pi\)
0.209271 + 0.977858i \(0.432891\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.1168 −1.47569 −0.737847 0.674968i \(-0.764157\pi\)
−0.737847 + 0.674968i \(0.764157\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.744563 0.102274 0.0511368 0.998692i \(-0.483716\pi\)
0.0511368 + 0.998692i \(0.483716\pi\)
\(54\) 0 0
\(55\) −0.627719 −0.0846416
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 8.74456 1.11963 0.559813 0.828619i \(-0.310873\pi\)
0.559813 + 0.828619i \(0.310873\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.37228 −0.170211
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.627719 0.0715352
\(78\) 0 0
\(79\) −2.11684 −0.238164 −0.119082 0.992884i \(-0.537995\pi\)
−0.119082 + 0.992884i \(0.537995\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −13.4891 −1.48062 −0.740312 0.672264i \(-0.765322\pi\)
−0.740312 + 0.672264i \(0.765322\pi\)
\(84\) 0 0
\(85\) −5.37228 −0.582706
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.25544 −0.345076 −0.172538 0.985003i \(-0.555197\pi\)
−0.172538 + 0.985003i \(0.555197\pi\)
\(90\) 0 0
\(91\) 1.37228 0.143854
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.74456 0.691978
\(96\) 0 0
\(97\) 18.8614 1.91509 0.957543 0.288291i \(-0.0930870\pi\)
0.957543 + 0.288291i \(0.0930870\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −11.3723 −1.12054 −0.560272 0.828309i \(-0.689303\pi\)
−0.560272 + 0.828309i \(0.689303\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.74456 0.265327 0.132663 0.991161i \(-0.457647\pi\)
0.132663 + 0.991161i \(0.457647\pi\)
\(108\) 0 0
\(109\) −5.37228 −0.514571 −0.257286 0.966335i \(-0.582828\pi\)
−0.257286 + 0.966335i \(0.582828\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) −6.74456 −0.628934
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.37228 0.492476
\(120\) 0 0
\(121\) −10.6060 −0.964179
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.74456 −0.589275 −0.294638 0.955609i \(-0.595199\pi\)
−0.294638 + 0.955609i \(0.595199\pi\)
\(132\) 0 0
\(133\) −6.74456 −0.584828
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.25544 −0.278131 −0.139065 0.990283i \(-0.544410\pi\)
−0.139065 + 0.990283i \(0.544410\pi\)
\(138\) 0 0
\(139\) 6.74456 0.572066 0.286033 0.958220i \(-0.407663\pi\)
0.286033 + 0.958220i \(0.407663\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.861407 0.0720344
\(144\) 0 0
\(145\) −1.37228 −0.113962
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.48913 0.613533 0.306767 0.951785i \(-0.400753\pi\)
0.306767 + 0.951785i \(0.400753\pi\)
\(150\) 0 0
\(151\) −2.11684 −0.172266 −0.0861332 0.996284i \(-0.527451\pi\)
−0.0861332 + 0.996284i \(0.527451\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 7.48913 0.597697 0.298849 0.954301i \(-0.403397\pi\)
0.298849 + 0.954301i \(0.403397\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.74456 0.531546
\(162\) 0 0
\(163\) −5.25544 −0.411638 −0.205819 0.978590i \(-0.565986\pi\)
−0.205819 + 0.978590i \(0.565986\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.3723 0.880014 0.440007 0.897994i \(-0.354976\pi\)
0.440007 + 0.897994i \(0.354976\pi\)
\(168\) 0 0
\(169\) −11.1168 −0.855142
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.37228 −0.408447 −0.204223 0.978924i \(-0.565467\pi\)
−0.204223 + 0.978924i \(0.565467\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.9783 −1.71748 −0.858738 0.512416i \(-0.828751\pi\)
−0.858738 + 0.512416i \(0.828751\pi\)
\(180\) 0 0
\(181\) −18.2337 −1.35530 −0.677650 0.735385i \(-0.737001\pi\)
−0.677650 + 0.735385i \(0.737001\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 3.37228 0.246606
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.8614 1.79891 0.899454 0.437015i \(-0.143964\pi\)
