Properties

Label 2523.2.a.r.1.2
Level 25232523
Weight 22
Character 2523.1
Self dual yes
Analytic conductor 20.14620.146
Analytic rank 00
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2523=3292 2523 = 3 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 20.146256430020.1462564300
Analytic rank: 00
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x94x86x7+33x6+6x590x4+21x3+84x236x8 x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 87)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 2.210722.21072 of defining polynomial
Character χ\chi == 2523.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.21072q2+1.00000q30.534161q4+1.79844q51.21072q6+4.27693q7+3.06816q8+1.00000q92.17740q10+1.05626q110.534161q125.28193q135.17816q14+1.79844q152.64635q16+5.61769q171.21072q18+6.41175q190.960655q20+4.27693q211.27883q22+2.04633q23+3.06816q241.76563q25+6.39492q26+1.00000q272.28457q282.17740q30+3.82471q312.93233q32+1.05626q336.80144q34+7.69178q350.534161q360.350297q377.76282q385.28193q39+5.51788q403.62240q415.17816q42+1.74900q430.564212q44+1.79844q452.47753q46+6.98005q472.64635q48+11.2921q49+2.13768q50+5.61769q51+2.82140q527.81869q531.21072q54+1.89961q55+13.1223q56+6.41175q57+0.382668q590.960655q605.46644q614.63064q62+4.27693q63+8.84292q649.49920q651.27883q66+7.81166q673.00075q68+2.04633q699.31258q7015.6115q71+3.06816q722.54289q73+0.424110q741.76563q753.42491q76+4.51754q77+6.39492q78+10.2680q794.75929q80+1.00000q81+4.38571q82+1.52139q832.28457q84+10.1030q852.11755q86+3.24076q8817.9444q892.17740q9022.5904q911.09307q92+3.82471q938.45087q94+11.5311q952.93233q966.80968q9713.6716q98+1.05626q99+O(q100)q-1.21072 q^{2} +1.00000 q^{3} -0.534161 q^{4} +1.79844 q^{5} -1.21072 q^{6} +4.27693 q^{7} +3.06816 q^{8} +1.00000 q^{9} -2.17740 q^{10} +1.05626 q^{11} -0.534161 q^{12} -5.28193 q^{13} -5.17816 q^{14} +1.79844 q^{15} -2.64635 q^{16} +5.61769 q^{17} -1.21072 q^{18} +6.41175 q^{19} -0.960655 q^{20} +4.27693 q^{21} -1.27883 q^{22} +2.04633 q^{23} +3.06816 q^{24} -1.76563 q^{25} +6.39492 q^{26} +1.00000 q^{27} -2.28457 q^{28} -2.17740 q^{30} +3.82471 q^{31} -2.93233 q^{32} +1.05626 q^{33} -6.80144 q^{34} +7.69178 q^{35} -0.534161 q^{36} -0.350297 q^{37} -7.76282 q^{38} -5.28193 q^{39} +5.51788 q^{40} -3.62240 q^{41} -5.17816 q^{42} +1.74900 q^{43} -0.564212 q^{44} +1.79844 q^{45} -2.47753 q^{46} +6.98005 q^{47} -2.64635 q^{48} +11.2921 q^{49} +2.13768 q^{50} +5.61769 q^{51} +2.82140 q^{52} -7.81869 q^{53} -1.21072 q^{54} +1.89961 q^{55} +13.1223 q^{56} +6.41175 q^{57} +0.382668 q^{59} -0.960655 q^{60} -5.46644 q^{61} -4.63064 q^{62} +4.27693 q^{63} +8.84292 q^{64} -9.49920 q^{65} -1.27883 q^{66} +7.81166 q^{67} -3.00075 q^{68} +2.04633 q^{69} -9.31258 q^{70} -15.6115 q^{71} +3.06816 q^{72} -2.54289 q^{73} +0.424110 q^{74} -1.76563 q^{75} -3.42491 q^{76} +4.51754 q^{77} +6.39492 q^{78} +10.2680 q^{79} -4.75929 q^{80} +1.00000 q^{81} +4.38571 q^{82} +1.52139 q^{83} -2.28457 q^{84} +10.1030 q^{85} -2.11755 q^{86} +3.24076 q^{88} -17.9444 q^{89} -2.17740 q^{90} -22.5904 q^{91} -1.09307 q^{92} +3.82471 q^{93} -8.45087 q^{94} +11.5311 q^{95} -2.93233 q^{96} -6.80968 q^{97} -13.6716 q^{98} +1.05626 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+5q2+9q3+11q44q5+5q6+5q7+24q8+9q9q11+11q12+q13+9q144q15+35q16+2q17+5q18+9q1918q20+5q21+q99+O(q100) 9 q + 5 q^{2} + 9 q^{3} + 11 q^{4} - 4 q^{5} + 5 q^{6} + 5 q^{7} + 24 q^{8} + 9 q^{9} - q^{11} + 11 q^{12} + q^{13} + 9 q^{14} - 4 q^{15} + 35 q^{16} + 2 q^{17} + 5 q^{18} + 9 q^{19} - 18 q^{20} + 5 q^{21}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.21072 −0.856107 −0.428054 0.903753i 0.640801π-0.640801\pi
−0.428054 + 0.903753i 0.640801π0.640801\pi
33 1.00000 0.577350
44 −0.534161 −0.267081
55 1.79844 0.804285 0.402142 0.915577i 0.368266π-0.368266\pi
0.402142 + 0.915577i 0.368266π0.368266\pi
66 −1.21072 −0.494274
77 4.27693 1.61653 0.808264 0.588821i 0.200408π-0.200408\pi
0.808264 + 0.588821i 0.200408π0.200408\pi
88 3.06816 1.08476
99 1.00000 0.333333
1010 −2.17740 −0.688554
1111 1.05626 0.318474 0.159237 0.987240i 0.449097π-0.449097\pi
0.159237 + 0.987240i 0.449097π0.449097\pi
1212 −0.534161 −0.154199
1313 −5.28193 −1.46494 −0.732471 0.680798i 0.761633π-0.761633\pi
−0.732471 + 0.680798i 0.761633π0.761633\pi
1414 −5.17816 −1.38392
1515 1.79844 0.464354
1616 −2.64635 −0.661587
1717 5.61769 1.36249 0.681245 0.732056i 0.261439π-0.261439\pi
0.681245 + 0.732056i 0.261439π0.261439\pi
1818 −1.21072 −0.285369
1919 6.41175 1.47096 0.735478 0.677548i 0.236958π-0.236958\pi
0.735478 + 0.677548i 0.236958π0.236958\pi
2020 −0.960655 −0.214809
2121 4.27693 0.933303
2222 −1.27883 −0.272648
2323 2.04633 0.426689 0.213345 0.976977i 0.431564π-0.431564\pi
0.213345 + 0.976977i 0.431564π0.431564\pi
2424 3.06816 0.626285
2525 −1.76563 −0.353126
2626 6.39492 1.25415
2727 1.00000 0.192450
2828 −2.28457 −0.431743
2929 0 0
3030 −2.17740 −0.397537
3131 3.82471 0.686937 0.343469 0.939164i 0.388398π-0.388398\pi
0.343469 + 0.939164i 0.388398π0.388398\pi
3232 −2.93233 −0.518367
3333 1.05626 0.183871
3434 −6.80144 −1.16644
3535 7.69178 1.30015
3636 −0.534161 −0.0890269
3737 −0.350297 −0.0575884 −0.0287942 0.999585i 0.509167π-0.509167\pi
−0.0287942 + 0.999585i 0.509167π0.509167\pi
3838 −7.76282 −1.25930
3939 −5.28193 −0.845785
4040 5.51788 0.872453
4141 −3.62240 −0.565725 −0.282862 0.959161i 0.591284π-0.591284\pi
