Properties

Label 2523.2.a.r.1.2
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.21072\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21072 q^{2} +1.00000 q^{3} -0.534161 q^{4} +1.79844 q^{5} -1.21072 q^{6} +4.27693 q^{7} +3.06816 q^{8} +1.00000 q^{9} -2.17740 q^{10} +1.05626 q^{11} -0.534161 q^{12} -5.28193 q^{13} -5.17816 q^{14} +1.79844 q^{15} -2.64635 q^{16} +5.61769 q^{17} -1.21072 q^{18} +6.41175 q^{19} -0.960655 q^{20} +4.27693 q^{21} -1.27883 q^{22} +2.04633 q^{23} +3.06816 q^{24} -1.76563 q^{25} +6.39492 q^{26} +1.00000 q^{27} -2.28457 q^{28} -2.17740 q^{30} +3.82471 q^{31} -2.93233 q^{32} +1.05626 q^{33} -6.80144 q^{34} +7.69178 q^{35} -0.534161 q^{36} -0.350297 q^{37} -7.76282 q^{38} -5.28193 q^{39} +5.51788 q^{40} -3.62240 q^{41} -5.17816 q^{42} +1.74900 q^{43} -0.564212 q^{44} +1.79844 q^{45} -2.47753 q^{46} +6.98005 q^{47} -2.64635 q^{48} +11.2921 q^{49} +2.13768 q^{50} +5.61769 q^{51} +2.82140 q^{52} -7.81869 q^{53} -1.21072 q^{54} +1.89961 q^{55} +13.1223 q^{56} +6.41175 q^{57} +0.382668 q^{59} -0.960655 q^{60} -5.46644 q^{61} -4.63064 q^{62} +4.27693 q^{63} +8.84292 q^{64} -9.49920 q^{65} -1.27883 q^{66} +7.81166 q^{67} -3.00075 q^{68} +2.04633 q^{69} -9.31258 q^{70} -15.6115 q^{71} +3.06816 q^{72} -2.54289 q^{73} +0.424110 q^{74} -1.76563 q^{75} -3.42491 q^{76} +4.51754 q^{77} +6.39492 q^{78} +10.2680 q^{79} -4.75929 q^{80} +1.00000 q^{81} +4.38571 q^{82} +1.52139 q^{83} -2.28457 q^{84} +10.1030 q^{85} -2.11755 q^{86} +3.24076 q^{88} -17.9444 q^{89} -2.17740 q^{90} -22.5904 q^{91} -1.09307 q^{92} +3.82471 q^{93} -8.45087 q^{94} +11.5311 q^{95} -2.93233 q^{96} -6.80968 q^{97} -13.6716 q^{98} +1.05626 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 9 q^{3} + 11 q^{4} - 4 q^{5} + 5 q^{6} + 5 q^{7} + 24 q^{8} + 9 q^{9} - q^{11} + 11 q^{12} + q^{13} + 9 q^{14} - 4 q^{15} + 35 q^{16} + 2 q^{17} + 5 q^{18} + 9 q^{19} - 18 q^{20} + 5 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21072 −0.856107 −0.428054 0.903753i \(-0.640801\pi\)
−0.428054 + 0.903753i \(0.640801\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.534161 −0.267081
\(5\) 1.79844 0.804285 0.402142 0.915577i \(-0.368266\pi\)
0.402142 + 0.915577i \(0.368266\pi\)
\(6\) −1.21072 −0.494274
\(7\) 4.27693 1.61653 0.808264 0.588821i \(-0.200408\pi\)
0.808264 + 0.588821i \(0.200408\pi\)
\(8\) 3.06816 1.08476
\(9\) 1.00000 0.333333
\(10\) −2.17740 −0.688554
\(11\) 1.05626 0.318474 0.159237 0.987240i \(-0.449097\pi\)
0.159237 + 0.987240i \(0.449097\pi\)
\(12\) −0.534161 −0.154199
\(13\) −5.28193 −1.46494 −0.732471 0.680798i \(-0.761633\pi\)
−0.732471 + 0.680798i \(0.761633\pi\)
\(14\) −5.17816 −1.38392
\(15\) 1.79844 0.464354
\(16\) −2.64635 −0.661587
\(17\) 5.61769 1.36249 0.681245 0.732056i \(-0.261439\pi\)
0.681245 + 0.732056i \(0.261439\pi\)
\(18\) −1.21072 −0.285369
\(19\) 6.41175 1.47096 0.735478 0.677548i \(-0.236958\pi\)
0.735478 + 0.677548i \(0.236958\pi\)
\(20\) −0.960655 −0.214809
\(21\) 4.27693 0.933303
\(22\) −1.27883 −0.272648
\(23\) 2.04633 0.426689 0.213345 0.976977i \(-0.431564\pi\)
0.213345 + 0.976977i \(0.431564\pi\)
\(24\) 3.06816 0.626285
\(25\) −1.76563 −0.353126
\(26\) 6.39492 1.25415
\(27\) 1.00000 0.192450
\(28\) −2.28457 −0.431743
\(29\) 0 0
\(30\) −2.17740 −0.397537
\(31\) 3.82471 0.686937 0.343469 0.939164i \(-0.388398\pi\)
0.343469 + 0.939164i \(0.388398\pi\)
\(32\) −2.93233 −0.518367
\(33\) 1.05626 0.183871
\(34\) −6.80144 −1.16644
\(35\) 7.69178 1.30015
\(36\) −0.534161 −0.0890269
\(37\) −0.350297 −0.0575884 −0.0287942 0.999585i \(-0.509167\pi\)
−0.0287942 + 0.999585i \(0.509167\pi\)
\(38\) −7.76282 −1.25930
\(39\) −5.28193 −0.845785
\(40\) 5.51788 0.872453
\(41\) −3.62240 −0.565725 −0.282862 0.959161i \(-0.591284\pi\)
−0.282862 + 0.959161i \(0.591284\pi\)
\(42\) −5.17816 −0.799007
\(43\) 1.74900 0.266721 0.133360 0.991068i \(-0.457423\pi\)
0.133360 + 0.991068i \(0.457423\pi\)
\(44\) −0.564212 −0.0850582
\(45\) 1.79844 0.268095
\(46\) −2.47753 −0.365292
\(47\) 6.98005 1.01814 0.509072 0.860724i \(-0.329989\pi\)
0.509072 + 0.860724i \(0.329989\pi\)
\(48\) −2.64635 −0.381968
\(49\) 11.2921 1.61316
\(50\) 2.13768 0.302314
\(51\) 5.61769 0.786634
\(52\) 2.82140 0.391258
\(53\) −7.81869 −1.07398 −0.536990 0.843589i \(-0.680439\pi\)
−0.536990 + 0.843589i \(0.680439\pi\)
\(54\) −1.21072 −0.164758
\(55\) 1.89961 0.256144
\(56\) 13.1223 1.75354
\(57\) 6.41175 0.849257
\(58\) 0 0
\(59\) 0.382668 0.0498191 0.0249096 0.999690i \(-0.492070\pi\)
0.0249096 + 0.999690i \(0.492070\pi\)
\(60\) −0.960655 −0.124020
\(61\) −5.46644 −0.699906 −0.349953 0.936767i \(-0.613803\pi\)
−0.349953 + 0.936767i \(0.613803\pi\)
\(62\) −4.63064 −0.588092
\(63\) 4.27693 0.538843
\(64\) 8.84292 1.10537
\(65\) −9.49920 −1.17823
\(66\) −1.27883 −0.157413
\(67\) 7.81166 0.954346 0.477173 0.878809i \(-0.341662\pi\)
0.477173 + 0.878809i \(0.341662\pi\)
\(68\) −3.00075 −0.363895
\(69\) 2.04633 0.246349
\(70\) −9.31258 −1.11307
\(71\) −15.6115 −1.85274 −0.926370 0.376615i \(-0.877088\pi\)
−0.926370 + 0.376615i \(0.877088\pi\)
\(72\) 3.06816 0.361586