0.899454 + 0.437015i \(0.143964\pi\)
\(192\) 0 0
\(193\) −4.74456 −0.341521 −0.170761 0.985313i \(-0.554622\pi\)
−0.170761 + 0.985313i \(0.554622\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −26.2337 −1.86907 −0.934536 0.355867i \(-0.884185\pi\)
−0.934536 + 0.355867i \(0.884185\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.37228 0.0963153
\(204\) 0 0
\(205\) 4.74456 0.331375
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.23369 −0.292850
\(210\) 0 0
\(211\) −8.62772 −0.593957 −0.296978 0.954884i \(-0.595979\pi\)
−0.296978 + 0.954884i \(0.595979\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.74456 0.187178
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.37228 0.495913
\(222\) 0 0
\(223\) −11.3723 −0.761544 −0.380772 0.924669i \(-0.624342\pi\)
−0.380772 + 0.924669i \(0.624342\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.86141 0.588152 0.294076 0.955782i \(-0.404988\pi\)
0.294076 + 0.955782i \(0.404988\pi\)
\(228\) 0 0
\(229\) 22.2337 1.46924 0.734622 0.678477i \(-0.237360\pi\)
0.734622 + 0.678477i \(0.237360\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.7446 0.834924 0.417462 0.908694i \(-0.362920\pi\)
0.417462 + 0.908694i \(0.362920\pi\)
\(234\) 0 0
\(235\) −10.1168 −0.659950
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −19.3723 −1.25309 −0.626544 0.779386i \(-0.715531\pi\)
−0.626544 + 0.779386i \(0.715531\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −9.25544 −0.588909
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.74456 0.425713 0.212857 0.977083i \(-0.431723\pi\)
0.212857 + 0.977083i \(0.431723\pi\)
\(252\) 0 0
\(253\) 4.23369 0.266170
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.510875 0.0318675 0.0159337 0.999873i \(-0.494928\pi\)
0.0159337 + 0.999873i \(0.494928\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.2337 0.754362 0.377181 0.926140i \(-0.376894\pi\)
0.377181 + 0.926140i \(0.376894\pi\)
\(264\) 0 0
\(265\) 0.744563 0.0457381
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −13.4891 −0.819406 −0.409703 0.912219i \(-0.634368\pi\)
−0.409703 + 0.912219i \(0.634368\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.627719 −0.0378529
\(276\) 0 0
\(277\) −20.9783 −1.26046 −0.630230 0.776408i \(-0.717040\pi\)
−0.630230 + 0.776408i \(0.717040\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.6060 1.28890 0.644452 0.764645i \(-0.277086\pi\)
0.644452 + 0.764645i \(0.277086\pi\)
\(282\) 0 0
\(283\) −26.1168 −1.55249 −0.776243 0.630434i \(-0.782877\pi\)
−0.776243 + 0.630434i \(0.782877\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.74456 −0.280063
\(288\) 0 0
\(289\) 11.8614 0.697730
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.88316 −0.460539 −0.230269 0.973127i \(-0.573961\pi\)
−0.230269 + 0.973127i \(0.573961\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.25544 0.535256
\(300\) 0 0
\(301\) −2.74456 −0.158194
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.74456 0.500712
\(306\) 0 0
\(307\) 13.8832 0.792354 0.396177 0.918174i \(-0.370337\pi\)
0.396177 + 0.918174i \(0.370337\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.25544 0.0711893 0.0355947 0.999366i \(-0.488667\pi\)
0.0355947 + 0.999366i \(0.488667\pi\)
\(312\) 0 0
\(313\) 20.1168 1.13707 0.568536 0.822659i \(-0.307510\pi\)
0.568536 + 0.822659i \(0.307510\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 0 0
\(319\) 0.861407 0.0482295
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −36.2337 −2.01610
\(324\) 0 0
\(325\) −1.37228 −0.0761205
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.1168 0.557760