−0.282862 + 0.959161i 0.591284π0.591284\pi
4242 −5.17816 −0.799007
4343 1.74900 0.266721 0.133360 0.991068i 0.457423π-0.457423\pi
0.133360 + 0.991068i 0.457423π0.457423\pi
4444 −0.564212 −0.0850582
4545 1.79844 0.268095
4646 −2.47753 −0.365292
4747 6.98005 1.01814 0.509072 0.860724i 0.329989π-0.329989\pi
0.509072 + 0.860724i 0.329989π0.329989\pi
4848 −2.64635 −0.381968
4949 11.2921 1.61316
5050 2.13768 0.302314
5151 5.61769 0.786634
5252 2.82140 0.391258
5353 −7.81869 −1.07398 −0.536990 0.843589i 0.680439π-0.680439\pi
−0.536990 + 0.843589i 0.680439π0.680439\pi
5454 −1.21072 −0.164758
5555 1.89961 0.256144
5656 13.1223 1.75354
5757 6.41175 0.849257
5858 0 0
5959 0.382668 0.0498191 0.0249096 0.999690i 0.492070π-0.492070\pi
0.0249096 + 0.999690i 0.492070π0.492070\pi
6060 −0.960655 −0.124020
6161 −5.46644 −0.699906 −0.349953 0.936767i 0.613803π-0.613803\pi
−0.349953 + 0.936767i 0.613803π0.613803\pi
6262 −4.63064 −0.588092
6363 4.27693 0.538843
6464 8.84292 1.10537
6565 −9.49920 −1.17823
6666 −1.27883 −0.157413
6767 7.81166 0.954346 0.477173 0.878809i 0.341662π-0.341662\pi
0.477173 + 0.878809i 0.341662π0.341662\pi
6868 −3.00075 −0.363895
6969 2.04633 0.246349
7070 −9.31258 −1.11307
7171 −15.6115 −1.85274 −0.926370 0.376615i 0.877088π-0.877088\pi
−0.926370 + 0.376615i 0.877088π0.877088\pi
7272 3.06816 0.361586
7373 −2.54289 −0.297623 −0.148811 0.988866i 0.547545π-0.547545\pi
−0.148811 + 0.988866i 0.547545π0.547545\pi
7474 0.424110 0.0493018
7575 −1.76563 −0.203877
7676 −3.42491 −0.392864
7777 4.51754 0.514822
7878 6.39492 0.724083
7979 10.2680 1.15524 0.577619 0.816306i 0.303982π-0.303982\pi
0.577619 + 0.816306i 0.303982π0.303982\pi
8080 −4.75929 −0.532104
8181 1.00000 0.111111
8282 4.38571 0.484321
8383 1.52139 0.166994 0.0834971 0.996508i 0.473391π-0.473391\pi
0.0834971 + 0.996508i 0.473391π0.473391\pi
8484 −2.28457 −0.249267
8585 10.1030 1.09583
8686 −2.11755 −0.228341
8787 0 0
8888 3.24076 0.345467
8989 −17.9444 −1.90210 −0.951049 0.309041i 0.899992π-0.899992\pi
−0.951049 + 0.309041i 0.899992π0.899992\pi
9090 −2.17740 −0.229518
9191 −22.5904 −2.36812
9292 −1.09307 −0.113960
9393 3.82471 0.396604
9494 −8.45087 −0.871641
9595 11.5311 1.18307
9696 −2.93233 −0.299279
9797 −6.80968 −0.691418 −0.345709 0.938342i 0.612362π-0.612362\pi
−0.345709 + 0.938342i 0.612362π0.612362\pi
9898 −13.6716 −1.38104
9999 1.05626 0.106158
100100 0.943132 0.0943132
101101 4.72573 0.470228 0.235114 0.971968i 0.424454π-0.424454\pi
0.235114 + 0.971968i 0.424454π0.424454\pi
102102 −6.80144 −0.673443
103103 3.49491 0.344364 0.172182 0.985065i 0.444918π-0.444918\pi
0.172182 + 0.985065i 0.444918π0.444918\pi
104104 −16.2058 −1.58911
105105 7.69178 0.750641
106106 9.46624 0.919442
107107 −4.92192 −0.475820 −0.237910 0.971287i 0.576462π-0.576462\pi
−0.237910 + 0.971287i 0.576462π0.576462\pi
108108 −0.534161 −0.0513997
109109 −14.8847 −1.42569 −0.712846 0.701321i 0.752594π-0.752594\pi
−0.712846 + 0.701321i 0.752594π0.752594\pi
110110 −2.29989 −0.219286
111111 −0.350297 −0.0332487
112112 −11.3182 −1.06947
113113 −6.34278 −0.596678 −0.298339 0.954460i 0.596433π-0.596433\pi
−0.298339 + 0.954460i 0.596433π0.596433\pi
114114 −7.76282 −0.727055
115115 3.68019 0.343180
116116 0 0
117117 −5.28193 −0.488314
118118 −0.463303 −0.0426505
119119 24.0265 2.20250
120120 5.51788 0.503711
121121 −9.88432 −0.898574
122122 6.61832 0.599195
123123 −3.62240 −0.326621
124124 −2.04301 −0.183468
125125 −12.1675 −1.08830
126126 −5.17816 −0.461307
127127 −4.46569 −0.396266 −0.198133 0.980175i 0.563488π-0.563488\pi
−0.198133 + 0.980175i 0.563488π0.563488\pi
128128 −4.84163 −0.427944
129129 1.74900 0.153991
130130 11.5009 1.00869
131131 0.00995943 0.000870160 0 0.000435080 1.00000i 0.499862π-0.499862\pi
0.000435080 1.00000i 0.499862π0.499862\pi
132132 −0.564212 −0.0491084
133133 27.4226 2.37784
134134 −9.45772 −0.817022
135135 1.79844 0.154785
136136 17.2359 1.47797
137137 12.2134 1.04346 0.521732 0.853109i 0.325286π-0.325286\pi
0.521732 + 0.853109i 0.325286π0.325286\pi
138138 −2.47753 −0.210901
139139 4.94561 0.419481 0.209741 0.977757i 0.432738π-0.432738\pi
0.209741 + 0.977757i 0.432738π0.432738\pi
140140 −4.10865 −0.347245
141141 6.98005 0.587826
142142 18.9011 1.58614
143143 −5.57908 −0.466546
144144 −2.64635 −0.220529
145145 0 0
146146 3.07873 0.254797
147147 11.2921 0.931359
148148 0.187115 0.0153808
149149 14.0140 1.14807 0.574035 0.818831i 0.305377π-0.305377\pi
0.574035 + 0.818831i 0.305377π0.305377\pi
150150 2.13768 0.174541
151151 2.93392 0.238759 0.119379 0.992849i 0.461910π-0.461910\pi
0.119379 + 0.992849i 0.461910π0.461910\pi
152152 19.6722 1.59563
153153 5.61769 0.454163
154154 −5.46947 −0.440742
155155 6.87849 0.552493
156156 2.82140 0.225893
157157 16.1919 1.29226 0.646128 0.763229i 0.276387π-0.276387\pi
0.646128 + 0.763229i 0.276387π0.276387\pi
158158 −12.4316 −0.989008
159159 −7.81869 −0.620063
160160 −5.27360 −0.416915
161161 8.75201 0.689755
162162 −1.21072 −0.0951230
163163 13.5734 1.06315 0.531575 0.847011i 0.321600π-0.321600\pi
0.531575 + 0.847011i 0.321600π0.321600\pi
164164 1.93495 0.151094
165165 1.89961 0.147885
166166 −1.84197 −0.142965
167167 −16.3616 −1.26610 −0.633050 0.774111i 0.718197π-0.718197\pi
−0.633050 + 0.774111i 0.718197π0.718197\pi
168168 13.1223 1.01241
169169 14.8987 1.14606
170170 −12.2319 −0.938147