\(73\) −2.54289 −0.297623 −0.148811 0.988866i \(-0.547545\pi\)
−0.148811 + 0.988866i \(0.547545\pi\)
\(74\) 0.424110 0.0493018
\(75\) −1.76563 −0.203877
\(76\) −3.42491 −0.392864
\(77\) 4.51754 0.514822
\(78\) 6.39492 0.724083
\(79\) 10.2680 1.15524 0.577619 0.816306i \(-0.303982\pi\)
0.577619 + 0.816306i \(0.303982\pi\)
\(80\) −4.75929 −0.532104
\(81\) 1.00000 0.111111
\(82\) 4.38571 0.484321
\(83\) 1.52139 0.166994 0.0834971 0.996508i \(-0.473391\pi\)
0.0834971 + 0.996508i \(0.473391\pi\)
\(84\) −2.28457 −0.249267
\(85\) 10.1030 1.09583
\(86\) −2.11755 −0.228341
\(87\) 0 0
\(88\) 3.24076 0.345467
\(89\) −17.9444 −1.90210 −0.951049 0.309041i \(-0.899992\pi\)
−0.951049 + 0.309041i \(0.899992\pi\)
\(90\) −2.17740 −0.229518
\(91\) −22.5904 −2.36812
\(92\) −1.09307 −0.113960
\(93\) 3.82471 0.396604
\(94\) −8.45087 −0.871641
\(95\) 11.5311 1.18307
\(96\) −2.93233 −0.299279
\(97\) −6.80968 −0.691418 −0.345709 0.938342i \(-0.612362\pi\)
−0.345709 + 0.938342i \(0.612362\pi\)
\(98\) −13.6716 −1.38104
\(99\) 1.05626 0.106158
\(100\) 0.943132 0.0943132
\(101\) 4.72573 0.470228 0.235114 0.971968i \(-0.424454\pi\)
0.235114 + 0.971968i \(0.424454\pi\)
\(102\) −6.80144 −0.673443
\(103\) 3.49491 0.344364 0.172182 0.985065i \(-0.444918\pi\)
0.172182 + 0.985065i \(0.444918\pi\)
\(104\) −16.2058 −1.58911
\(105\) 7.69178 0.750641
\(106\) 9.46624 0.919442
\(107\) −4.92192 −0.475820 −0.237910 0.971287i \(-0.576462\pi\)
−0.237910 + 0.971287i \(0.576462\pi\)
\(108\) −0.534161 −0.0513997
\(109\) −14.8847 −1.42569 −0.712846 0.701321i \(-0.752594\pi\)
−0.712846 + 0.701321i \(0.752594\pi\)
\(110\) −2.29989 −0.219286
\(111\) −0.350297 −0.0332487
\(112\) −11.3182 −1.06947
\(113\) −6.34278 −0.596678 −0.298339 0.954460i \(-0.596433\pi\)
−0.298339 + 0.954460i \(0.596433\pi\)
\(114\) −7.76282 −0.727055
\(115\) 3.68019 0.343180
\(116\) 0 0
\(117\) −5.28193 −0.488314
\(118\) −0.463303 −0.0426505
\(119\) 24.0265 2.20250
\(120\) 5.51788 0.503711
\(121\) −9.88432 −0.898574
\(122\) 6.61832 0.599195
\(123\) −3.62240 −0.326621
\(124\) −2.04301 −0.183468
\(125\) −12.1675 −1.08830
\(126\) −5.17816 −0.461307
\(127\) −4.46569 −0.396266 −0.198133 0.980175i \(-0.563488\pi\)
−0.198133 + 0.980175i \(0.563488\pi\)
\(128\) −4.84163 −0.427944
\(129\) 1.74900 0.153991
\(130\) 11.5009 1.00869
\(131\) 0.00995943 0.000870160 0 0.000435080 1.00000i \(-0.499862\pi\)
0.000435080 1.00000i \(0.499862\pi\)
\(132\) −0.564212 −0.0491084
\(133\) 27.4226 2.37784
\(134\) −9.45772 −0.817022
\(135\) 1.79844 0.154785
\(136\) 17.2359 1.47797
\(137\) 12.2134 1.04346 0.521732 0.853109i \(-0.325286\pi\)
0.521732 + 0.853109i \(0.325286\pi\)
\(138\) −2.47753 −0.210901
\(139\) 4.94561 0.419481 0.209741 0.977757i \(-0.432738\pi\)
0.209741 + 0.977757i \(0.432738\pi\)
\(140\) −4.10865 −0.347245
\(141\) 6.98005 0.587826
\(142\) 18.9011 1.58614
\(143\) −5.57908 −0.466546
\(144\) −2.64635 −0.220529
\(145\) 0 0
\(146\) 3.07873 0.254797
\(147\) 11.2921 0.931359
\(148\) 0.187115 0.0153808
\(149\) 14.0140 1.14807 0.574035 0.818831i \(-0.305377\pi\)
0.574035 + 0.818831i \(0.305377\pi\)
\(150\) 2.13768 0.174541
\(151\) 2.93392 0.238759 0.119379 0.992849i \(-0.461910\pi\)
0.119379 + 0.992849i \(0.461910\pi\)
\(152\) 19.6722 1.59563
\(153\) 5.61769 0.454163
\(154\) −5.46947 −0.440742
\(155\) 6.87849 0.552493
\(156\) 2.82140 0.225893
\(157\) 16.1919 1.29226 0.646128 0.763229i \(-0.276387\pi\)
0.646128 + 0.763229i \(0.276387\pi\)
\(158\) −12.4316 −0.989008
\(159\) −7.81869 −0.620063
\(160\) −5.27360 −0.416915
\(161\) 8.75201 0.689755
\(162\) −1.21072 −0.0951230
\(163\) 13.5734 1.06315 0.531575 0.847011i \(-0.321600\pi\)
0.531575 + 0.847011i \(0.321600\pi\)
\(164\) 1.93495 0.151094
\(165\) 1.89961 0.147885
\(166\) −1.84197 −0.142965
\(167\) −16.3616 −1.26610 −0.633050 0.774111i \(-0.718197\pi\)
−0.633050 + 0.774111i \(0.718197\pi\)
\(168\) 13.1223 1.01241
\(169\) 14.8987 1.14606
\(170\) −12.2319 −0.938147
\(171\) 6.41175 0.490319
\(172\) −0.934250 −0.0712359
\(173\) −4.46374 −0.339372 −0.169686 0.985498i \(-0.554275\pi\)
−0.169686 + 0.985498i \(0.554275\pi\)
\(174\) 0 0
\(175\) −7.55148 −0.570838
\(176\) −2.79523 −0.210698
\(177\) 0.382668 0.0287631
\(178\) 21.7256 1.62840
\(179\) 3.40063 0.254175 0.127088 0.991891i \(-0.459437\pi\)
0.127088 + 0.991891i \(0.459437\pi\)
\(180\) −0.960655 −0.0716030
\(181\) 6.62134 0.492160 0.246080 0.969250i \(-0.420857\pi\)
0.246080 + 0.969250i \(0.420857\pi\)
\(182\) 27.3506 2.02736
\(183\) −5.46644 −0.404091
\(184\) 6.27846 0.462854
\(185\) −0.629986 −0.0463175
\(186\) −4.63064 −0.339535
\(187\) 5.93373 0.433917
\(188\) −3.72847 −0.271927
\(189\) 4.27693 0.311101
\(190\) −13.9609 −1.01283
\(191\) 17.6196 1.27491 0.637454 0.770489i \(-0.279988\pi\)
0.637454 + 0.770489i \(0.279988\pi\)
\(192\) 8.84292 0.638183
\(193\) −13.3986 −0.964454 −0.482227 0.876046i \(-0.660172\pi\)
−0.482227 + 0.876046i \(0.660172\pi\)
\(194\) 8.24460 0.591928
\(195\) −9.49920 −0.680252
\(196\) −6.03182 −0.430844
\(197\) −8.20476 −0.584565 −0.292282 0.956332i \(-0.594415\pi\)
−0.292282 + 0.956332i \(0.594415\pi\)
\(198\) −1.27883 −0.0908825