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 15.4891 0.843746 0.421873 0.906655i \(-0.361373\pi\)
0.421873 + 0.906655i \(0.361373\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.02175 0.271943
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.2554 0.711589 0.355795 0.934564i \(-0.384210\pi\)
0.355795 + 0.934564i \(0.384210\pi\)
\(348\) 0 0
\(349\) −3.48913 −0.186769 −0.0933843 0.995630i \(-0.529769\pi\)
−0.0933843 + 0.995630i \(0.529769\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −26.8614 −1.42969 −0.714844 0.699284i \(-0.753502\pi\)
−0.714844 + 0.699284i \(0.753502\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 26.4891 1.39416
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −8.86141 −0.462562 −0.231281 0.972887i \(-0.574292\pi\)
−0.231281 + 0.972887i \(0.574292\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.744563 −0.0386558
\(372\) 0 0
\(373\) −19.2554 −0.997009 −0.498504 0.866887i \(-0.666117\pi\)
−0.498504 + 0.866887i \(0.666117\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.88316 0.0969875
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.48913 −0.280481 −0.140241 0.990117i \(-0.544788\pi\)
−0.140241 + 0.990117i \(0.544788\pi\)
\(384\) 0 0
\(385\) 0.627719 0.0319915
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.8614 0.550695 0.275348 0.961345i \(-0.411207\pi\)
0.275348 + 0.961345i \(0.411207\pi\)
\(390\) 0 0
\(391\) 36.2337 1.83242
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.11684 −0.106510
\(396\) 0 0
\(397\) 37.3723 1.87566 0.937831 0.347094i \(-0.112831\pi\)
0.937831 + 0.347094i \(0.112831\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.60597 −0.0801983 −0.0400991 0.999196i \(-0.512767\pi\)
−0.0400991 + 0.999196i \(0.512767\pi\)
\(402\) 0 0
\(403\) 10.9783 0.546866
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.25544 0.0622297
\(408\) 0 0
\(409\) −11.4891 −0.568101 −0.284050 0.958809i \(-0.591678\pi\)
−0.284050 + 0.958809i \(0.591678\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −13.4891 −0.662155
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 37.4891 1.83146 0.915732 0.401790i \(-0.131612\pi\)
0.915732 + 0.401790i \(0.131612\pi\)
\(420\) 0 0
\(421\) 21.6060 1.05301 0.526505 0.850172i \(-0.323502\pi\)
0.526505 + 0.850172i \(0.323502\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.37228 −0.260594
\(426\) 0 0
\(427\) −8.74456 −0.423179
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.6277 −0.608256 −0.304128 0.952631i \(-0.598365\pi\)
−0.304128 + 0.952631i \(0.598365\pi\)
\(432\) 0 0
\(433\) −16.9783 −0.815923 −0.407961 0.912999i \(-0.633760\pi\)
−0.407961 + 0.912999i \(0.633760\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −45.4891 −2.17604
\(438\) 0 0
\(439\) 28.2337 1.34752 0.673760 0.738950i \(-0.264678\pi\)
0.673760 + 0.738950i \(0.264678\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.25544 0.249693 0.124847 0.992176i \(-0.460156\pi\)
0.124847 + 0.992176i \(0.460156\pi\)
\(444\) 0 0
\(445\) −3.25544 −0.154323
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.116844 0.00551421 0.00275710 0.999996i \(-0.499122\pi\)
0.00275710 + 0.999996i \(0.499122\pi\)
\(450\) 0 0
\(451\) −2.97825 −0.140240
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.37228 0.0643335
\(456\) 0 0
\(457\) 16.7446 0.783278 0.391639 0.920119i \(-0.371908\pi\)
0.391639 + 0.920119i \(0.371908\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.7446 0.593573 0.296787 0.954944i \(-0.404085\pi\)
0.296787 + 0.954944i \(0.404085\pi\)
\(462\) 0 0
\(463\) −29.4891 −1.37048 −0.685238 0.728319i \(-0.740302\pi\)
−0.685238 + 0.728319i \(0.740302\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.6060 1.46255 0.731275 0.682083i \(-0.238926\pi\)