171171 6.41175 0.490319
172172 −0.934250 −0.0712359
173173 −4.46374 −0.339372 −0.169686 0.985498i 0.554275π-0.554275\pi
−0.169686 + 0.985498i 0.554275π0.554275\pi
174174 0 0
175175 −7.55148 −0.570838
176176 −2.79523 −0.210698
177177 0.382668 0.0287631
178178 21.7256 1.62840
179179 3.40063 0.254175 0.127088 0.991891i 0.459437π-0.459437\pi
0.127088 + 0.991891i 0.459437π0.459437\pi
180180 −0.960655 −0.0716030
181181 6.62134 0.492160 0.246080 0.969250i 0.420857π-0.420857\pi
0.246080 + 0.969250i 0.420857π0.420857\pi
182182 27.3506 2.02736
183183 −5.46644 −0.404091
184184 6.27846 0.462854
185185 −0.629986 −0.0463175
186186 −4.63064 −0.339535
187187 5.93373 0.433917
188188 −3.72847 −0.271927
189189 4.27693 0.311101
190190 −13.9609 −1.01283
191191 17.6196 1.27491 0.637454 0.770489i 0.279988π-0.279988\pi
0.637454 + 0.770489i 0.279988π0.279988\pi
192192 8.84292 0.638183
193193 −13.3986 −0.964454 −0.482227 0.876046i 0.660172π-0.660172\pi
−0.482227 + 0.876046i 0.660172π0.660172\pi
194194 8.24460 0.591928
195195 −9.49920 −0.680252
196196 −6.03182 −0.430844
197197 −8.20476 −0.584565 −0.292282 0.956332i 0.594415π-0.594415\pi
−0.292282 + 0.956332i 0.594415π0.594415\pi
198198 −1.27883 −0.0908825
199199 24.4954 1.73643 0.868216 0.496187i 0.165267π-0.165267\pi
0.868216 + 0.496187i 0.165267π0.165267\pi
200200 −5.41723 −0.383056
201201 7.81166 0.550992
202202 −5.72153 −0.402565
203203 0 0
204204 −3.00075 −0.210095
205205 −6.51466 −0.455004
206206 −4.23135 −0.294812
207207 2.04633 0.142230
208208 13.9778 0.969187
209209 6.77246 0.468461
210210 −9.31258 −0.642629
211211 −2.21143 −0.152241 −0.0761205 0.997099i 0.524253π-0.524253\pi
−0.0761205 + 0.997099i 0.524253π0.524253\pi
212212 4.17644 0.286839
213213 −15.6115 −1.06968
214214 5.95905 0.407353
215215 3.14547 0.214519
216216 3.06816 0.208762
217217 16.3580 1.11045
218218 18.0211 1.22054
219219 −2.54289 −0.171833
220220 −1.01470 −0.0684110
221221 −29.6722 −1.99597
222222 0.424110 0.0284644
223223 2.70437 0.181098 0.0905491 0.995892i 0.471138π-0.471138\pi
0.0905491 + 0.995892i 0.471138π0.471138\pi
224224 −12.5414 −0.837955
225225 −1.76563 −0.117709
226226 7.67932 0.510820
227227 14.4225 0.957258 0.478629 0.878017i 0.341134π-0.341134\pi
0.478629 + 0.878017i 0.341134π0.341134\pi
228228 −3.42491 −0.226820
229229 25.7467 1.70139 0.850694 0.525662i 0.176182π-0.176182\pi
0.850694 + 0.525662i 0.176182π0.176182\pi
230230 −4.45567 −0.293798
231231 4.51754 0.297232
232232 0 0
233233 −22.6039 −1.48083 −0.740417 0.672148i 0.765372π-0.765372\pi
−0.740417 + 0.672148i 0.765372π0.765372\pi
234234 6.39492 0.418049
235235 12.5532 0.818878
236236 −0.204406 −0.0133057
237237 10.2680 0.666977
238238 −29.0893 −1.88558
239239 23.4233 1.51513 0.757565 0.652760i 0.226389π-0.226389\pi
0.757565 + 0.652760i 0.226389π0.226389\pi
240240 −4.75929 −0.307211
241241 22.3826 1.44179 0.720896 0.693043i 0.243730π-0.243730\pi
0.720896 + 0.693043i 0.243730π0.243730\pi
242242 11.9671 0.769276
243243 1.00000 0.0641500
244244 2.91996 0.186932
245245 20.3082 1.29744
246246 4.38571 0.279623
247247 −33.8664 −2.15487
248248 11.7348 0.745160
249249 1.52139 0.0964141
250250 14.7315 0.931700
251251 −5.95981 −0.376180 −0.188090 0.982152i 0.560230π-0.560230\pi
−0.188090 + 0.982152i 0.560230π0.560230\pi
252252 −2.28457 −0.143914
253253 2.16145 0.135889
254254 5.40669 0.339246
255255 10.1030 0.632677
256256 −11.8240 −0.739000
257257 −15.0723 −0.940185 −0.470092 0.882617i 0.655779π-0.655779\pi
−0.470092 + 0.882617i 0.655779π0.655779\pi
258258 −2.11755 −0.131833
259259 −1.49819 −0.0930932
260260 5.07411 0.314683
261261 0 0
262262 −0.0120581 −0.000744950 0
263263 −18.7252 −1.15465 −0.577324 0.816515i 0.695903π-0.695903\pi
−0.577324 + 0.816515i 0.695903π0.695903\pi
264264 3.24076 0.199455
265265 −14.0614 −0.863786
266266 −33.2010 −2.03569
267267 −17.9444 −1.09818
268268 −4.17269 −0.254887
269269 −23.1259 −1.41001 −0.705006 0.709202i 0.749056π-0.749056\pi
−0.705006 + 0.709202i 0.749056π0.749056\pi
270270 −2.17740 −0.132512
271271 21.3469 1.29673 0.648365 0.761330i 0.275453π-0.275453\pi
0.648365 + 0.761330i 0.275453π0.275453\pi
272272 −14.8664 −0.901406
273273 −22.5904 −1.36723
274274 −14.7870 −0.893317
275275 −1.86496 −0.112461
276276 −1.09307 −0.0657951
277277 −8.32181 −0.500009 −0.250004 0.968245i 0.580432π-0.580432\pi
−0.250004 + 0.968245i 0.580432π0.580432\pi
278278 −5.98774 −0.359121
279279 3.82471 0.228979
280280 23.5996 1.41034
281281 −28.9202 −1.72524 −0.862618 0.505856i 0.831177π-0.831177\pi
−0.862618 + 0.505856i 0.831177π0.831177\pi
282282 −8.45087 −0.503242
283283 29.9799 1.78212 0.891060 0.453885i 0.149962π-0.149962\pi
0.891060 + 0.453885i 0.149962π0.149962\pi
284284 8.33904 0.494831
285285 11.5311 0.683044
286286 6.75469 0.399413
287287 −15.4928 −0.914509
288288 −2.93233 −0.172789
289289 14.5584 0.856378
290290 0 0
291291 −6.80968 −0.399191
292292 1.35831 0.0794893
293293 8.75406 0.511418 0.255709 0.966754i 0.417691π-0.417691\pi
0.255709 + 0.966754i 0.417691π0.417691\pi
294294 −13.6716 −0.797343
295295 0.688204 0.0400688
296296 −1.07476 −0.0624694
297297 1.05626 0.0612903
298298 −16.9670 −0.982871
299299 −10.8086 −0.625075
300300 0.943132 0.0544517
301301 7.48036 0.431161
302302 −3.55215 −0.204403
303303 4.72573 0.271486
304304 −16.9677 −0.973166
305305 −9.83105 −0.562924
306306 −6.80144 −0.388812
307307 −33.9161 −1.93570 −0.967848 0.251536i 0.919064π-0.919064\pi