\(199\) 24.4954 1.73643 0.868216 0.496187i \(-0.165267\pi\)
0.868216 + 0.496187i \(0.165267\pi\)
\(200\) −5.41723 −0.383056
\(201\) 7.81166 0.550992
\(202\) −5.72153 −0.402565
\(203\) 0 0
\(204\) −3.00075 −0.210095
\(205\) −6.51466 −0.455004
\(206\) −4.23135 −0.294812
\(207\) 2.04633 0.142230
\(208\) 13.9778 0.969187
\(209\) 6.77246 0.468461
\(210\) −9.31258 −0.642629
\(211\) −2.21143 −0.152241 −0.0761205 0.997099i \(-0.524253\pi\)
−0.0761205 + 0.997099i \(0.524253\pi\)
\(212\) 4.17644 0.286839
\(213\) −15.6115 −1.06968
\(214\) 5.95905 0.407353
\(215\) 3.14547 0.214519
\(216\) 3.06816 0.208762
\(217\) 16.3580 1.11045
\(218\) 18.0211 1.22054
\(219\) −2.54289 −0.171833
\(220\) −1.01470 −0.0684110
\(221\) −29.6722 −1.99597
\(222\) 0.424110 0.0284644
\(223\) 2.70437 0.181098 0.0905491 0.995892i \(-0.471138\pi\)
0.0905491 + 0.995892i \(0.471138\pi\)
\(224\) −12.5414 −0.837955
\(225\) −1.76563 −0.117709
\(226\) 7.67932 0.510820
\(227\) 14.4225 0.957258 0.478629 0.878017i \(-0.341134\pi\)
0.478629 + 0.878017i \(0.341134\pi\)
\(228\) −3.42491 −0.226820
\(229\) 25.7467 1.70139 0.850694 0.525662i \(-0.176182\pi\)
0.850694 + 0.525662i \(0.176182\pi\)
\(230\) −4.45567 −0.293798
\(231\) 4.51754 0.297232
\(232\) 0 0
\(233\) −22.6039 −1.48083 −0.740417 0.672148i \(-0.765372\pi\)
−0.740417 + 0.672148i \(0.765372\pi\)
\(234\) 6.39492 0.418049
\(235\) 12.5532 0.818878
\(236\) −0.204406 −0.0133057
\(237\) 10.2680 0.666977
\(238\) −29.0893 −1.88558
\(239\) 23.4233 1.51513 0.757565 0.652760i \(-0.226389\pi\)
0.757565 + 0.652760i \(0.226389\pi\)
\(240\) −4.75929 −0.307211
\(241\) 22.3826 1.44179 0.720896 0.693043i \(-0.243730\pi\)
0.720896 + 0.693043i \(0.243730\pi\)
\(242\) 11.9671 0.769276
\(243\) 1.00000 0.0641500
\(244\) 2.91996 0.186932
\(245\) 20.3082 1.29744
\(246\) 4.38571 0.279623
\(247\) −33.8664 −2.15487
\(248\) 11.7348 0.745160
\(249\) 1.52139 0.0964141
\(250\) 14.7315 0.931700
\(251\) −5.95981 −0.376180 −0.188090 0.982152i \(-0.560230\pi\)
−0.188090 + 0.982152i \(0.560230\pi\)
\(252\) −2.28457 −0.143914
\(253\) 2.16145 0.135889
\(254\) 5.40669 0.339246
\(255\) 10.1030 0.632677
\(256\) −11.8240 −0.739000
\(257\) −15.0723 −0.940185 −0.470092 0.882617i \(-0.655779\pi\)
−0.470092 + 0.882617i \(0.655779\pi\)
\(258\) −2.11755 −0.131833
\(259\) −1.49819 −0.0930932
\(260\) 5.07411 0.314683
\(261\) 0 0
\(262\) −0.0120581 −0.000744950 0
\(263\) −18.7252 −1.15465 −0.577324 0.816515i \(-0.695903\pi\)
−0.577324 + 0.816515i \(0.695903\pi\)
\(264\) 3.24076 0.199455
\(265\) −14.0614 −0.863786
\(266\) −33.2010 −2.03569
\(267\) −17.9444 −1.09818
\(268\) −4.17269 −0.254887
\(269\) −23.1259 −1.41001 −0.705006 0.709202i \(-0.749056\pi\)
−0.705006 + 0.709202i \(0.749056\pi\)
\(270\) −2.17740 −0.132512
\(271\) 21.3469 1.29673 0.648365 0.761330i \(-0.275453\pi\)
0.648365 + 0.761330i \(0.275453\pi\)
\(272\) −14.8664 −0.901406
\(273\) −22.5904 −1.36723
\(274\) −14.7870 −0.893317
\(275\) −1.86496 −0.112461
\(276\) −1.09307 −0.0657951
\(277\) −8.32181 −0.500009 −0.250004 0.968245i \(-0.580432\pi\)
−0.250004 + 0.968245i \(0.580432\pi\)
\(278\) −5.98774 −0.359121
\(279\) 3.82471 0.228979
\(280\) 23.5996 1.41034
\(281\) −28.9202 −1.72524 −0.862618 0.505856i \(-0.831177\pi\)
−0.862618 + 0.505856i \(0.831177\pi\)
\(282\) −8.45087 −0.503242
\(283\) 29.9799 1.78212 0.891060 0.453885i \(-0.149962\pi\)
0.891060 + 0.453885i \(0.149962\pi\)
\(284\) 8.33904 0.494831
\(285\) 11.5311 0.683044
\(286\) 6.75469 0.399413
\(287\) −15.4928 −0.914509
\(288\) −2.93233 −0.172789
\(289\) 14.5584 0.856378
\(290\) 0 0
\(291\) −6.80968 −0.399191
\(292\) 1.35831 0.0794893
\(293\) 8.75406 0.511418 0.255709 0.966754i \(-0.417691\pi\)
0.255709 + 0.966754i \(0.417691\pi\)
\(294\) −13.6716 −0.797343
\(295\) 0.688204 0.0400688
\(296\) −1.07476 −0.0624694
\(297\) 1.05626 0.0612903
\(298\) −16.9670 −0.982871
\(299\) −10.8086 −0.625075
\(300\) 0.943132 0.0544517
\(301\) 7.48036 0.431161
\(302\) −3.55215 −0.204403
\(303\) 4.72573 0.271486
\(304\) −16.9677 −0.973166
\(305\) −9.83105 −0.562924
\(306\) −6.80144 −0.388812
\(307\) −33.9161 −1.93570 −0.967848 0.251536i \(-0.919064\pi\)
−0.967848 + 0.251536i \(0.919064\pi\)
\(308\) −2.41310 −0.137499
\(309\) 3.49491 0.198819
\(310\) −8.32791 −0.472993
\(311\) 8.12574 0.460769 0.230384 0.973100i \(-0.426002\pi\)
0.230384 + 0.973100i \(0.426002\pi\)
\(312\) −16.2058 −0.917471
\(313\) 2.52738 0.142856 0.0714280 0.997446i \(-0.477244\pi\)
0.0714280 + 0.997446i \(0.477244\pi\)
\(314\) −19.6039 −1.10631
\(315\) 7.69178 0.433383
\(316\) −5.48476 −0.308542
\(317\) 16.6383 0.934499 0.467250 0.884125i \(-0.345245\pi\)
0.467250 + 0.884125i \(0.345245\pi\)
\(318\) 9.46624 0.530840
\(319\) 0 0
\(320\) 15.9034 0.889028
\(321\) −4.92192 −0.274715
\(322\) −10.5962 −0.590504
\(323\) 36.0192 2.00416
\(324\) −0.534161 −0.0296756
\(325\) 9.32593 0.517309
\(326\) −16.4336 −0.910170
\(327\) −14.8847 −0.823123
\(328\) −11.1141 −0.613673
\(329\) 29.8532 1.64586
\(330\) −2.29989 −0.126605
\(331\) 12.9286 0.710619 0.355309 0.934749i \(-0.384375\pi\)
0.355309 + 0.934749i \(0.384375\pi\)
