Properties

Label 253.3.c.a.208.20
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(208,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.208");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.20
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.703600i q^{2} +3.72628 q^{3} +3.50495 q^{4} -1.98039 q^{5} -2.62181i q^{6} +11.6103i q^{7} -5.28048i q^{8} +4.88516 q^{9} +1.39340i q^{10} +(10.9993 - 0.121761i) q^{11} +13.0604 q^{12} +9.72682i q^{13} +8.16898 q^{14} -7.37949 q^{15} +10.3044 q^{16} +0.249882i q^{17} -3.43720i q^{18} -29.1859i q^{19} -6.94116 q^{20} +43.2631i q^{21} +(-0.0856712 - 7.73913i) q^{22} +4.79583 q^{23} -19.6765i q^{24} -21.0781 q^{25} +6.84379 q^{26} -15.3330 q^{27} +40.6933i q^{28} -32.3885i q^{29} +5.19221i q^{30} -43.2877 q^{31} -28.3721i q^{32} +(40.9866 - 0.453716i) q^{33} +0.175817 q^{34} -22.9928i q^{35} +17.1222 q^{36} +42.4881 q^{37} -20.5352 q^{38} +36.2448i q^{39} +10.4574i q^{40} -34.4997i q^{41} +30.4399 q^{42} +32.0435i q^{43} +(38.5521 - 0.426767i) q^{44} -9.67452 q^{45} -3.37435i q^{46} +18.1225 q^{47} +38.3972 q^{48} -85.7980 q^{49} +14.8305i q^{50} +0.931132i q^{51} +34.0920i q^{52} +48.8222 q^{53} +10.7883i q^{54} +(-21.7830 + 0.241135i) q^{55} +61.3077 q^{56} -108.755i q^{57} -22.7885 q^{58} -27.2925 q^{59} -25.8647 q^{60} -46.8028i q^{61} +30.4572i q^{62} +56.7180i q^{63} +21.2551 q^{64} -19.2629i q^{65} +(-0.319235 - 28.8381i) q^{66} -35.9957 q^{67} +0.875825i q^{68} +17.8706 q^{69} -16.1778 q^{70} -63.5621 q^{71} -25.7960i q^{72} -59.6102i q^{73} -29.8946i q^{74} -78.5427 q^{75} -102.295i q^{76} +(1.41368 + 127.705i) q^{77} +25.5019 q^{78} +119.784i q^{79} -20.4068 q^{80} -101.102 q^{81} -24.2740 q^{82} +139.132i q^{83} +151.635i q^{84} -0.494865i q^{85} +22.5458 q^{86} -120.689i q^{87} +(-0.642958 - 58.0817i) q^{88} -9.28094 q^{89} +6.80699i q^{90} -112.931 q^{91} +16.8091 q^{92} -161.302 q^{93} -12.7510i q^{94} +57.7995i q^{95} -105.722i q^{96} -122.884 q^{97} +60.3675i q^{98} +(53.7335 - 0.594823i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.703600i 0.351800i −0.984408 0.175900i \(-0.943716\pi\)
0.984408 0.175900i \(-0.0562835\pi\)
\(3\) 3.72628 1.24209 0.621047 0.783774i \(-0.286708\pi\)
0.621047 + 0.783774i \(0.286708\pi\)
\(4\) 3.50495 0.876237
\(5\) −1.98039 −0.396078 −0.198039 0.980194i \(-0.563457\pi\)
−0.198039 + 0.980194i \(0.563457\pi\)
\(6\) 2.62181i 0.436968i
\(7\) 11.6103i 1.65861i 0.558798 + 0.829304i \(0.311263\pi\)
−0.558798 + 0.829304i \(0.688737\pi\)
\(8\) 5.28048i 0.660060i
\(9\) 4.88516 0.542796
\(10\) 1.39340i 0.139340i
\(11\) 10.9993 0.121761i 0.999939 0.0110692i