−0.967848 + 0.251536i 0.919064π0.919064\pi
308308 −2.41310 −0.137499
309309 3.49491 0.198819
310310 −8.32791 −0.472993
311311 8.12574 0.460769 0.230384 0.973100i 0.426002π-0.426002\pi
0.230384 + 0.973100i 0.426002π0.426002\pi
312312 −16.2058 −0.917471
313313 2.52738 0.142856 0.0714280 0.997446i 0.477244π-0.477244\pi
0.0714280 + 0.997446i 0.477244π0.477244\pi
314314 −19.6039 −1.10631
315315 7.69178 0.433383
316316 −5.48476 −0.308542
317317 16.6383 0.934499 0.467250 0.884125i 0.345245π-0.345245\pi
0.467250 + 0.884125i 0.345245π0.345245\pi
318318 9.46624 0.530840
319319 0 0
320320 15.9034 0.889028
321321 −4.92192 −0.274715
322322 −10.5962 −0.590504
323323 36.0192 2.00416
324324 −0.534161 −0.0296756
325325 9.32593 0.517309
326326 −16.4336 −0.910170
327327 −14.8847 −0.823123
328328 −11.1141 −0.613673
329329 29.8532 1.64586
330330 −2.29989 −0.126605
331331 12.9286 0.710619 0.355309 0.934749i 0.384375π-0.384375\pi
0.355309 + 0.934749i 0.384375π0.384375\pi
332332 −0.812667 −0.0446009
333333 −0.350297 −0.0191961
334334 19.8093 1.08392
335335 14.0488 0.767566
336336 −11.3182 −0.617461
337337 −5.56273 −0.303021 −0.151511 0.988456i 0.548414π-0.548414\pi
−0.151511 + 0.988456i 0.548414π0.548414\pi
338338 −18.0382 −0.981148
339339 −6.34278 −0.344492
340340 −5.39666 −0.292675
341341 4.03988 0.218772
342342 −7.76282 −0.419765
343343 18.3571 0.991192
344344 5.36621 0.289327
345345 3.68019 0.198135
346346 5.40433 0.290539
347347 −8.78686 −0.471703 −0.235852 0.971789i 0.575788π-0.575788\pi
−0.235852 + 0.971789i 0.575788π0.575788\pi
348348 0 0
349349 15.1943 0.813332 0.406666 0.913577i 0.366691π-0.366691\pi
0.406666 + 0.913577i 0.366691π0.366691\pi
350350 9.14271 0.488698
351351 −5.28193 −0.281928
352352 −3.09729 −0.165086
353353 −12.3667 −0.658214 −0.329107 0.944293i 0.606748π-0.606748\pi
−0.329107 + 0.944293i 0.606748π0.606748\pi
354354 −0.463303 −0.0246243
355355 −28.0762 −1.49013
356356 9.58518 0.508014
357357 24.0265 1.27161
358358 −4.11721 −0.217601
359359 −16.0164 −0.845312 −0.422656 0.906290i 0.638902π-0.638902\pi
−0.422656 + 0.906290i 0.638902π0.638902\pi
360360 5.51788 0.290818
361361 22.1105 1.16371
362362 −8.01657 −0.421342
363363 −9.88432 −0.518792
364364 12.0669 0.632479
365365 −4.57323 −0.239374
366366 6.61832 0.345945
367367 −22.2447 −1.16116 −0.580581 0.814203i 0.697174π-0.697174\pi
−0.580581 + 0.814203i 0.697174π0.697174\pi
368368 −5.41530 −0.282292
369369 −3.62240 −0.188575
370370 0.762735 0.0396527
371371 −33.4400 −1.73612
372372 −2.04301 −0.105925
373373 6.93029 0.358837 0.179418 0.983773i 0.442578π-0.442578\pi
0.179418 + 0.983773i 0.442578π0.442578\pi
374374 −7.18407 −0.371480
375375 −12.1675 −0.628330
376376 21.4159 1.10444
377377 0 0
378378 −5.17816 −0.266336
379379 −7.78848 −0.400067 −0.200034 0.979789i 0.564105π-0.564105\pi
−0.200034 + 0.979789i 0.564105π0.564105\pi
380380 −6.15948 −0.315975
381381 −4.46569 −0.228784
382382 −21.3323 −1.09146
383383 25.4625 1.30107 0.650537 0.759475i 0.274544π-0.274544\pi
0.650537 + 0.759475i 0.274544π0.274544\pi
384384 −4.84163 −0.247073
385385 8.12451 0.414063
386386 16.2220 0.825676
387387 1.74900 0.0889068
388388 3.63747 0.184664
389389 10.9838 0.556902 0.278451 0.960450i 0.410179π-0.410179\pi
0.278451 + 0.960450i 0.410179π0.410179\pi
390390 11.5009 0.582369
391391 11.4956 0.581359
392392 34.6460 1.74989
393393 0.00995943 0.000502387 0
394394 9.93365 0.500450
395395 18.4663 0.929140
396396 −0.564212 −0.0283527
397397 5.10047 0.255985 0.127993 0.991775i 0.459147π-0.459147\pi
0.127993 + 0.991775i 0.459147π0.459147\pi
398398 −29.6570 −1.48657
399399 27.4226 1.37285
400400 4.67247 0.233624
401401 −19.5421 −0.975886 −0.487943 0.872875i 0.662253π-0.662253\pi
−0.487943 + 0.872875i 0.662253π0.662253\pi
402402 −9.45772 −0.471708
403403 −20.2018 −1.00632
404404 −2.52430 −0.125589
405405 1.79844 0.0893650
406406 0 0
407407 −0.370004 −0.0183404
408408 17.2359 0.853306
409409 −17.9244 −0.886305 −0.443152 0.896446i 0.646140π-0.646140\pi
−0.443152 + 0.896446i 0.646140π0.646140\pi
410410 7.88742 0.389532
411411 12.2134 0.602444
412412 −1.86685 −0.0919730
413413 1.63664 0.0805340
414414 −2.47753 −0.121764
415415 2.73612 0.134311
416416 15.4883 0.759378
417417 4.94561 0.242188
418418 −8.19954 −0.401053
419419 3.73821 0.182623 0.0913116 0.995822i 0.470894π-0.470894\pi
0.0913116 + 0.995822i 0.470894π0.470894\pi
420420 −4.10865 −0.200482
421421 8.28779 0.403922 0.201961 0.979394i 0.435269π-0.435269\pi
0.201961 + 0.979394i 0.435269π0.435269\pi
422422 2.67742 0.130335
423423 6.98005 0.339382
424424 −23.9890 −1.16501
425425 −9.91876 −0.481131
426426 18.9011 0.915761
427427 −23.3796 −1.13142
428428 2.62910 0.127082
429429 −5.57908 −0.269360
430430 −3.80828 −0.183651
431431 19.1294 0.921432 0.460716 0.887548i 0.347593π-0.347593\pi
0.460716 + 0.887548i 0.347593π0.347593\pi
432432 −2.64635 −0.127323
433433 −16.1509 −0.776163 −0.388081 0.921625i 0.626862π-0.626862\pi
−0.388081 + 0.921625i 0.626862π0.626862\pi
434434 −19.8049 −0.950667
435435 0 0
436436 7.95081 0.380775
437437 13.1206 0.627641
438438 3.07873 0.147107
439439 2.96836 0.141672 0.0708360 0.997488i 0.477433π-0.477433\pi
0.0708360 + 0.997488i 0.477433π0.477433\pi
440440 5.82830 0.277853
441441 11.2921 0.537720
442442 35.9247 1.70876
443443 10.4916 0.498471 0.249235 0.968443i 0.419821π-0.419821\pi