\(332\) −0.812667 −0.0446009
\(333\) −0.350297 −0.0191961
\(334\) 19.8093 1.08392
\(335\) 14.0488 0.767566
\(336\) −11.3182 −0.617461
\(337\) −5.56273 −0.303021 −0.151511 0.988456i \(-0.548414\pi\)
−0.151511 + 0.988456i \(0.548414\pi\)
\(338\) −18.0382 −0.981148
\(339\) −6.34278 −0.344492
\(340\) −5.39666 −0.292675
\(341\) 4.03988 0.218772
\(342\) −7.76282 −0.419765
\(343\) 18.3571 0.991192
\(344\) 5.36621 0.289327
\(345\) 3.68019 0.198135
\(346\) 5.40433 0.290539
\(347\) −8.78686 −0.471703 −0.235852 0.971789i \(-0.575788\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(348\) 0 0
\(349\) 15.1943 0.813332 0.406666 0.913577i \(-0.366691\pi\)
0.406666 + 0.913577i \(0.366691\pi\)
\(350\) 9.14271 0.488698
\(351\) −5.28193 −0.281928
\(352\) −3.09729 −0.165086
\(353\) −12.3667 −0.658214 −0.329107 0.944293i \(-0.606748\pi\)
−0.329107 + 0.944293i \(0.606748\pi\)
\(354\) −0.463303 −0.0246243
\(355\) −28.0762 −1.49013
\(356\) 9.58518 0.508014
\(357\) 24.0265 1.27161
\(358\) −4.11721 −0.217601
\(359\) −16.0164 −0.845312 −0.422656 0.906290i \(-0.638902\pi\)
−0.422656 + 0.906290i \(0.638902\pi\)
\(360\) 5.51788 0.290818
\(361\) 22.1105 1.16371
\(362\) −8.01657 −0.421342
\(363\) −9.88432 −0.518792
\(364\) 12.0669 0.632479
\(365\) −4.57323 −0.239374
\(366\) 6.61832 0.345945
\(367\) −22.2447 −1.16116 −0.580581 0.814203i \(-0.697174\pi\)
−0.580581 + 0.814203i \(0.697174\pi\)
\(368\) −5.41530 −0.282292
\(369\) −3.62240 −0.188575
\(370\) 0.762735 0.0396527
\(371\) −33.4400 −1.73612
\(372\) −2.04301 −0.105925
\(373\) 6.93029 0.358837 0.179418 0.983773i \(-0.442578\pi\)
0.179418 + 0.983773i \(0.442578\pi\)
\(374\) −7.18407 −0.371480
\(375\) −12.1675 −0.628330
\(376\) 21.4159 1.10444
\(377\) 0 0
\(378\) −5.17816 −0.266336
\(379\) −7.78848 −0.400067 −0.200034 0.979789i \(-0.564105\pi\)
−0.200034 + 0.979789i \(0.564105\pi\)
\(380\) −6.15948 −0.315975
\(381\) −4.46569 −0.228784
\(382\) −21.3323 −1.09146
\(383\) 25.4625 1.30107 0.650537 0.759475i \(-0.274544\pi\)
0.650537 + 0.759475i \(0.274544\pi\)
\(384\) −4.84163 −0.247073
\(385\) 8.12451 0.414063
\(386\) 16.2220 0.825676
\(387\) 1.74900 0.0889068
\(388\) 3.63747 0.184664
\(389\) 10.9838 0.556902 0.278451 0.960450i \(-0.410179\pi\)
0.278451 + 0.960450i \(0.410179\pi\)
\(390\) 11.5009 0.582369
\(391\) 11.4956 0.581359
\(392\) 34.6460 1.74989
\(393\) 0.00995943 0.000502387 0
\(394\) 9.93365 0.500450
\(395\) 18.4663 0.929140
\(396\) −0.564212 −0.0283527
\(397\) 5.10047 0.255985 0.127993 0.991775i \(-0.459147\pi\)
0.127993 + 0.991775i \(0.459147\pi\)
\(398\) −29.6570 −1.48657
\(399\) 27.4226 1.37285
\(400\) 4.67247 0.233624
\(401\) −19.5421 −0.975886 −0.487943 0.872875i \(-0.662253\pi\)
−0.487943 + 0.872875i \(0.662253\pi\)
\(402\) −9.45772 −0.471708
\(403\) −20.2018 −1.00632
\(404\) −2.52430 −0.125589
\(405\) 1.79844 0.0893650
\(406\) 0 0
\(407\) −0.370004 −0.0183404
\(408\) 17.2359 0.853306
\(409\) −17.9244 −0.886305 −0.443152 0.896446i \(-0.646140\pi\)
−0.443152 + 0.896446i \(0.646140\pi\)
\(410\) 7.88742 0.389532
\(411\) 12.2134 0.602444
\(412\) −1.86685 −0.0919730
\(413\) 1.63664 0.0805340
\(414\) −2.47753 −0.121764
\(415\) 2.73612 0.134311
\(416\) 15.4883 0.759378
\(417\) 4.94561 0.242188
\(418\) −8.19954 −0.401053
\(419\) 3.73821 0.182623 0.0913116 0.995822i \(-0.470894\pi\)
0.0913116 + 0.995822i \(0.470894\pi\)
\(420\) −4.10865 −0.200482
\(421\) 8.28779 0.403922 0.201961 0.979394i \(-0.435269\pi\)
0.201961 + 0.979394i \(0.435269\pi\)
\(422\) 2.67742 0.130335
\(423\) 6.98005 0.339382
\(424\) −23.9890 −1.16501
\(425\) −9.91876 −0.481131
\(426\) 18.9011 0.915761
\(427\) −23.3796 −1.13142
\(428\) 2.62910 0.127082
\(429\) −5.57908 −0.269360
\(430\) −3.80828 −0.183651
\(431\) 19.1294 0.921432 0.460716 0.887548i \(-0.347593\pi\)
0.460716 + 0.887548i \(0.347593\pi\)
\(432\) −2.64635 −0.127323
\(433\) −16.1509 −0.776163 −0.388081 0.921625i \(-0.626862\pi\)
−0.388081 + 0.921625i \(0.626862\pi\)
\(434\) −19.8049 −0.950667
\(435\) 0 0
\(436\) 7.95081 0.380775
\(437\) 13.1206 0.627641
\(438\) 3.07873 0.147107
\(439\) 2.96836 0.141672 0.0708360 0.997488i \(-0.477433\pi\)
0.0708360 + 0.997488i \(0.477433\pi\)
\(440\) 5.82830 0.277853
\(441\) 11.2921 0.537720
\(442\) 35.9247 1.70876
\(443\) 10.4916 0.498471 0.249235 0.968443i \(-0.419821\pi\)
0.249235 + 0.968443i \(0.419821\pi\)
\(444\) 0.187115 0.00888008
\(445\) −32.2718 −1.52983
\(446\) −3.27423 −0.155039
\(447\) 14.0140 0.662839
\(448\) 37.8206 1.78685
\(449\) −4.40325 −0.207802 −0.103901 0.994588i \(-0.533133\pi\)
−0.103901 + 0.994588i \(0.533133\pi\)
\(450\) 2.13768 0.100771
\(451\) −3.82619 −0.180168
\(452\) 3.38807 0.159361
\(453\) 2.93392 0.137847
\(454\) −17.4616 −0.819515
\(455\) −40.6274 −1.90464
\(456\) 19.6722 0.921237
\(457\) 11.3485 0.530860 0.265430 0.964130i \(-0.414486\pi\)
0.265430 + 0.964130i \(0.414486\pi\)
\(458\) −31.1720 −1.45657
\(459\) 5.61769 0.262211
\(460\) −1.96582 −0.0916566
\(461\) 19.7092 0.917947 0.458973 0.888450i \(-0.348217\pi\)
0.458973 + 0.888450i \(0.348217\pi\)
\(462\) −5.46947 −0.254463
\(463\) 0.753315 0.0350095 0.0175048 0.999847i \(-0.494428\pi\)