0.731275 + 0.682083i \(0.238926\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.72281 −0.0792150
\(474\) 0 0
\(475\) 6.74456 0.309462
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.2337 0.558971 0.279486 0.960150i \(-0.409836\pi\)
0.279486 + 0.960150i \(0.409836\pi\)
\(480\) 0 0
\(481\) 2.74456 0.125141
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.8614 0.856452
\(486\) 0 0
\(487\) −4.23369 −0.191847 −0.0959234 0.995389i \(-0.530580\pi\)
−0.0959234 + 0.995389i \(0.530580\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17.8832 −0.807056 −0.403528 0.914967i \(-0.632216\pi\)
−0.403528 + 0.914967i \(0.632216\pi\)
\(492\) 0 0
\(493\) 7.37228 0.332031
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 3.13859 0.140503 0.0702514 0.997529i \(-0.477620\pi\)
0.0702514 + 0.997529i \(0.477620\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.6277 0.563042 0.281521 0.959555i \(-0.409161\pi\)
0.281521 + 0.959555i \(0.409161\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.97825 −0.220657 −0.110329 0.993895i \(-0.535190\pi\)
−0.110329 + 0.993895i \(0.535190\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11.3723 −0.501123
\(516\) 0 0
\(517\) 6.35053 0.279296
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 32.4674 1.41970 0.709850 0.704353i \(-0.248763\pi\)
0.709850 + 0.704353i \(0.248763\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 42.9783 1.87216
\(528\) 0 0
\(529\) 22.4891 0.977788
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.51087 −0.282017
\(534\) 0 0
\(535\) 2.74456 0.118658
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.627719 −0.0270378
\(540\) 0 0
\(541\) 20.3505 0.874938 0.437469 0.899234i \(-0.355875\pi\)
0.437469 + 0.899234i \(0.355875\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.37228 −0.230123
\(546\) 0 0
\(547\) 14.9783 0.640424 0.320212 0.947346i \(-0.396246\pi\)
0.320212 + 0.947346i \(0.396246\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.25544 −0.394295
\(552\) 0 0
\(553\) 2.11684 0.0900174
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.2337 1.62001 0.810007 0.586421i \(-0.199463\pi\)
0.810007 + 0.586421i \(0.199463\pi\)
\(558\) 0 0
\(559\) −3.76631 −0.159298
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.48913 0.231339 0.115670 0.993288i \(-0.463099\pi\)
0.115670 + 0.993288i \(0.463099\pi\)
\(564\) 0 0
\(565\) −2.00000 −0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.9783 −0.879454 −0.439727 0.898131i \(-0.644925\pi\)
−0.439727 + 0.898131i \(0.644925\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.74456 −0.281268
\(576\) 0 0
\(577\) 17.6060 0.732946 0.366473 0.930429i \(-0.380565\pi\)
0.366473 + 0.930429i \(0.380565\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.4891 0.559623
\(582\) 0 0
\(583\) −0.467376 −0.0193567
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.9783 −0.453121 −0.226560 0.973997i \(-0.572748\pi\)
−0.226560 + 0.973997i \(0.572748\pi\)
\(588\) 0 0
\(589\) −53.9565 −2.22324
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.3723 1.04191 0.520957 0.853583i \(-0.325575\pi\)
0.520957 + 0.853583i \(0.325575\pi\)
\(594\) 0 0
\(595\) 5.37228 0.220242
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.60597 −0.310771 −0.155386 0.987854i \(-0.549662\pi\)
−0.155386 + 0.987854i \(0.549662\pi\)
\(600\) 0 0
\(601\) 39.4891 1.61080 0.805398 0.592735i \(-0.201952\pi\)
0.805398 + 0.592735i \(0.201952\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.6060 −0.431194
\(606\) 0 0
\(607\) −15.6060 −0.633427 −0.316713 0.948521i \(-0.602579\pi\)
−0.316713 + 0.948521i \(0.602579\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.8832 0.561652
\(612\) 0 0