0.249235 + 0.968443i 0.419821π0.419821\pi
444444 0.187115 0.00888008
445445 −32.2718 −1.52983
446446 −3.27423 −0.155039
447447 14.0140 0.662839
448448 37.8206 1.78685
449449 −4.40325 −0.207802 −0.103901 0.994588i 0.533133π-0.533133\pi
−0.103901 + 0.994588i 0.533133π0.533133\pi
450450 2.13768 0.100771
451451 −3.82619 −0.180168
452452 3.38807 0.159361
453453 2.93392 0.137847
454454 −17.4616 −0.819515
455455 −40.6274 −1.90464
456456 19.6722 0.921237
457457 11.3485 0.530860 0.265430 0.964130i 0.414486π-0.414486\pi
0.265430 + 0.964130i 0.414486π0.414486\pi
458458 −31.1720 −1.45657
459459 5.61769 0.262211
460460 −1.96582 −0.0916566
461461 19.7092 0.917947 0.458973 0.888450i 0.348217π-0.348217\pi
0.458973 + 0.888450i 0.348217π0.348217\pi
462462 −5.46947 −0.254463
463463 0.753315 0.0350095 0.0175048 0.999847i 0.494428π-0.494428\pi
0.0175048 + 0.999847i 0.494428π0.494428\pi
464464 0 0
465465 6.87849 0.318982
466466 27.3670 1.26775
467467 10.4450 0.483339 0.241670 0.970359i 0.422305π-0.422305\pi
0.241670 + 0.970359i 0.422305π0.422305\pi
468468 2.82140 0.130419
469469 33.4099 1.54273
470470 −15.1983 −0.701047
471471 16.1919 0.746085
472472 1.17408 0.0540416
473473 1.84740 0.0849435
474474 −12.4316 −0.571004
475475 −11.3208 −0.519433
476476 −12.8340 −0.588246
477477 −7.81869 −0.357993
478478 −28.3591 −1.29711
479479 −13.9781 −0.638673 −0.319337 0.947641i 0.603460π-0.603460\pi
−0.319337 + 0.947641i 0.603460π0.603460\pi
480480 −5.27360 −0.240706
481481 1.85024 0.0843637
482482 −27.0991 −1.23433
483483 8.75201 0.398230
484484 5.27982 0.239992
485485 −12.2468 −0.556097
486486 −1.21072 −0.0549193
487487 −1.46028 −0.0661718 −0.0330859 0.999453i 0.510533π-0.510533\pi
−0.0330859 + 0.999453i 0.510533π0.510533\pi
488488 −16.7719 −0.759228
489489 13.5734 0.613810
490490 −24.5875 −1.11075
491491 −12.1522 −0.548421 −0.274210 0.961670i 0.588416π-0.588416\pi
−0.274210 + 0.961670i 0.588416π0.588416\pi
492492 1.93495 0.0872342
493493 0 0
494494 41.0027 1.84480
495495 1.89961 0.0853812
496496 −10.1215 −0.454469
497497 −66.7691 −2.99501
498498 −1.84197 −0.0825408
499499 −35.9679 −1.61014 −0.805071 0.593178i 0.797873π-0.797873\pi
−0.805071 + 0.593178i 0.797873π0.797873\pi
500500 6.49943 0.290664
501501 −16.3616 −0.730983
502502 7.21565 0.322050
503503 −14.3546 −0.640041 −0.320020 0.947411i 0.603690π-0.603690\pi
−0.320020 + 0.947411i 0.603690π0.603690\pi
504504 13.1223 0.584513
505505 8.49892 0.378197
506506 −2.61691 −0.116336
507507 14.8987 0.661676
508508 2.38540 0.105835
509509 −31.0049 −1.37427 −0.687135 0.726530i 0.741132π-0.741132\pi
−0.687135 + 0.726530i 0.741132π0.741132\pi
510510 −12.2319 −0.541640
511511 −10.8758 −0.481116
512512 23.9988 1.06061
513513 6.41175 0.283086
514514 18.2483 0.804899
515515 6.28537 0.276967
516516 −0.934250 −0.0411281
517517 7.37273 0.324252
518518 1.81389 0.0796978
519519 −4.46374 −0.195936
520520 −29.1450 −1.27809
521521 −14.9084 −0.653150 −0.326575 0.945171i 0.605895π-0.605895\pi
−0.326575 + 0.945171i 0.605895π0.605895\pi
522522 0 0
523523 −12.9505 −0.566284 −0.283142 0.959078i 0.591377π-0.591377\pi
−0.283142 + 0.959078i 0.591377π0.591377\pi
524524 −0.00531995 −0.000232403 0
525525 −7.55148 −0.329573
526526 22.6710 0.988502
527527 21.4860 0.935945
528528 −2.79523 −0.121647
529529 −18.8125 −0.817936
530530 17.0244 0.739493
531531 0.382668 0.0166064
532532 −14.6481 −0.635076
533533 19.1333 0.828754
534534 21.7256 0.940157
535535 −8.85175 −0.382694
536536 23.9674 1.03523
537537 3.40063 0.146748
538538 27.9990 1.20712
539539 11.9274 0.513750
540540 −0.960655 −0.0413400
541541 10.8732 0.467475 0.233737 0.972300i 0.424904π-0.424904\pi
0.233737 + 0.972300i 0.424904π0.424904\pi
542542 −25.8450 −1.11014
543543 6.62134 0.284149
544544 −16.4729 −0.706270
545545 −26.7691 −1.14666
546546 27.3506 1.17050
547547 −23.1301 −0.988970 −0.494485 0.869186i 0.664643π-0.664643\pi
−0.494485 + 0.869186i 0.664643π0.664643\pi
548548 −6.52394 −0.278689
549549 −5.46644 −0.233302
550550 2.25794 0.0962790
551551 0 0
552552 6.27846 0.267229
553553 43.9154 1.86747
554554 10.0754 0.428061
555555 −0.629986 −0.0267414
556556 −2.64175 −0.112035
557557 −43.1297 −1.82746 −0.913731 0.406319i 0.866812π-0.866812\pi
−0.913731 + 0.406319i 0.866812π0.866812\pi
558558 −4.63064 −0.196031
559559 −9.23811 −0.390730
560560 −20.3551 −0.860162
561561 5.93373 0.250522
562562 35.0142 1.47699
563563 34.1036 1.43729 0.718647 0.695375i 0.244762π-0.244762\pi
0.718647 + 0.695375i 0.244762π0.244762\pi
564564 −3.72847 −0.156997
565565 −11.4071 −0.479899
566566 −36.2972 −1.52569
567567 4.27693 0.179614
568568 −47.8984 −2.00977
569569 −19.0810 −0.799917 −0.399958 0.916533i 0.630975π-0.630975\pi
−0.399958 + 0.916533i 0.630975π0.630975\pi
570570 −13.9609 −0.584759
571571 −6.56641 −0.274796 −0.137398 0.990516i 0.543874π-0.543874\pi
−0.137398 + 0.990516i 0.543874π0.543874\pi
572572 2.98013 0.124605
573573 17.6196 0.736068
574574 18.7574 0.782918
575575 −3.61306 −0.150675
576576 8.84292 0.368455
577577 −20.5602 −0.855934 −0.427967 0.903794i 0.640770π-0.640770\pi
−0.427967 + 0.903794i 0.640770π0.640770\pi
578578 −17.6261 −0.733151
579579 −13.3986 −0.556828
580580 0 0
581581 6.50687 0.269951
582582 8.24460 0.341750
583583 −8.25856 −0.342035
584584 −7.80199 −0.322849
585585 −9.49920 −0.392744
586586 −10.5987 −0.437828
587587 −9.69142 −0.400008 −0.200004 0.979795i 0.564095π-0.564095\pi