\(12\) 13.0604 1.08837
\(13\) 9.72682i 0.748217i 0.927385 + 0.374108i \(0.122051\pi\)
−0.927385 + 0.374108i \(0.877949\pi\)
\(14\) 8.16898 0.583498
\(15\) −7.37949 −0.491966
\(16\) 10.3044 0.644028
\(17\) 0.249882i 0.0146990i 0.999973 + 0.00734948i \(0.00233943\pi\)
−0.999973 + 0.00734948i \(0.997661\pi\)
\(18\) 3.43720i 0.190955i
\(19\) 29.1859i 1.53610i −0.640389 0.768050i \(-0.721227\pi\)
0.640389 0.768050i \(-0.278773\pi\)
\(20\) −6.94116 −0.347058
\(21\) 43.2631i 2.06015i
\(22\) −0.0856712 7.73913i −0.00389414 0.351778i
\(23\) 4.79583 0.208514
\(24\) 19.6765i 0.819856i
\(25\) −21.0781 −0.843122
\(26\) 6.84379 0.263223
\(27\) −15.3330 −0.567890
\(28\) 40.6933i 1.45333i
\(29\) 32.3885i 1.11684i −0.829557 0.558422i \(-0.811407\pi\)
0.829557 0.558422i \(-0.188593\pi\)
\(30\) 5.19221i 0.173074i
\(31\) −43.2877 −1.39638 −0.698189 0.715914i \(-0.746010\pi\)
−0.698189 + 0.715914i \(0.746010\pi\)
\(32\) 28.3721i 0.886629i
\(33\) 40.9866 0.453716i 1.24202 0.0137490i
\(34\) 0.175817 0.00517110
\(35\) 22.9928i 0.656938i
\(36\) 17.1222 0.475617
\(37\) 42.4881 1.14833 0.574164 0.818741i \(-0.305327\pi\)
0.574164 + 0.818741i \(0.305327\pi\)
\(38\) −20.5352 −0.540400
\(39\) 36.2448i 0.929355i
\(40\) 10.4574i 0.261435i
\(41\) 34.4997i 0.841455i −0.907187 0.420728i \(-0.861775\pi\)
0.907187 0.420728i \(-0.138225\pi\)
\(42\) 30.4399 0.724759
\(43\) 32.0435i 0.745197i 0.927993 + 0.372598i \(0.121533\pi\)
−0.927993 + 0.372598i \(0.878467\pi\)
\(44\) 38.5521 0.426767i 0.876183 0.00969924i
\(45\) −9.67452 −0.214989
\(46\) 3.37435i 0.0733554i
\(47\) 18.1225 0.385586 0.192793 0.981239i \(-0.438245\pi\)
0.192793 + 0.981239i \(0.438245\pi\)
\(48\) 38.3972 0.799942
\(49\) −85.7980 −1.75098
\(50\) 14.8305i 0.296610i
\(51\) 0.931132i 0.0182575i
\(52\) 34.0920i 0.655615i
\(53\) 48.8222 0.921174 0.460587 0.887614i \(-0.347639\pi\)
0.460587 + 0.887614i \(0.347639\pi\)
\(54\) 10.7883i 0.199784i
\(55\) −21.7830 + 0.241135i −0.396054 + 0.00438427i
\(56\) 61.3077 1.09478
\(57\) 108.755i 1.90798i
\(58\) −22.7885 −0.392906
\(59\) −27.2925 −0.462585 −0.231292 0.972884i \(-0.574295\pi\)
−0.231292 + 0.972884i \(0.574295\pi\)
\(60\) −25.8647 −0.431078
\(61\) 46.8028i 0.767259i −0.923487 0.383629i \(-0.874674\pi\)
0.923487 0.383629i \(-0.125326\pi\)
\(62\) 30.4572i 0.491245i
\(63\) 56.7180i 0.900285i
\(64\) 21.2551 0.332112
\(65\) 19.2629i 0.296352i
\(66\) −0.319235 28.8381i −0.00483689 0.436942i
\(67\) −35.9957 −0.537249 −0.268625 0.963245i \(-0.586569\pi\)
−0.268625 + 0.963245i \(0.586569\pi\)
\(68\) 0.875825i 0.0128798i
\(69\) 17.8706 0.258994
\(70\) −16.1778 −0.231111