\(613\) −31.4891 −1.27183 −0.635917 0.771758i \(-0.719378\pi\)
−0.635917 + 0.771758i \(0.719378\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −1.25544 −0.0504603 −0.0252301 0.999682i \(-0.508032\pi\)
−0.0252301 + 0.999682i \(0.508032\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.25544 0.130426
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.7446 0.428414
\(630\) 0 0
\(631\) −3.37228 −0.134248 −0.0671242 0.997745i \(-0.521382\pi\)
−0.0671242 + 0.997745i \(0.521382\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) −1.37228 −0.0543718
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 12.6277 0.497989 0.248994 0.968505i \(-0.419900\pi\)
0.248994 + 0.968505i \(0.419900\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.0000 0.629025 0.314512 0.949253i \(-0.398159\pi\)
0.314512 + 0.949253i \(0.398159\pi\)
\(648\) 0 0
\(649\) 5.02175 0.197121
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) −6.74456 −0.263532
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.11684 −0.238278 −0.119139 0.992878i \(-0.538013\pi\)
−0.119139 + 0.992878i \(0.538013\pi\)
\(660\) 0 0
\(661\) 3.25544 0.126622 0.0633109 0.997994i \(-0.479834\pi\)
0.0633109 + 0.997994i \(0.479834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.74456 −0.261543
\(666\) 0 0
\(667\) 9.25544 0.358372
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.48913 −0.211905
\(672\) 0 0
\(673\) −31.7228 −1.22282 −0.611412 0.791312i \(-0.709398\pi\)
−0.611412 + 0.791312i \(0.709398\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.3505 1.39706 0.698532 0.715579i \(-0.253837\pi\)
0.698532 + 0.715579i \(0.253837\pi\)
\(678\) 0 0
\(679\) −18.8614 −0.723834
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −3.25544 −0.124384
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.02175 −0.0389256
\(690\) 0 0
\(691\) 13.4891 0.513151 0.256575 0.966524i \(-0.417406\pi\)
0.256575 + 0.966524i \(0.417406\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.74456 0.255836
\(696\) 0 0
\(697\) −25.4891 −0.965469
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.8614 −1.16562 −0.582810 0.812609i \(-0.698047\pi\)
−0.582810 + 0.812609i \(0.698047\pi\)
\(702\) 0 0
\(703\) −13.4891 −0.508752
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) −33.6060 −1.26210 −0.631049 0.775743i \(-0.717375\pi\)
−0.631049 + 0.775743i \(0.717375\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 53.9565 2.02069
\(714\) 0 0
\(715\) 0.861407 0.0322148
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14.7446 −0.549879 −0.274940 0.961461i \(-0.588658\pi\)
−0.274940 + 0.961461i \(0.588658\pi\)
\(720\) 0 0
\(721\) 11.3723 0.423526
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.37228 −0.0509652
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14.7446 −0.545347
\(732\) 0 0
\(733\) −38.8614 −1.43538 −0.717689 0.696363i \(-0.754800\pi\)
−0.717689 + 0.696363i \(0.754800\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.51087 0.0924893
\(738\) 0 0
\(739\) 19.6060 0.721217 0.360609 0.932717i \(-0.382569\pi\)
0.360609 + 0.932717i \(0.382569\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.4891 1.08185 0.540926 0.841070i \(-0.318074\pi\)
0.540926 + 0.841070i \(0.318074\pi\)
\(744\) 0 0
\(745\) 7.48913 0.274380
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.74456 −0.100284
\(750\) 0 0
\(751\) 48.8614 1.78298 0.891489 0.453042i \(-0.149661\pi\)
0.891489 + 0.453042i \(0.149661\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.11684 −0.0770398
\(756\) 0 0
\(757\) −38.2337 −1.38963 −0.694814 0.719190i \(-0.744513\pi\)
−0.694814 + 0.719190i \(0.744513\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.9783 1.48546 0.742730 0.669591i \(-0.233531\pi\)