−0.200004 + 0.979795i 0.564095π0.564095\pi
588588 −6.03182 −0.248748
589589 24.5231 1.01046
590590 −0.833221 −0.0343032
591591 −8.20476 −0.337499
592592 0.927007 0.0380997
593593 −13.1810 −0.541279 −0.270639 0.962681i 0.587235π-0.587235\pi
−0.270639 + 0.962681i 0.587235π0.587235\pi
594594 −1.27883 −0.0524711
595595 43.2100 1.77144
596596 −7.48573 −0.306627
597597 24.4954 1.00253
598598 13.0861 0.535131
599599 −14.4397 −0.589991 −0.294995 0.955499i 0.595318π-0.595318\pi
−0.294995 + 0.955499i 0.595318π0.595318\pi
600600 −5.41723 −0.221157
601601 4.88823 0.199395 0.0996976 0.995018i 0.468212π-0.468212\pi
0.0996976 + 0.995018i 0.468212π0.468212\pi
602602 −9.05661 −0.369120
603603 7.81166 0.318115
604604 −1.56718 −0.0637678
605605 −17.7763 −0.722710
606606 −5.72153 −0.232421
607607 −12.5548 −0.509583 −0.254792 0.966996i 0.582007π-0.582007\pi
−0.254792 + 0.966996i 0.582007π0.582007\pi
608608 −18.8014 −0.762496
609609 0 0
610610 11.9026 0.481923
611611 −36.8681 −1.49152
612612 −3.00075 −0.121298
613613 3.49761 0.141267 0.0706336 0.997502i 0.477498π-0.477498\pi
0.0706336 + 0.997502i 0.477498π0.477498\pi
614614 41.0629 1.65716
615615 −6.51466 −0.262696
616616 13.8605 0.558456
617617 −27.2896 −1.09864 −0.549318 0.835613i 0.685113π-0.685113\pi
−0.549318 + 0.835613i 0.685113π0.685113\pi
618618 −4.23135 −0.170210
619619 −25.5410 −1.02658 −0.513289 0.858216i 0.671573π-0.671573\pi
−0.513289 + 0.858216i 0.671573π0.671573\pi
620620 −3.67422 −0.147560
621621 2.04633 0.0821164
622622 −9.83798 −0.394467
623623 −76.7467 −3.07479
624624 13.9778 0.559561
625625 −13.0544 −0.522176
626626 −3.05995 −0.122300
627627 6.77246 0.270466
628628 −8.64911 −0.345137
629629 −1.96786 −0.0784636
630630 −9.31258 −0.371022
631631 20.7956 0.827858 0.413929 0.910309i 0.364156π-0.364156\pi
0.413929 + 0.910309i 0.364156π0.364156\pi
632632 31.5038 1.25315
633633 −2.21143 −0.0878963
634634 −20.1443 −0.800031
635635 −8.03126 −0.318711
636636 4.17644 0.165607
637637 −59.6442 −2.36319
638638 0 0
639639 −15.6115 −0.617580
640640 −8.70736 −0.344188
641641 −14.1393 −0.558468 −0.279234 0.960223i 0.590080π-0.590080\pi
−0.279234 + 0.960223i 0.590080π0.590080\pi
642642 5.95905 0.235185
643643 35.4943 1.39976 0.699878 0.714262i 0.253238π-0.253238\pi
0.699878 + 0.714262i 0.253238π0.253238\pi
644644 −4.67498 −0.184220
645645 3.14547 0.123853
646646 −43.6091 −1.71578
647647 −20.0626 −0.788743 −0.394371 0.918951i 0.629038π-0.629038\pi
−0.394371 + 0.918951i 0.629038π0.629038\pi
648648 3.06816 0.120529
649649 0.404196 0.0158661
650650 −11.2911 −0.442872
651651 16.3580 0.641121
652652 −7.25038 −0.283947
653653 13.3537 0.522569 0.261285 0.965262i 0.415854π-0.415854\pi
0.261285 + 0.965262i 0.415854π0.415854\pi
654654 18.0211 0.704682
655655 0.0179114 0.000699856 0
656656 9.58615 0.374276
657657 −2.54289 −0.0992077
658658 −36.1438 −1.40903
659659 11.3791 0.443267 0.221633 0.975130i 0.428861π-0.428861\pi
0.221633 + 0.975130i 0.428861π0.428861\pi
660660 −1.01470 −0.0394971
661661 −37.0298 −1.44029 −0.720145 0.693823i 0.755925π-0.755925\pi
−0.720145 + 0.693823i 0.755925π0.755925\pi
662662 −15.6529 −0.608366
663663 −29.6722 −1.15237
664664 4.66786 0.181148
665665 49.3178 1.91246
666666 0.424110 0.0164339
667667 0 0
668668 8.73974 0.338151
669669 2.70437 0.104557
670670 −17.0091 −0.657119
671671 −5.77398 −0.222902
672672 −12.5414 −0.483794
673673 37.2436 1.43563 0.717817 0.696232i 0.245141π-0.245141\pi
0.717817 + 0.696232i 0.245141π0.245141\pi
674674 6.73490 0.259419
675675 −1.76563 −0.0679591
676676 −7.95833 −0.306090
677677 44.9350 1.72699 0.863496 0.504356i 0.168270π-0.168270\pi
0.863496 + 0.504356i 0.168270π0.168270\pi
678678 7.67932 0.294922
679679 −29.1245 −1.11770
680680 30.9977 1.18871
681681 14.4225 0.552673
682682 −4.89115 −0.187292
683683 22.6022 0.864848 0.432424 0.901670i 0.357658π-0.357658\pi
0.432424 + 0.901670i 0.357658π0.357658\pi
684684 −3.42491 −0.130955
685685 21.9651 0.839242
686686 −22.2253 −0.848567
687687 25.7467 0.982296
688688 −4.62847 −0.176459
689689 41.2978 1.57332
690690 −4.45567 −0.169625
691691 −38.8727 −1.47879 −0.739394 0.673273i 0.764888π-0.764888\pi
−0.739394 + 0.673273i 0.764888π0.764888\pi
692692 2.38436 0.0906397
693693 4.51754 0.171607
694694 10.6384 0.403828
695695 8.89436 0.337382
696696 0 0
697697 −20.3495 −0.770794
698698 −18.3960 −0.696299
699699 −22.6039 −0.854960
700700 4.03371 0.152460
701701 −39.4427 −1.48973 −0.744865 0.667215i 0.767486π-0.767486\pi
−0.744865 + 0.667215i 0.767486π0.767486\pi
702702 6.39492 0.241361
703703 −2.24601 −0.0847100
704704 9.34041 0.352030
705705 12.5532 0.472780
706706 14.9726 0.563501
707707 20.2116 0.760136
708708 −0.204406 −0.00768207
709709 −4.07382 −0.152996 −0.0764978 0.997070i 0.524374π-0.524374\pi
−0.0764978 + 0.997070i 0.524374π0.524374\pi
710710 33.9924 1.27571
711711 10.2680 0.385079
712712 −55.0561 −2.06331
713713 7.82661 0.293109
714714 −29.0893 −1.08864
715715 −10.0336 −0.375236
716716 −1.81649 −0.0678853
717717 23.4233 0.874760
718718 19.3913 0.723677
719719 −18.4303 −0.687335 −0.343667 0.939091i 0.611669π-0.611669\pi
−0.343667 + 0.939091i 0.611669π0.611669\pi
720720 −4.75929 −0.177368
721721 14.9475 0.556674
722722 −26.7696 −0.996263
723723 22.3826 0.832419
724724 −3.53686 −0.131446
725725 0 0
726726 11.9671 0.444142
727727 17.6150 0.653306 0.326653 0.945144i 0.394079π-0.394079\pi