\(71\) −63.5621 −0.895241 −0.447620 0.894224i \(-0.647728\pi\)
−0.447620 + 0.894224i \(0.647728\pi\)
\(72\) 25.7960i 0.358278i
\(73\) 59.6102i 0.816578i −0.912853 0.408289i \(-0.866126\pi\)
0.912853 0.408289i \(-0.133874\pi\)
\(74\) 29.8946i 0.403982i
\(75\) −78.5427 −1.04724
\(76\) 102.295i 1.34599i
\(77\) 1.41368 + 127.705i 0.0183595 + 1.65851i
\(78\) 25.5019 0.326947
\(79\) 119.784i 1.51625i 0.652109 + 0.758125i \(0.273884\pi\)
−0.652109 + 0.758125i \(0.726116\pi\)
\(80\) −20.4068 −0.255085
\(81\) −101.102 −1.24817
\(82\) −24.2740 −0.296024
\(83\) 139.132i 1.67629i 0.545448 + 0.838145i \(0.316360\pi\)
−0.545448 + 0.838145i \(0.683640\pi\)
\(84\) 151.635i 1.80518i
\(85\) 0.494865i 0.00582194i
\(86\) 22.5458 0.262160
\(87\) 120.689i 1.38723i
\(88\) −0.642958 58.0817i −0.00730634 0.660020i
\(89\) −9.28094 −0.104280 −0.0521401 0.998640i \(-0.516604\pi\)
−0.0521401 + 0.998640i \(0.516604\pi\)
\(90\) 6.80699i 0.0756333i
\(91\) −112.931 −1.24100
\(92\) 16.8091 0.182708
\(93\) −161.302 −1.73443
\(94\) 12.7510i 0.135649i
\(95\) 57.7995i 0.608416i
\(96\) 105.722i 1.10128i
\(97\) −122.884 −1.26685 −0.633423 0.773806i \(-0.718351\pi\)
−0.633423 + 0.773806i \(0.718351\pi\)
\(98\) 60.3675i 0.615995i
\(99\) 53.7335 0.594823i 0.542762 0.00600831i
\(100\) −73.8775 −0.738775
\(101\) 35.5807i 0.352285i 0.984365 + 0.176142i \(0.0563619\pi\)
−0.984365 + 0.176142i \(0.943638\pi\)
\(102\) 0.655144 0.00642298
\(103\) −5.72707 −0.0556026 −0.0278013 0.999613i \(-0.508851\pi\)
−0.0278013 + 0.999613i \(0.508851\pi\)
\(104\) 51.3623 0.493868
\(105\) 85.6777i 0.815978i
\(106\) 34.3513i 0.324069i
\(107\) 2.39079i 0.0223438i −0.999938 0.0111719i \(-0.996444\pi\)
0.999938 0.0111719i \(-0.00355620\pi\)
\(108\) −53.7415 −0.497607
\(109\) 38.3646i 0.351969i 0.984393 + 0.175984i \(0.0563108\pi\)
−0.984393 + 0.175984i \(0.943689\pi\)
\(110\) 0.169662 + 15.3265i 0.00154238 + 0.139332i
\(111\) 158.323 1.42633
\(112\) 119.637i 1.06819i
\(113\) 99.2696 0.878492 0.439246 0.898367i \(-0.355246\pi\)
0.439246 + 0.898367i \(0.355246\pi\)
\(114\) −76.5199 −0.671227
\(115\) −9.49761 −0.0825880
\(116\) 113.520i 0.978620i
\(117\) 47.5171i 0.406129i
\(118\) 19.2030i 0.162737i
\(119\) −2.90120 −0.0243798
\(120\) 38.9672i 0.324727i
\(121\) 120.970 2.67858i 0.999755 0.0221370i
\(122\) −32.9304 −0.269922
\(123\) 128.555i 1.04517i
\(124\) −151.721 −1.22356
\(125\) 91.2525 0.730020
\(126\) 39.9068 0.316720
\(127\) 90.5479i 0.712975i −0.934300 0.356488i \(-0.883974\pi\)
0.934300 0.356488i \(-0.116026\pi\)
\(128\) 128.444i 1.00347i
\(129\) 119.403i 0.925604i
\(130\) −13.5534 −0.104257
\(131\) 158.767i 1.21196i −0.795480 0.605980i \(-0.792781\pi\)