0.0175048 + 0.999847i \(0.494428\pi\)
\(464\) 0 0
\(465\) 6.87849 0.318982
\(466\) 27.3670 1.26775
\(467\) 10.4450 0.483339 0.241670 0.970359i \(-0.422305\pi\)
0.241670 + 0.970359i \(0.422305\pi\)
\(468\) 2.82140 0.130419
\(469\) 33.4099 1.54273
\(470\) −15.1983 −0.701047
\(471\) 16.1919 0.746085
\(472\) 1.17408 0.0540416
\(473\) 1.84740 0.0849435
\(474\) −12.4316 −0.571004
\(475\) −11.3208 −0.519433
\(476\) −12.8340 −0.588246
\(477\) −7.81869 −0.357993
\(478\) −28.3591 −1.29711
\(479\) −13.9781 −0.638673 −0.319337 0.947641i \(-0.603460\pi\)
−0.319337 + 0.947641i \(0.603460\pi\)
\(480\) −5.27360 −0.240706
\(481\) 1.85024 0.0843637
\(482\) −27.0991 −1.23433
\(483\) 8.75201 0.398230
\(484\) 5.27982 0.239992
\(485\) −12.2468 −0.556097
\(486\) −1.21072 −0.0549193
\(487\) −1.46028 −0.0661718 −0.0330859 0.999453i \(-0.510533\pi\)
−0.0330859 + 0.999453i \(0.510533\pi\)
\(488\) −16.7719 −0.759228
\(489\) 13.5734 0.613810
\(490\) −24.5875 −1.11075
\(491\) −12.1522 −0.548421 −0.274210 0.961670i \(-0.588416\pi\)
−0.274210 + 0.961670i \(0.588416\pi\)
\(492\) 1.93495 0.0872342
\(493\) 0 0
\(494\) 41.0027 1.84480
\(495\) 1.89961 0.0853812
\(496\) −10.1215 −0.454469
\(497\) −66.7691 −2.99501
\(498\) −1.84197 −0.0825408
\(499\) −35.9679 −1.61014 −0.805071 0.593178i \(-0.797873\pi\)
−0.805071 + 0.593178i \(0.797873\pi\)
\(500\) 6.49943 0.290664
\(501\) −16.3616 −0.730983
\(502\) 7.21565 0.322050
\(503\) −14.3546 −0.640041 −0.320020 0.947411i \(-0.603690\pi\)
−0.320020 + 0.947411i \(0.603690\pi\)
\(504\) 13.1223 0.584513
\(505\) 8.49892 0.378197
\(506\) −2.61691 −0.116336
\(507\) 14.8987 0.661676
\(508\) 2.38540 0.105835
\(509\) −31.0049 −1.37427 −0.687135 0.726530i \(-0.741132\pi\)
−0.687135 + 0.726530i \(0.741132\pi\)
\(510\) −12.2319 −0.541640
\(511\) −10.8758 −0.481116
\(512\) 23.9988 1.06061
\(513\) 6.41175 0.283086
\(514\) 18.2483 0.804899
\(515\) 6.28537 0.276967
\(516\) −0.934250 −0.0411281
\(517\) 7.37273 0.324252
\(518\) 1.81389 0.0796978
\(519\) −4.46374 −0.195936
\(520\) −29.1450 −1.27809
\(521\) −14.9084 −0.653150 −0.326575 0.945171i \(-0.605895\pi\)
−0.326575 + 0.945171i \(0.605895\pi\)
\(522\) 0 0
\(523\) −12.9505 −0.566284 −0.283142 0.959078i \(-0.591377\pi\)
−0.283142 + 0.959078i \(0.591377\pi\)
\(524\) −0.00531995 −0.000232403 0
\(525\) −7.55148 −0.329573
\(526\) 22.6710 0.988502
\(527\) 21.4860 0.935945
\(528\) −2.79523 −0.121647
\(529\) −18.8125 −0.817936
\(530\) 17.0244 0.739493
\(531\) 0.382668 0.0166064
\(532\) −14.6481 −0.635076
\(533\) 19.1333 0.828754
\(534\) 21.7256 0.940157
\(535\) −8.85175 −0.382694
\(536\) 23.9674 1.03523
\(537\) 3.40063 0.146748
\(538\) 27.9990 1.20712
\(539\) 11.9274 0.513750
\(540\) −0.960655 −0.0413400
\(541\) 10.8732 0.467475 0.233737 0.972300i \(-0.424904\pi\)
0.233737 + 0.972300i \(0.424904\pi\)
\(542\) −25.8450 −1.11014
\(543\) 6.62134 0.284149
\(544\) −16.4729 −0.706270
\(545\) −26.7691 −1.14666
\(546\) 27.3506 1.17050
\(547\) −23.1301 −0.988970 −0.494485 0.869186i \(-0.664643\pi\)
−0.494485 + 0.869186i \(0.664643\pi\)
\(548\) −6.52394 −0.278689
\(549\) −5.46644 −0.233302
\(550\) 2.25794 0.0962790
\(551\) 0 0
\(552\) 6.27846 0.267229
\(553\) 43.9154 1.86747
\(554\) 10.0754 0.428061
\(555\) −0.629986 −0.0267414
\(556\) −2.64175 −0.112035
\(557\) −43.1297 −1.82746 −0.913731 0.406319i \(-0.866812\pi\)
−0.913731 + 0.406319i \(0.866812\pi\)
\(558\) −4.63064 −0.196031
\(559\) −9.23811 −0.390730
\(560\) −20.3551 −0.860162
\(561\) 5.93373 0.250522
\(562\) 35.0142 1.47699
\(563\) 34.1036 1.43729 0.718647 0.695375i \(-0.244762\pi\)
0.718647 + 0.695375i \(0.244762\pi\)
\(564\) −3.72847 −0.156997
\(565\) −11.4071 −0.479899
\(566\) −36.2972 −1.52569
\(567\) 4.27693 0.179614
\(568\) −47.8984 −2.00977
\(569\) −19.0810 −0.799917 −0.399958 0.916533i \(-0.630975\pi\)
−0.399958 + 0.916533i \(0.630975\pi\)
\(570\) −13.9609 −0.584759
\(571\) −6.56641 −0.274796 −0.137398 0.990516i \(-0.543874\pi\)
−0.137398 + 0.990516i \(0.543874\pi\)
\(572\) 2.98013 0.124605
\(573\) 17.6196 0.736068
\(574\) 18.7574 0.782918
\(575\) −3.61306 −0.150675
\(576\) 8.84292 0.368455
\(577\) −20.5602 −0.855934 −0.427967 0.903794i \(-0.640770\pi\)
−0.427967 + 0.903794i \(0.640770\pi\)
\(578\) −17.6261 −0.733151
\(579\) −13.3986 −0.556828
\(580\) 0 0
\(581\) 6.50687 0.269951
\(582\) 8.24460 0.341750
\(583\) −8.25856 −0.342035
\(584\) −7.80199 −0.322849
\(585\) −9.49920 −0.392744
\(586\) −10.5987 −0.437828
\(587\) −9.69142 −0.400008 −0.200004 0.979795i \(-0.564095\pi\)
−0.200004 + 0.979795i \(0.564095\pi\)
\(588\) −6.03182 −0.248748
\(589\) 24.5231 1.01046
\(590\) −0.833221 −0.0343032
\(591\) −8.20476 −0.337499
\(592\) 0.927007 0.0380997
\(593\) −13.1810 −0.541279 −0.270639 0.962681i \(-0.587235\pi\)
−0.270639 + 0.962681i \(0.587235\pi\)
\(594\) −1.27883 −0.0524711
\(595\) 43.2100 1.77144
\(596\) −7.48573 −0.306627
\(597\) 24.4954 1.00253
\(598\) 13.0861 0.535131
\(599\) −14.4397 −0.589991 −0.294995 0.955499i \(-0.595318\pi\)
−0.294995 + 0.955499i \(0.595318\pi\)
\(600\) −5.41723 −0.221157
\(601\) 4.88823 0.199395 0.0996976 0.995018i \(-0.468212\pi\)