0.326653 + 0.945144i 0.394079π0.394079\pi
728728 −69.3109 −2.56883
729729 1.00000 0.0370370
730730 5.53689 0.204929
731731 9.82535 0.363404
732732 2.91996 0.107925
733733 −8.22724 −0.303880 −0.151940 0.988390i 0.548552π-0.548552\pi
−0.151940 + 0.988390i 0.548552π0.548552\pi
734734 26.9320 0.994079
735735 20.3082 0.749078
736736 −6.00051 −0.221182
737737 8.25113 0.303934
738738 4.38571 0.161440
739739 35.8226 1.31776 0.658878 0.752250i 0.271031π-0.271031\pi
0.658878 + 0.752250i 0.271031π0.271031\pi
740740 0.336514 0.0123705
741741 −33.8664 −1.24411
742742 40.4864 1.48630
743743 9.29461 0.340986 0.170493 0.985359i 0.445464π-0.445464\pi
0.170493 + 0.985359i 0.445464π0.445464\pi
744744 11.7348 0.430218
745745 25.2032 0.923375
746746 −8.39063 −0.307203
747747 1.52139 0.0556647
748748 −3.16957 −0.115891
749749 −21.0507 −0.769175
750750 14.7315 0.537917
751751 −44.8712 −1.63737 −0.818687 0.574240i 0.805298π-0.805298\pi
−0.818687 + 0.574240i 0.805298π0.805298\pi
752752 −18.4716 −0.673592
753753 −5.95981 −0.217188
754754 0 0
755755 5.27646 0.192030
756756 −2.28457 −0.0830890
757757 21.6178 0.785712 0.392856 0.919600i 0.371487π-0.371487\pi
0.392856 + 0.919600i 0.371487π0.371487\pi
758758 9.42966 0.342501
759759 2.16145 0.0784557
760760 35.3793 1.28334
761761 −39.3758 −1.42737 −0.713685 0.700466i 0.752975π-0.752975\pi
−0.713685 + 0.700466i 0.752975π0.752975\pi
762762 5.40669 0.195864
763763 −63.6606 −2.30467
764764 −9.41169 −0.340503
765765 10.1030 0.365276
766766 −30.8279 −1.11386
767767 −2.02122 −0.0729822
768768 −11.8240 −0.426662
769769 4.29550 0.154900 0.0774499 0.996996i 0.475322π-0.475322\pi
0.0774499 + 0.996996i 0.475322π0.475322\pi
770770 −9.83649 −0.354482
771771 −15.0723 −0.542816
772772 7.15703 0.257587
773773 27.9002 1.00350 0.501751 0.865012i 0.332690π-0.332690\pi
0.501751 + 0.865012i 0.332690π0.332690\pi
774774 −2.11755 −0.0761138
775775 −6.75302 −0.242576
776776 −20.8932 −0.750021
777777 −1.49819 −0.0537474
778778 −13.2983 −0.476768
779779 −23.2260 −0.832156
780780 5.07411 0.181682
781781 −16.4897 −0.590049
782782 −13.9180 −0.497706
783783 0 0
784784 −29.8829 −1.06725
785785 29.1201 1.03934
786786 −0.0120581 −0.000430097 0
787787 −5.90689 −0.210558 −0.105279 0.994443i 0.533574π-0.533574\pi
−0.105279 + 0.994443i 0.533574π0.533574\pi
788788 4.38266 0.156126
789789 −18.7252 −0.666636
790790 −22.3575 −0.795444
791791 −27.1276 −0.964547
792792 3.24076 0.115156
793793 28.8734 1.02532
794794 −6.17523 −0.219151
795795 −14.0614 −0.498707
796796 −13.0845 −0.463767
797797 −7.59899 −0.269170 −0.134585 0.990902i 0.542970π-0.542970\pi
−0.134585 + 0.990902i 0.542970π0.542970\pi
798798 −33.2010 −1.17530
799799 39.2117 1.38721
800800 5.17741 0.183049
801801 −17.9444 −0.634032
802802 23.6600 0.835463
803803 −2.68595 −0.0947851
804804 −4.17269 −0.147159
805805 15.7399 0.554759
806806 24.4587 0.861521
807807 −23.1259 −0.814071
808808 14.4993 0.510083
809809 −9.85027 −0.346317 −0.173159 0.984894i 0.555397π-0.555397\pi
−0.173159 + 0.984894i 0.555397π0.555397\pi
810810 −2.17740 −0.0765060
811811 46.3250 1.62669 0.813346 0.581780i 0.197644π-0.197644\pi
0.813346 + 0.581780i 0.197644π0.197644\pi
812812 0 0
813813 21.3469 0.748667
814814 0.447970 0.0157013
815815 24.4109 0.855075
816816 −14.8664 −0.520427
817817 11.2142 0.392334
818818 21.7014 0.758772
819819 −22.5904 −0.789373
820820 3.47988 0.121523
821821 18.0554 0.630136 0.315068 0.949069i 0.397973π-0.397973\pi
0.315068 + 0.949069i 0.397973π0.397973\pi
822822 −14.7870 −0.515757
823823 −33.6347 −1.17243 −0.586216 0.810155i 0.699383π-0.699383\pi
−0.586216 + 0.810155i 0.699383π0.699383\pi
824824 10.7229 0.373551
825825 −1.86496 −0.0649296
826826 −1.98151 −0.0689457
827827 41.1338 1.43036 0.715181 0.698939i 0.246344π-0.246344\pi
0.715181 + 0.698939i 0.246344π0.246344\pi
828828 −1.09307 −0.0379868
829829 7.95542 0.276303 0.138152 0.990411i 0.455884π-0.455884\pi
0.138152 + 0.990411i 0.455884π0.455884\pi
830830 −3.31267 −0.114984
831831 −8.32181 −0.288680
832832 −46.7077 −1.61930
833833 63.4357 2.19792
834834 −5.98774 −0.207339
835835 −29.4253 −1.01830
836836 −3.61759 −0.125117
837837 3.82471 0.132201
838838 −4.52591 −0.156345
839839 −11.3228 −0.390908 −0.195454 0.980713i 0.562618π-0.562618\pi
−0.195454 + 0.980713i 0.562618π0.562618\pi
840840 23.5996 0.814263
841841 0 0
842842 −10.0342 −0.345801
843843 −28.9202 −0.996065
844844 1.18126 0.0406606
845845 26.7944 0.921756
846846 −8.45087 −0.290547
847847 −42.2745 −1.45257
848848 20.6910 0.710532
849849 29.9799 1.02891
850850 12.0088 0.411899
851851 −0.716822 −0.0245723
852852 8.33904 0.285691
853853 14.5146 0.496971 0.248486 0.968636i 0.420067π-0.420067\pi
0.248486 + 0.968636i 0.420067π0.420067\pi
854854 28.3061 0.968615
855855 11.5311 0.394356
856856 −15.1012 −0.516148
857857 −10.7169 −0.366083 −0.183042 0.983105i 0.558594π-0.558594\pi
−0.183042 + 0.983105i 0.558594π0.558594\pi
858858 6.75469 0.230601
859859 15.7139 0.536150 0.268075 0.963398i 0.413612π-0.413612\pi
0.268075 + 0.963398i 0.413612π0.413612\pi
860860 −1.68019 −0.0572939
861861 −15.4928 −0.527992
862862 −23.1603 −0.788844
863863 −14.4146 −0.490679 −0.245340 0.969437i 0.578899π-0.578899\pi
−0.245340 + 0.969437i 0.578899π0.578899\pi
864864 −2.93233 −0.0997598
865865 −8.02775 −0.272952
866866 19.5542 0.664478
867867 14.5584 0.494430
868868 −8.73781 −0.296581