0.795480 0.605980i \(-0.207219\pi\)
\(132\) 143.656 1.59025i 1.08830 0.0120474i
\(133\) 338.856 2.54779
\(134\) 25.3266i 0.189004i
\(135\) 30.3654 0.224929
\(136\) 1.31950 0.00970220
\(137\) −118.158 −0.862467 −0.431233 0.902240i \(-0.641921\pi\)
−0.431233 + 0.902240i \(0.641921\pi\)
\(138\) 12.5738i 0.0911142i
\(139\) 181.525i 1.30594i −0.757384 0.652969i \(-0.773523\pi\)
0.757384 0.652969i \(-0.226477\pi\)
\(140\) 80.5886i 0.575633i
\(141\) 67.5297 0.478934
\(142\) 44.7223i 0.314946i
\(143\) 1.18435 + 106.988i 0.00828216 + 0.748171i
\(144\) 50.3389 0.349575
\(145\) 64.1418i 0.442357i
\(146\) −41.9417 −0.287272
\(147\) −319.707 −2.17488
\(148\) 148.919 1.00621
\(149\) 1.28535i 0.00862653i 0.999991 + 0.00431326i \(0.00137296\pi\)
−0.999991 + 0.00431326i \(0.998627\pi\)
\(150\) 55.2627i 0.368418i
\(151\) 299.741i 1.98504i 0.122095 + 0.992518i \(0.461039\pi\)
−0.122095 + 0.992518i \(0.538961\pi\)
\(152\) −154.116 −1.01392
\(153\) 1.22072i 0.00797853i
\(154\) 89.8532 0.994664i 0.583463 0.00645886i
\(155\) 85.7265 0.553074
\(156\) 127.036i 0.814335i
\(157\) 161.320 1.02752 0.513758 0.857935i \(-0.328253\pi\)
0.513758 + 0.857935i \(0.328253\pi\)
\(158\) 84.2798 0.533417
\(159\) 181.925 1.14418
\(160\) 56.1879i 0.351174i
\(161\) 55.6808i 0.345844i
\(162\) 71.1351i 0.439106i
\(163\) −139.594 −0.856407 −0.428204 0.903682i \(-0.640853\pi\)
−0.428204 + 0.903682i \(0.640853\pi\)
\(164\) 120.919i 0.737314i
\(165\) −81.1694 + 0.898535i −0.491936 + 0.00544567i
\(166\) 97.8933 0.589719
\(167\) 308.264i 1.84589i −0.384931 0.922945i \(-0.625775\pi\)
0.384931 0.922945i \(-0.374225\pi\)
\(168\) 228.450 1.35982
\(169\) 74.3890 0.440172
\(170\) −0.348187 −0.00204816
\(171\) 142.578i 0.833789i
\(172\) 112.311i 0.652969i
\(173\) 254.331i 1.47012i 0.678002 + 0.735060i \(0.262846\pi\)
−0.678002 + 0.735060i \(0.737154\pi\)
\(174\) −84.9165 −0.488026
\(175\) 244.722i 1.39841i
\(176\) 113.342 1.25468i 0.643988 0.00712887i
\(177\) −101.699 −0.574573
\(178\) 6.53007i 0.0366858i
\(179\) 319.298 1.78379 0.891894 0.452245i \(-0.149377\pi\)
0.891894 + 0.452245i \(0.149377\pi\)
\(180\) −33.9087 −0.188382
\(181\) −133.229 −0.736074 −0.368037 0.929811i \(-0.619970\pi\)
−0.368037 + 0.929811i \(0.619970\pi\)
\(182\) 79.4581i 0.436583i
\(183\) 174.400i 0.953007i
\(184\) 25.3243i 0.137632i
\(185\) −84.1430 −0.454827
\(186\) 113.492i 0.610173i
\(187\) 0.0304260 + 2.74854i 0.000162706 + 0.0146981i
\(188\) 63.5186 0.337865
\(189\) 178.021i 0.941908i
\(190\) 40.6677 0.214041
\(191\) −120.382 −0.630275 −0.315137 0.949046i \(-0.602051\pi\)
−0.315137 + 0.949046i \(0.602051\pi\)