0.0996976 + 0.995018i \(0.468212\pi\)
\(602\) −9.05661 −0.369120
\(603\) 7.81166 0.318115
\(604\) −1.56718 −0.0637678
\(605\) −17.7763 −0.722710
\(606\) −5.72153 −0.232421
\(607\) −12.5548 −0.509583 −0.254792 0.966996i \(-0.582007\pi\)
−0.254792 + 0.966996i \(0.582007\pi\)
\(608\) −18.8014 −0.762496
\(609\) 0 0
\(610\) 11.9026 0.481923
\(611\) −36.8681 −1.49152
\(612\) −3.00075 −0.121298
\(613\) 3.49761 0.141267 0.0706336 0.997502i \(-0.477498\pi\)
0.0706336 + 0.997502i \(0.477498\pi\)
\(614\) 41.0629 1.65716
\(615\) −6.51466 −0.262696
\(616\) 13.8605 0.558456
\(617\) −27.2896 −1.09864 −0.549318 0.835613i \(-0.685113\pi\)
−0.549318 + 0.835613i \(0.685113\pi\)
\(618\) −4.23135 −0.170210
\(619\) −25.5410 −1.02658 −0.513289 0.858216i \(-0.671573\pi\)
−0.513289 + 0.858216i \(0.671573\pi\)
\(620\) −3.67422 −0.147560
\(621\) 2.04633 0.0821164
\(622\) −9.83798 −0.394467
\(623\) −76.7467 −3.07479
\(624\) 13.9778 0.559561
\(625\) −13.0544 −0.522176
\(626\) −3.05995 −0.122300
\(627\) 6.77246 0.270466
\(628\) −8.64911 −0.345137
\(629\) −1.96786 −0.0784636
\(630\) −9.31258 −0.371022
\(631\) 20.7956 0.827858 0.413929 0.910309i \(-0.364156\pi\)
0.413929 + 0.910309i \(0.364156\pi\)
\(632\) 31.5038 1.25315
\(633\) −2.21143 −0.0878963
\(634\) −20.1443 −0.800031
\(635\) −8.03126 −0.318711
\(636\) 4.17644 0.165607
\(637\) −59.6442 −2.36319
\(638\) 0 0
\(639\) −15.6115 −0.617580
\(640\) −8.70736 −0.344188
\(641\) −14.1393 −0.558468 −0.279234 0.960223i \(-0.590080\pi\)
−0.279234 + 0.960223i \(0.590080\pi\)
\(642\) 5.95905 0.235185
\(643\) 35.4943 1.39976 0.699878 0.714262i \(-0.253238\pi\)
0.699878 + 0.714262i \(0.253238\pi\)
\(644\) −4.67498 −0.184220
\(645\) 3.14547 0.123853
\(646\) −43.6091 −1.71578
\(647\) −20.0626 −0.788743 −0.394371 0.918951i \(-0.629038\pi\)
−0.394371 + 0.918951i \(0.629038\pi\)
\(648\) 3.06816 0.120529
\(649\) 0.404196 0.0158661
\(650\) −11.2911 −0.442872
\(651\) 16.3580 0.641121
\(652\) −7.25038 −0.283947
\(653\) 13.3537 0.522569 0.261285 0.965262i \(-0.415854\pi\)
0.261285 + 0.965262i \(0.415854\pi\)
\(654\) 18.0211 0.704682
\(655\) 0.0179114 0.000699856 0
\(656\) 9.58615 0.374276
\(657\) −2.54289 −0.0992077
\(658\) −36.1438 −1.40903
\(659\) 11.3791 0.443267 0.221633 0.975130i \(-0.428861\pi\)
0.221633 + 0.975130i \(0.428861\pi\)
\(660\) −1.01470 −0.0394971
\(661\) −37.0298 −1.44029 −0.720145 0.693823i \(-0.755925\pi\)
−0.720145 + 0.693823i \(0.755925\pi\)
\(662\) −15.6529 −0.608366
\(663\) −29.6722 −1.15237
\(664\) 4.66786 0.181148
\(665\) 49.3178 1.91246
\(666\) 0.424110 0.0164339
\(667\) 0 0
\(668\) 8.73974 0.338151
\(669\) 2.70437 0.104557
\(670\) −17.0091 −0.657119
\(671\) −5.77398 −0.222902
\(672\) −12.5414 −0.483794
\(673\) 37.2436 1.43563 0.717817 0.696232i \(-0.245141\pi\)
0.717817 + 0.696232i \(0.245141\pi\)
\(674\) 6.73490 0.259419
\(675\) −1.76563 −0.0679591
\(676\) −7.95833 −0.306090
\(677\) 44.9350 1.72699 0.863496 0.504356i \(-0.168270\pi\)
0.863496 + 0.504356i \(0.168270\pi\)
\(678\) 7.67932 0.294922
\(679\) −29.1245 −1.11770
\(680\) 30.9977 1.18871
\(681\) 14.4225 0.552673
\(682\) −4.89115 −0.187292
\(683\) 22.6022 0.864848 0.432424 0.901670i \(-0.357658\pi\)
0.432424 + 0.901670i \(0.357658\pi\)
\(684\) −3.42491 −0.130955
\(685\) 21.9651 0.839242
\(686\) −22.2253 −0.848567
\(687\) 25.7467 0.982296
\(688\) −4.62847 −0.176459
\(689\) 41.2978 1.57332
\(690\) −4.45567 −0.169625
\(691\) −38.8727 −1.47879 −0.739394 0.673273i \(-0.764888\pi\)
−0.739394 + 0.673273i \(0.764888\pi\)
\(692\) 2.38436 0.0906397
\(693\) 4.51754 0.171607
\(694\) 10.6384 0.403828
\(695\) 8.89436 0.337382
\(696\) 0 0
\(697\) −20.3495 −0.770794
\(698\) −18.3960 −0.696299
\(699\) −22.6039 −0.854960
\(700\) 4.03371 0.152460
\(701\) −39.4427 −1.48973 −0.744865 0.667215i \(-0.767486\pi\)
−0.744865 + 0.667215i \(0.767486\pi\)
\(702\) 6.39492 0.241361
\(703\) −2.24601 −0.0847100
\(704\) 9.34041 0.352030
\(705\) 12.5532 0.472780
\(706\) 14.9726 0.563501
\(707\) 20.2116 0.760136
\(708\) −0.204406 −0.00768207
\(709\) −4.07382 −0.152996 −0.0764978 0.997070i \(-0.524374\pi\)
−0.0764978 + 0.997070i \(0.524374\pi\)
\(710\) 33.9924 1.27571
\(711\) 10.2680 0.385079
\(712\) −55.0561 −2.06331
\(713\) 7.82661 0.293109
\(714\) −29.0893 −1.08864
\(715\) −10.0336 −0.375236
\(716\) −1.81649 −0.0678853
\(717\) 23.4233 0.874760
\(718\) 19.3913 0.723677
\(719\) −18.4303 −0.687335 −0.343667 0.939091i \(-0.611669\pi\)
−0.343667 + 0.939091i \(0.611669\pi\)
\(720\) −4.75929 −0.177368
\(721\) 14.9475 0.556674
\(722\) −26.7696 −0.996263
\(723\) 22.3826 0.832419
\(724\) −3.53686 −0.131446
\(725\) 0 0
\(726\) 11.9671 0.444142
\(727\) 17.6150 0.653306 0.326653 0.945144i \(-0.394079\pi\)
0.326653 + 0.945144i \(0.394079\pi\)
\(728\) −69.3109 −2.56883
\(729\) 1.00000 0.0370370
\(730\) 5.53689 0.204929
\(731\) 9.82535 0.363404
\(732\) 2.91996 0.107925
\(733\) −8.22724 −0.303880 −0.151940 0.988390i \(-0.548552\pi\)
−0.151940 + 0.988390i \(0.548552\pi\)
\(734\) 26.9320 0.994079
\(735\) 20.3082 0.749078
\(736\) −6.00051 −0.221182
\(737\) 8.25113 0.303934
\(738\) 4.38571 0.161440