0.742730 + 0.669591i \(0.233531\pi\)
\(762\) 0 0
\(763\) 5.37228 0.194490
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.9783 0.396402
\(768\) 0 0
\(769\) −19.4891 −0.702796 −0.351398 0.936226i \(-0.614294\pi\)
−0.351398 + 0.936226i \(0.614294\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.37228 0.0493575 0.0246788 0.999695i \(-0.492144\pi\)
0.0246788 + 0.999695i \(0.492144\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32.0000 1.14652
\(780\) 0 0
\(781\) 5.02175 0.179692
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.48913 0.267298
\(786\) 0 0
\(787\) −13.8832 −0.494881 −0.247441 0.968903i \(-0.579589\pi\)
−0.247441 + 0.968903i \(0.579589\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.3723 −0.757045 −0.378523 0.925592i \(-0.623568\pi\)
−0.378523 + 0.925592i \(0.623568\pi\)
\(798\) 0 0
\(799\) 54.3505 1.92278
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.76631 0.132910
\(804\) 0 0
\(805\) 6.74456 0.237715
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −14.6277 −0.514283 −0.257142 0.966374i \(-0.582781\pi\)
−0.257142 + 0.966374i \(0.582781\pi\)
\(810\) 0 0
\(811\) 1.25544 0.0440844 0.0220422 0.999757i \(-0.492983\pi\)
0.0220422 + 0.999757i \(0.492983\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.25544 −0.184090
\(816\) 0 0
\(817\) 18.5109 0.647614
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.88316 0.275124 0.137562 0.990493i \(-0.456073\pi\)
0.137562 + 0.990493i \(0.456073\pi\)
\(822\) 0 0
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.2554 −0.460937 −0.230468 0.973080i \(-0.574026\pi\)
−0.230468 + 0.973080i \(0.574026\pi\)
\(828\) 0 0
\(829\) 22.2337 0.772208 0.386104 0.922455i \(-0.373821\pi\)
0.386104 + 0.922455i \(0.373821\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.37228 −0.186139
\(834\) 0 0
\(835\) 11.3723 0.393554
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.7446 0.785230 0.392615 0.919703i \(-0.371571\pi\)
0.392615 + 0.919703i \(0.371571\pi\)
\(840\) 0 0
\(841\) −27.1168 −0.935064
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.1168 −0.382431
\(846\) 0 0
\(847\) 10.6060 0.364425
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.4891 0.462401
\(852\) 0 0
\(853\) −16.5109 −0.565322 −0.282661 0.959220i \(-0.591217\pi\)
−0.282661 + 0.959220i \(0.591217\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −24.4674 −0.834816 −0.417408 0.908719i \(-0.637061\pi\)
−0.417408 + 0.908719i \(0.637061\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.51087 −0.0854712 −0.0427356 0.999086i \(-0.513607\pi\)
−0.0427356 + 0.999086i \(0.513607\pi\)
\(864\) 0 0
\(865\) −5.37228 −0.182663
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.32878 0.0450759
\(870\) 0 0
\(871\) 5.48913 0.185992
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −52.9783 −1.78895 −0.894474 0.447120i \(-0.852450\pi\)
−0.894474 + 0.447120i \(0.852450\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.7446 1.23796 0.618978 0.785408i \(-0.287547\pi\)
0.618978 + 0.785408i \(0.287547\pi\)
\(882\) 0 0
\(883\) −33.4891 −1.12700 −0.563499 0.826116i \(-0.690545\pi\)
−0.563499 + 0.826116i \(0.690545\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 58.9783 1.98030 0.990148 0.140025i \(-0.0447184\pi\)
0.990148 + 0.140025i \(0.0447184\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −68.2337 −2.28335
\(894\) 0 0
\(895\) −22.9783 −0.768078
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.9783 0.366145
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.2337 −0.606108
\(906\) 0 0
\(907\) −45.7228 −1.51820 −0.759101 0.650973i \(-0.774361\pi\)