\(192\) 79.2026 0.412513
\(193\) 57.4217i 0.297522i −0.988873 0.148761i \(-0.952472\pi\)
0.988873 0.148761i \(-0.0475284\pi\)
\(194\) 86.4612i 0.445676i
\(195\) 71.7789i 0.368097i
\(196\) −300.718 −1.53427
\(197\) 129.654i 0.658140i 0.944305 + 0.329070i \(0.106735\pi\)
−0.944305 + 0.329070i \(0.893265\pi\)
\(198\) −0.418517 37.8069i −0.00211372 0.190944i
\(199\) −8.56995 −0.0430651 −0.0215325 0.999768i \(-0.506855\pi\)
−0.0215325 + 0.999768i \(0.506855\pi\)
\(200\) 111.302i 0.556511i
\(201\) −134.130 −0.667314
\(202\) 25.0346 0.123934
\(203\) 376.039 1.85241
\(204\) 3.26357i 0.0159979i
\(205\) 68.3228i 0.333282i
\(206\) 4.02957i 0.0195610i
\(207\) 23.4284 0.113181
\(208\) 100.229i 0.481872i
\(209\) −3.55371 321.025i −0.0170034 1.53601i
\(210\) −60.2828 −0.287061
\(211\) 417.822i 1.98020i 0.140364 + 0.990100i \(0.455173\pi\)
−0.140364 + 0.990100i \(0.544827\pi\)
\(212\) 171.119 0.807167
\(213\) −236.850 −1.11197
\(214\) −1.68216 −0.00786055
\(215\) 63.4585i 0.295156i
\(216\) 80.9658i 0.374842i
\(217\) 502.581i 2.31604i
\(218\) 26.9933 0.123823
\(219\) 222.124i 1.01427i
\(220\) −76.3481 + 0.845164i −0.347037 + 0.00384165i
\(221\) −2.43056 −0.0109980
\(222\) 111.396i 0.501783i
\(223\) 197.298 0.884744 0.442372 0.896832i \(-0.354137\pi\)
0.442372 + 0.896832i \(0.354137\pi\)
\(224\) 329.408 1.47057
\(225\) −102.970 −0.457643
\(226\) 69.8461i 0.309053i
\(227\) 197.950i 0.872024i 0.899941 + 0.436012i \(0.143610\pi\)
−0.899941 + 0.436012i \(0.856390\pi\)
\(228\) 381.180i 1.67184i
\(229\) −172.651 −0.753933 −0.376967 0.926227i \(-0.623033\pi\)
−0.376967 + 0.926227i \(0.623033\pi\)
\(230\) 6.68252i 0.0290544i
\(231\) 5.26776 + 475.864i 0.0228042 + 2.06002i
\(232\) −171.027 −0.737185
\(233\) 52.6488i 0.225960i −0.993597 0.112980i \(-0.963960\pi\)
0.993597 0.112980i \(-0.0360397\pi\)
\(234\) 33.4330 0.142876
\(235\) −35.8897 −0.152722
\(236\) −95.6587 −0.405334
\(237\) 446.348i 1.88332i
\(238\) 2.04128i 0.00857682i
\(239\) 39.7110i 0.166155i 0.996543 + 0.0830775i \(0.0264749\pi\)
−0.996543 + 0.0830775i \(0.973525\pi\)
\(240\) −76.0415 −0.316839
\(241\) 435.488i 1.80700i 0.428584 + 0.903502i \(0.359013\pi\)
−0.428584 + 0.903502i \(0.640987\pi\)
\(242\) −1.88465 85.1147i −0.00778781 0.351714i
\(243\) −238.736 −0.982451
\(244\) 164.041i 0.672300i
\(245\) 169.914 0.693525
\(246\) −90.4516 −0.367689
\(247\) 283.886 1.14934
\(248\) 228.580i 0.921693i
\(249\) 518.445i 2.08211i
\(250\) 64.2053i 0.256821i
\(251\) 144.086 0.574047 0.287024 0.957924i \(-0.407334\pi\)
0.287024 + 0.957924i \(0.407334\pi\)
\(252\) 198.793i 0.788863i
\(253\) 52.7509 0.583946i 0.208502 0.00230809i