\(739\) 35.8226 1.31776 0.658878 0.752250i \(-0.271031\pi\)
0.658878 + 0.752250i \(0.271031\pi\)
\(740\) 0.336514 0.0123705
\(741\) −33.8664 −1.24411
\(742\) 40.4864 1.48630
\(743\) 9.29461 0.340986 0.170493 0.985359i \(-0.445464\pi\)
0.170493 + 0.985359i \(0.445464\pi\)
\(744\) 11.7348 0.430218
\(745\) 25.2032 0.923375
\(746\) −8.39063 −0.307203
\(747\) 1.52139 0.0556647
\(748\) −3.16957 −0.115891
\(749\) −21.0507 −0.769175
\(750\) 14.7315 0.537917
\(751\) −44.8712 −1.63737 −0.818687 0.574240i \(-0.805298\pi\)
−0.818687 + 0.574240i \(0.805298\pi\)
\(752\) −18.4716 −0.673592
\(753\) −5.95981 −0.217188
\(754\) 0 0
\(755\) 5.27646 0.192030
\(756\) −2.28457 −0.0830890
\(757\) 21.6178 0.785712 0.392856 0.919600i \(-0.371487\pi\)
0.392856 + 0.919600i \(0.371487\pi\)
\(758\) 9.42966 0.342501
\(759\) 2.16145 0.0784557
\(760\) 35.3793 1.28334
\(761\) −39.3758 −1.42737 −0.713685 0.700466i \(-0.752975\pi\)
−0.713685 + 0.700466i \(0.752975\pi\)
\(762\) 5.40669 0.195864
\(763\) −63.6606 −2.30467
\(764\) −9.41169 −0.340503
\(765\) 10.1030 0.365276
\(766\) −30.8279 −1.11386
\(767\) −2.02122 −0.0729822
\(768\) −11.8240 −0.426662
\(769\) 4.29550 0.154900 0.0774499 0.996996i \(-0.475322\pi\)
0.0774499 + 0.996996i \(0.475322\pi\)
\(770\) −9.83649 −0.354482
\(771\) −15.0723 −0.542816
\(772\) 7.15703 0.257587
\(773\) 27.9002 1.00350 0.501751 0.865012i \(-0.332690\pi\)
0.501751 + 0.865012i \(0.332690\pi\)
\(774\) −2.11755 −0.0761138
\(775\) −6.75302 −0.242576
\(776\) −20.8932 −0.750021
\(777\) −1.49819 −0.0537474
\(778\) −13.2983 −0.476768
\(779\) −23.2260 −0.832156
\(780\) 5.07411 0.181682
\(781\) −16.4897 −0.590049
\(782\) −13.9180 −0.497706
\(783\) 0 0
\(784\) −29.8829 −1.06725
\(785\) 29.1201 1.03934
\(786\) −0.0120581 −0.000430097 0
\(787\) −5.90689 −0.210558 −0.105279 0.994443i \(-0.533574\pi\)
−0.105279 + 0.994443i \(0.533574\pi\)
\(788\) 4.38266 0.156126
\(789\) −18.7252 −0.666636
\(790\) −22.3575 −0.795444
\(791\) −27.1276 −0.964547
\(792\) 3.24076 0.115156
\(793\) 28.8734 1.02532
\(794\) −6.17523 −0.219151
\(795\) −14.0614 −0.498707
\(796\) −13.0845 −0.463767
\(797\) −7.59899 −0.269170 −0.134585 0.990902i \(-0.542970\pi\)
−0.134585 + 0.990902i \(0.542970\pi\)
\(798\) −33.2010 −1.17530
\(799\) 39.2117 1.38721
\(800\) 5.17741 0.183049
\(801\) −17.9444 −0.634032
\(802\) 23.6600 0.835463
\(803\) −2.68595 −0.0947851
\(804\) −4.17269 −0.147159
\(805\) 15.7399 0.554759
\(806\) 24.4587 0.861521
\(807\) −23.1259 −0.814071
\(808\) 14.4993 0.510083
\(809\) −9.85027 −0.346317 −0.173159 0.984894i \(-0.555397\pi\)
−0.173159 + 0.984894i \(0.555397\pi\)
\(810\) −2.17740 −0.0765060
\(811\) 46.3250 1.62669 0.813346 0.581780i \(-0.197644\pi\)
0.813346 + 0.581780i \(0.197644\pi\)
\(812\) 0 0
\(813\) 21.3469 0.748667
\(814\) 0.447970 0.0157013
\(815\) 24.4109 0.855075
\(816\) −14.8664 −0.520427
\(817\) 11.2142 0.392334
\(818\) 21.7014 0.758772
\(819\) −22.5904 −0.789373
\(820\) 3.47988 0.121523
\(821\) 18.0554 0.630136 0.315068 0.949069i \(-0.397973\pi\)
0.315068 + 0.949069i \(0.397973\pi\)
\(822\) −14.7870 −0.515757
\(823\) −33.6347 −1.17243 −0.586216 0.810155i \(-0.699383\pi\)
−0.586216 + 0.810155i \(0.699383\pi\)
\(824\) 10.7229 0.373551
\(825\) −1.86496 −0.0649296
\(826\) −1.98151 −0.0689457
\(827\) 41.1338 1.43036 0.715181 0.698939i \(-0.246344\pi\)
0.715181 + 0.698939i \(0.246344\pi\)
\(828\) −1.09307 −0.0379868
\(829\) 7.95542 0.276303 0.138152 0.990411i \(-0.455884\pi\)
0.138152 + 0.990411i \(0.455884\pi\)
\(830\) −3.31267 −0.114984
\(831\) −8.32181 −0.288680
\(832\) −46.7077 −1.61930
\(833\) 63.4357 2.19792
\(834\) −5.98774 −0.207339
\(835\) −29.4253 −1.01830
\(836\) −3.61759 −0.125117
\(837\) 3.82471 0.132201
\(838\) −4.52591 −0.156345
\(839\) −11.3228 −0.390908 −0.195454 0.980713i \(-0.562618\pi\)
−0.195454 + 0.980713i \(0.562618\pi\)
\(840\) 23.5996 0.814263
\(841\) 0 0
\(842\) −10.0342 −0.345801
\(843\) −28.9202 −0.996065
\(844\) 1.18126 0.0406606
\(845\) 26.7944 0.921756
\(846\) −8.45087 −0.290547
\(847\) −42.2745 −1.45257
\(848\) 20.6910 0.710532
\(849\) 29.9799 1.02891
\(850\) 12.0088 0.411899
\(851\) −0.716822 −0.0245723
\(852\) 8.33904 0.285691
\(853\) 14.5146 0.496971 0.248486 0.968636i \(-0.420067\pi\)
0.248486 + 0.968636i \(0.420067\pi\)
\(854\) 28.3061 0.968615
\(855\) 11.5311 0.394356
\(856\) −15.1012 −0.516148
\(857\) −10.7169 −0.366083 −0.183042 0.983105i \(-0.558594\pi\)
−0.183042 + 0.983105i \(0.558594\pi\)
\(858\) 6.75469 0.230601
\(859\) 15.7139 0.536150 0.268075 0.963398i \(-0.413612\pi\)
0.268075 + 0.963398i \(0.413612\pi\)
\(860\) −1.68019 −0.0572939
\(861\) −15.4928 −0.527992
\(862\) −23.1603 −0.788844
\(863\) −14.4146 −0.490679 −0.245340 0.969437i \(-0.578899\pi\)
−0.245340 + 0.969437i \(0.578899\pi\)
\(864\) −2.93233 −0.0997598
\(865\) −8.02775 −0.272952
\(866\) 19.5542 0.664478
\(867\) 14.5584 0.494430
\(868\) −8.73781 −0.296581
\(869\) 10.8456 0.367913
\(870\) 0 0
\(871\) −41.2606 −1.39806
\(872\) −45.6684 −1.54653
\(873\) −6.80968 −0.230473
\(874\) −15.8853 −0.537328
\(875\) −52.0398 −1.75926
\(876\) 1.35831 0.0458932