−0.759101 + 0.650973i \(0.774361\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −45.9565 −1.52261 −0.761303 0.648396i \(-0.775440\pi\)
−0.761303 + 0.648396i \(0.775440\pi\)
\(912\) 0 0
\(913\) 8.46738 0.280229
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.74456 0.222725
\(918\) 0 0
\(919\) 19.3723 0.639033 0.319516 0.947581i \(-0.396480\pi\)
0.319516 + 0.947581i \(0.396480\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.9783 0.361354
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 42.2337 1.38564 0.692821 0.721109i \(-0.256368\pi\)
0.692821 + 0.721109i \(0.256368\pi\)
\(930\) 0 0
\(931\) 6.74456 0.221044
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.37228 0.110285
\(936\) 0 0
\(937\) −35.0951 −1.14651 −0.573253 0.819378i \(-0.694319\pi\)
−0.573253 + 0.819378i \(0.694319\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.23369 0.0728161 0.0364081 0.999337i \(-0.488408\pi\)
0.0364081 + 0.999337i \(0.488408\pi\)
\(942\) 0 0
\(943\) −32.0000 −1.04206
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.0000 0.909878 0.454939 0.890523i \(-0.349661\pi\)
0.454939 + 0.890523i \(0.349661\pi\)
\(948\) 0 0
\(949\) 8.23369 0.267277
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −48.7446 −1.57899 −0.789496 0.613756i \(-0.789658\pi\)
−0.789496 + 0.613756i \(0.789658\pi\)
\(954\) 0 0
\(955\) 24.8614 0.804496
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.25544 0.105124
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.74456 −0.152733
\(966\) 0 0
\(967\) 36.2337 1.16520 0.582598 0.812760i \(-0.302036\pi\)
0.582598 + 0.812760i \(0.302036\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −10.5109 −0.337310 −0.168655 0.985675i \(-0.553942\pi\)
−0.168655 + 0.985675i \(0.553942\pi\)
\(972\) 0 0
\(973\) −6.74456 −0.216221
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.02175 −0.224646 −0.112323 0.993672i \(-0.535829\pi\)
−0.112323 + 0.993672i \(0.535829\pi\)
\(978\) 0 0
\(979\) 2.04350 0.0653105
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.62772 0.147601 0.0738007 0.997273i \(-0.476487\pi\)
0.0738007 + 0.997273i \(0.476487\pi\)
\(984\) 0 0
\(985\) −26.2337 −0.835875
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −18.5109 −0.588612
\(990\) 0 0
\(991\) 53.9565 1.71398 0.856992 0.515329i \(-0.172330\pi\)
0.856992 + 0.515329i \(0.172330\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −24.1168 −0.763788 −0.381894 0.924206i \(-0.624728\pi\)
−0.381894 + 0.924206i \(0.624728\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2520.2.a.x.1.2 2
3.2 odd 2 280.2.a.c.1.1 2
4.3 odd 2 5040.2.a.by.1.1 2
12.11 even 2 560.2.a.h.1.2 2
15.2 even 4 1400.2.g.i.449.4 4
15.8 even 4 1400.2.g.i.449.1 4
15.14 odd 2 1400.2.a.r.1.2 2
21.2 odd 6 1960.2.q.t.361.2 4
21.5 even 6 1960.2.q.r.361.1 4
21.11 odd 6 1960.2.q.t.961.2 4
21.17 even 6 1960.2.q.r.961.1 4
21.20 even 2 1960.2.a.s.1.2 2
24.5 odd 2 2240.2.a.bk.1.2 2
24.11 even 2 2240.2.a.bg.1.1 2
60.23 odd 4 2800.2.g.r.449.4 4
60.47 odd 4 2800.2.g.r.449.1 4
60.59 even 2 2800.2.a.bk.1.1 2
84.83 odd 2 3920.2.a.bt.1.1 2
105.104 even 2 9800.2.a.bu.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.a.c.1.1 2 3.2 odd 2
560.2.a.h.1.2 2 12.11 even 2
1400.2.a.r.1.2 2 15.14 odd 2
1400.2.g.i.449.1 4 15.8 even 4
1400.2.g.i.449.4 4 15.2 even 4
1960.2.a.s.1.2 2 21.20 even 2
1960.2.q.r.361.1 4 21.5 even 6
1960.2.q.r.961.1 4 21.17 even 6
1960.2.q.t.361.2 4 21.2 odd 6
1960.2.q.t.961.2 4 21.11 odd 6
2240.2.a.bg.1.1 2 24.11 even 2
2240.2.a.bk.1.2 2 24.5 odd 2
2520.2.a.x.1.2 2 1.1 even 1 trivial
2800.2.a.bk.1.1 2 60.59 even 2
2800.2.g.r.449.1 4 60.47 odd 4
2800.2.g.r.449.4 4 60.23 odd 4
3920.2.a.bt.1.1 2 84.83 odd 2
5040.2.a.by.1.1 2 4.3 odd 2
9800.2.a.bu.1.1 2 105.104 even 2