869869 10.8456 0.367913
870870 0 0
871871 −41.2606 −1.39806
872872 −45.6684 −1.54653
873873 −6.80968 −0.230473
874874 −15.8853 −0.537328
875875 −52.0398 −1.75926
876876 1.35831 0.0458932
877877 13.5829 0.458662 0.229331 0.973348i 0.426346π-0.426346\pi
0.229331 + 0.973348i 0.426346π0.426346\pi
878878 −3.59384 −0.121286
879879 8.75406 0.295267
880880 −5.02703 −0.169461
881881 21.3996 0.720972 0.360486 0.932765i 0.382611π-0.382611\pi
0.360486 + 0.932765i 0.382611π0.382611\pi
882882 −13.6716 −0.460346
883883 −11.1221 −0.374288 −0.187144 0.982332i 0.559923π-0.559923\pi
−0.187144 + 0.982332i 0.559923π0.559923\pi
884884 15.8498 0.533085
885885 0.688204 0.0231337
886886 −12.7024 −0.426744
887887 −1.53319 −0.0514795 −0.0257397 0.999669i 0.508194π-0.508194\pi
−0.0257397 + 0.999669i 0.508194π0.508194\pi
888888 −1.07476 −0.0360667
889889 −19.0995 −0.640575
890890 39.0720 1.30970
891891 1.05626 0.0353860
892892 −1.44457 −0.0483678
893893 44.7543 1.49765
894894 −16.9670 −0.567461
895895 6.11582 0.204429
896896 −20.7073 −0.691783
897897 −10.8086 −0.360887
898898 5.33110 0.177901
899899 0 0
900900 0.943132 0.0314377
901901 −43.9230 −1.46329
902902 4.63244 0.154243
903903 7.48036 0.248931
904904 −19.4606 −0.647251
905905 11.9080 0.395837
906906 −3.55215 −0.118012
907907 7.68948 0.255325 0.127663 0.991818i 0.459253π-0.459253\pi
0.127663 + 0.991818i 0.459253π0.459253\pi
908908 −7.70396 −0.255665
909909 4.72573 0.156743
910910 49.1884 1.63058
911911 −29.5727 −0.979788 −0.489894 0.871782i 0.662964π-0.662964\pi
−0.489894 + 0.871782i 0.662964π0.662964\pi
912912 −16.9677 −0.561858
913913 1.60698 0.0531832
914914 −13.7398 −0.454473
915915 −9.83105 −0.325004
916916 −13.7529 −0.454408
917917 0.0425958 0.00140664
918918 −6.80144 −0.224481
919919 −34.2295 −1.12913 −0.564564 0.825389i 0.690956π-0.690956\pi
−0.564564 + 0.825389i 0.690956π0.690956\pi
920920 11.2914 0.372266
921921 −33.9161 −1.11757
922922 −23.8622 −0.785861
923923 82.4586 2.71416
924924 −2.41310 −0.0793850
925925 0.618494 0.0203360
926926 −0.912053 −0.0299719
927927 3.49491 0.114788
928928 0 0
929929 48.1477 1.57967 0.789837 0.613317i 0.210165π-0.210165\pi
0.789837 + 0.613317i 0.210165π0.210165\pi
930930 −8.32791 −0.273083
931931 72.4023 2.37289
932932 12.0742 0.395502
933933 8.12574 0.266025
934934 −12.6460 −0.413790
935935 10.6714 0.348993
936936 −16.2058 −0.529702
937937 −13.7375 −0.448784 −0.224392 0.974499i 0.572040π-0.572040\pi
−0.224392 + 0.974499i 0.572040π0.572040\pi
938938 −40.4500 −1.32074
939939 2.52738 0.0824780
940940 −6.70542 −0.218707
941941 −37.2514 −1.21436 −0.607181 0.794563i 0.707700π-0.707700\pi
−0.607181 + 0.794563i 0.707700π0.707700\pi
942942 −19.6039 −0.638729
943943 −7.41263 −0.241389
944944 −1.01267 −0.0329597
945945 7.69178 0.250214
946946 −2.23668 −0.0727207
947947 16.4787 0.535486 0.267743 0.963490i 0.413722π-0.413722\pi
0.267743 + 0.963490i 0.413722π0.413722\pi
948948 −5.48476 −0.178137
949949 13.4314 0.436001
950950 13.7063 0.444690
951951 16.6383 0.539533
952952 73.7169 2.38918
953953 −27.7913 −0.900247 −0.450124 0.892966i 0.648620π-0.648620\pi
−0.450124 + 0.892966i 0.648620π0.648620\pi
954954 9.46624 0.306481
955955 31.6877 1.02539
956956 −12.5118 −0.404662
957957 0 0
958958 16.9235 0.546773
959959 52.2360 1.68679
960960 15.9034 0.513281
961961 −16.3716 −0.528117
962962 −2.24012 −0.0722244
963963 −4.92192 −0.158607
964964 −11.9559 −0.385075
965965 −24.0966 −0.775696
966966 −10.5962 −0.340928
967967 −51.9876 −1.67181 −0.835904 0.548876i 0.815056π-0.815056\pi
−0.835904 + 0.548876i 0.815056π0.815056\pi
968968 −30.3266 −0.974735
969969 36.0192 1.15710
970970 14.8274 0.476079
971971 26.6145 0.854099 0.427049 0.904228i 0.359553π-0.359553\pi
0.427049 + 0.904228i 0.359553π0.359553\pi
972972 −0.534161 −0.0171332
973973 21.1520 0.678103
974974 1.76799 0.0566502
975975 9.32593 0.298669
976976 14.4661 0.463049
977977 60.8959 1.94823 0.974116 0.226050i 0.0725813π-0.0725813\pi
0.974116 + 0.226050i 0.0725813π0.0725813\pi
978978 −16.4336 −0.525487
979979 −18.9539 −0.605768
980980 −10.8478 −0.346521
981981 −14.8847 −0.475231
982982 14.7129 0.469507
983983 46.9308 1.49686 0.748430 0.663214i 0.230808π-0.230808\pi
0.748430 + 0.663214i 0.230808π0.230808\pi
984984 −11.1141 −0.354305
985985 −14.7557 −0.470156
986986 0 0
987987 29.8532 0.950237
988988 18.0901 0.575523
989989 3.57904 0.113807
990990 −2.29989 −0.0730954
991991 50.7905 1.61341 0.806707 0.590952i 0.201248π-0.201248\pi
0.806707 + 0.590952i 0.201248π0.201248\pi
992992 −11.2153 −0.356086
993993 12.9286 0.410276
994994 80.8386 2.56405
995995 44.0534 1.39659
996996 −0.812667 −0.0257503
997997 −45.8087 −1.45078 −0.725389 0.688339i 0.758340π-0.758340\pi
−0.725389 + 0.688339i 0.758340π0.758340\pi
998998 43.5469 1.37845
999999 −0.350297 −0.0110829
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.r.1.2 9
3.2 odd 2 7569.2.a.bj.1.8 9
29.16 even 7 87.2.g.a.82.1 yes 18
29.20 even 7 87.2.g.a.52.1 18
29.28 even 2 2523.2.a.o.1.8 9
87.20 odd 14 261.2.k.c.226.3 18
87.74 odd 14 261.2.k.c.82.3 18
87.86 odd 2 7569.2.a.bm.1.2 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.52.1 18 29.20 even 7
87.2.g.a.82.1 yes 18 29.16 even 7
261.2.k.c.82.3 18 87.74 odd 14
261.2.k.c.226.3 18 87.20 odd 14
2523.2.a.o.1.8 9 29.28 even 2
2523.2.a.r.1.2 9 1.1 even 1 trivial
7569.2.a.bj.1.8 9 3.2 odd 2
7569.2.a.bm.1.2 9 87.86 odd 2