\(877\) 13.5829 0.458662 0.229331 0.973348i \(-0.426346\pi\)
0.229331 + 0.973348i \(0.426346\pi\)
\(878\) −3.59384 −0.121286
\(879\) 8.75406 0.295267
\(880\) −5.02703 −0.169461
\(881\) 21.3996 0.720972 0.360486 0.932765i \(-0.382611\pi\)
0.360486 + 0.932765i \(0.382611\pi\)
\(882\) −13.6716 −0.460346
\(883\) −11.1221 −0.374288 −0.187144 0.982332i \(-0.559923\pi\)
−0.187144 + 0.982332i \(0.559923\pi\)
\(884\) 15.8498 0.533085
\(885\) 0.688204 0.0231337
\(886\) −12.7024 −0.426744
\(887\) −1.53319 −0.0514795 −0.0257397 0.999669i \(-0.508194\pi\)
−0.0257397 + 0.999669i \(0.508194\pi\)
\(888\) −1.07476 −0.0360667
\(889\) −19.0995 −0.640575
\(890\) 39.0720 1.30970
\(891\) 1.05626 0.0353860
\(892\) −1.44457 −0.0483678
\(893\) 44.7543 1.49765
\(894\) −16.9670 −0.567461
\(895\) 6.11582 0.204429
\(896\) −20.7073 −0.691783
\(897\) −10.8086 −0.360887
\(898\) 5.33110 0.177901
\(899\) 0 0
\(900\) 0.943132 0.0314377
\(901\) −43.9230 −1.46329
\(902\) 4.63244 0.154243
\(903\) 7.48036 0.248931
\(904\) −19.4606 −0.647251
\(905\) 11.9080 0.395837
\(906\) −3.55215 −0.118012
\(907\) 7.68948 0.255325 0.127663 0.991818i \(-0.459253\pi\)
0.127663 + 0.991818i \(0.459253\pi\)
\(908\) −7.70396 −0.255665
\(909\) 4.72573 0.156743
\(910\) 49.1884 1.63058
\(911\) −29.5727 −0.979788 −0.489894 0.871782i \(-0.662964\pi\)
−0.489894 + 0.871782i \(0.662964\pi\)
\(912\) −16.9677 −0.561858
\(913\) 1.60698 0.0531832
\(914\) −13.7398 −0.454473
\(915\) −9.83105 −0.325004
\(916\) −13.7529 −0.454408
\(917\) 0.0425958 0.00140664
\(918\) −6.80144 −0.224481
\(919\) −34.2295 −1.12913 −0.564564 0.825389i \(-0.690956\pi\)
−0.564564 + 0.825389i \(0.690956\pi\)
\(920\) 11.2914 0.372266
\(921\) −33.9161 −1.11757
\(922\) −23.8622 −0.785861
\(923\) 82.4586 2.71416
\(924\) −2.41310 −0.0793850
\(925\) 0.618494 0.0203360
\(926\) −0.912053 −0.0299719
\(927\) 3.49491 0.114788
\(928\) 0 0
\(929\) 48.1477 1.57967 0.789837 0.613317i \(-0.210165\pi\)
0.789837 + 0.613317i \(0.210165\pi\)
\(930\) −8.32791 −0.273083
\(931\) 72.4023 2.37289
\(932\) 12.0742 0.395502
\(933\) 8.12574 0.266025
\(934\) −12.6460 −0.413790
\(935\) 10.6714 0.348993
\(936\) −16.2058 −0.529702
\(937\) −13.7375 −0.448784 −0.224392 0.974499i \(-0.572040\pi\)
−0.224392 + 0.974499i \(0.572040\pi\)
\(938\) −40.4500 −1.32074
\(939\) 2.52738 0.0824780
\(940\) −6.70542 −0.218707
\(941\) −37.2514 −1.21436 −0.607181 0.794563i \(-0.707700\pi\)
−0.607181 + 0.794563i \(0.707700\pi\)
\(942\) −19.6039 −0.638729
\(943\) −7.41263 −0.241389
\(944\) −1.01267 −0.0329597
\(945\) 7.69178 0.250214
\(946\) −2.23668 −0.0727207
\(947\) 16.4787 0.535486 0.267743 0.963490i \(-0.413722\pi\)
0.267743 + 0.963490i \(0.413722\pi\)
\(948\) −5.48476 −0.178137
\(949\) 13.4314 0.436001
\(950\) 13.7063 0.444690
\(951\) 16.6383 0.539533
\(952\) 73.7169 2.38918
\(953\) −27.7913 −0.900247 −0.450124 0.892966i \(-0.648620\pi\)
−0.450124 + 0.892966i \(0.648620\pi\)
\(954\) 9.46624 0.306481
\(955\) 31.6877 1.02539
\(956\) −12.5118 −0.404662
\(957\) 0 0
\(958\) 16.9235 0.546773
\(959\) 52.2360 1.68679
\(960\) 15.9034 0.513281
\(961\) −16.3716 −0.528117
\(962\) −2.24012 −0.0722244
\(963\) −4.92192 −0.158607
\(964\) −11.9559 −0.385075
\(965\) −24.0966 −0.775696
\(966\) −10.5962 −0.340928
\(967\) −51.9876 −1.67181 −0.835904 0.548876i \(-0.815056\pi\)
−0.835904 + 0.548876i \(0.815056\pi\)
\(968\) −30.3266 −0.974735
\(969\) 36.0192 1.15710
\(970\) 14.8274 0.476079
\(971\) 26.6145 0.854099 0.427049 0.904228i \(-0.359553\pi\)
0.427049 + 0.904228i \(0.359553\pi\)
\(972\) −0.534161 −0.0171332
\(973\) 21.1520 0.678103
\(974\) 1.76799 0.0566502
\(975\) 9.32593 0.298669
\(976\) 14.4661 0.463049
\(977\) 60.8959 1.94823 0.974116 0.226050i \(-0.0725813\pi\)
0.974116 + 0.226050i \(0.0725813\pi\)
\(978\) −16.4336 −0.525487
\(979\) −18.9539 −0.605768
\(980\) −10.8478 −0.346521
\(981\) −14.8847 −0.475231
\(982\) 14.7129 0.469507
\(983\) 46.9308 1.49686 0.748430 0.663214i \(-0.230808\pi\)
0.748430 + 0.663214i \(0.230808\pi\)
\(984\) −11.1141 −0.354305
\(985\) −14.7557 −0.470156
\(986\) 0 0
\(987\) 29.8532 0.950237
\(988\) 18.0901 0.575523
\(989\) 3.57904 0.113807
\(990\) −2.29989 −0.0730954
\(991\) 50.7905 1.61341 0.806707 0.590952i \(-0.201248\pi\)
0.806707 + 0.590952i \(0.201248\pi\)
\(992\) −11.2153 −0.356086
\(993\) 12.9286 0.410276
\(994\) 80.8386 2.56405
\(995\) 44.0534 1.39659
\(996\) −0.812667 −0.0257503
\(997\) −45.8087 −1.45078 −0.725389 0.688339i \(-0.758340\pi\)
−0.725389 + 0.688339i \(0.758340\pi\)
\(998\) 43.5469 1.37845
\(999\) −0.350297 −0.0110829
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.r.1.2 9
3.2 odd 2 7569.2.a.bj.1.8 9
29.16 even 7 87.2.g.a.82.1 yes 18
29.20 even 7 87.2.g.a.52.1 18
29.28 even 2 2523.2.a.o.1.8 9
87.20 odd 14 261.2.k.c.226.3 18
87.74 odd 14 261.2.k.c.82.3 18
87.86 odd 2 7569.2.a.bm.1.2 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.52.1 18 29.20 even 7
87.2.g.a.82.1 yes 18 29.16 even 7
261.2.k.c.82.3 18 87.74 odd 14
261.2.k.c.226.3 18 87.20 odd 14
2523.2.a.o.1.8 9 29.28 even 2
2523.2.a.r.1.2 9 1.1 even 1 trivial
7569.2.a.bj.1.8 9 3.2 odd 2
7569.2.a.bm.1.2 9 87.86 odd 2