\(254\) −63.7095 −0.250825
\(255\) 1.84400i 0.00723139i
\(256\) −5.35239 −0.0209078
\(257\) −427.768 −1.66447 −0.832234 0.554424i \(-0.812938\pi\)
−0.832234 + 0.554424i \(0.812938\pi\)
\(258\) 84.0119 0.325627
\(259\) 493.298i 1.90462i
\(260\) 67.5154i 0.259675i
\(261\) 158.223i 0.606218i
\(262\) −111.708 −0.426368
\(263\) 228.378i 0.868356i −0.900827 0.434178i \(-0.857039\pi\)
0.900827 0.434178i \(-0.142961\pi\)
\(264\) −2.39584 216.429i −0.00907515 0.819806i
\(265\) −96.6871 −0.364857
\(266\) 238.419i 0.896312i
\(267\) −34.5834 −0.129526
\(268\) −126.163 −0.470758
\(269\) 432.507 1.60783 0.803916 0.594743i \(-0.202746\pi\)
0.803916 + 0.594743i \(0.202746\pi\)
\(270\) 21.3651i 0.0791300i
\(271\) 105.523i 0.389382i −0.980865 0.194691i \(-0.937630\pi\)
0.980865 0.194691i \(-0.0623704\pi\)
\(272\) 2.57490i 0.00946654i
\(273\) −420.812 −1.54144
\(274\) 83.1359i 0.303416i
\(275\) −231.844 + 2.56649i −0.843071 + 0.00933269i
\(276\) 62.6355 0.226940
\(277\) 199.847i 0.721471i −0.932668 0.360735i \(-0.882526\pi\)
0.932668 0.360735i \(-0.117474\pi\)
\(278\) −127.721 −0.459429
\(279\) −211.467 −0.757947
\(280\) −121.413 −0.433619
\(281\) 467.449i 1.66352i −0.555137 0.831759i \(-0.687334\pi\)
0.555137 0.831759i \(-0.312666\pi\)
\(282\) 47.5139i 0.168489i
\(283\) 394.206i 1.39295i −0.717579 0.696477i \(-0.754750\pi\)
0.717579 0.696477i \(-0.245250\pi\)
\(284\) −222.782 −0.784443
\(285\) 215.377i 0.755709i
\(286\) 75.2771 0.833308i 0.263206 0.00291366i
\(287\) 400.550 1.39564
\(288\) 138.602i 0.481258i
\(289\) 288.938 0.999784
\(290\) 45.1302 0.155621
\(291\) −457.900 −1.57354
\(292\) 208.931i 0.715516i
\(293\) 500.325i 1.70759i −0.520606 0.853797i \(-0.674294\pi\)
0.520606 0.853797i \(-0.325706\pi\)
\(294\) 224.946i 0.765123i
\(295\) 54.0498 0.183220
\(296\) 224.358i 0.757965i
\(297\) −168.653 + 1.86697i −0.567856 + 0.00628609i
\(298\) 0.904374 0.00303481
\(299\) 46.6482i 0.156014i
\(300\) −275.288 −0.917627
\(301\) −372.033 −1.23599
\(302\) 210.897 0.698336
\(303\) 132.584i 0.437570i
\(304\) 300.745i 0.989291i
\(305\) 92.6877i 0.303894i
\(306\) 0.858896 0.00280685
\(307\) 291.289i 0.948824i 0.880303 + 0.474412i \(0.157339\pi\)
−0.880303 + 0.474412i \(0.842661\pi\)
\(308\) 4.95487 + 447.599i 0.0160872 + 1.45324i
\(309\) −21.3407 −0.0690636
\(310\) 60.3172i 0.194571i
\(311\) 399.315 1.28397 0.641985 0.766717i \(-0.278111\pi\)
0.641985 + 0.766717i \(0.278111\pi\)
\(312\) 191.390 0.613430
\(313\) 96.6616 0.308823 0.154411 0.988007i \(-0.450652\pi\)
0.154411 + 0.988007i \(0.450652\pi\)
\(314\) 113.505i 0.361480i
\(315\) 112.324i 0.356583i
\(316\) 419.836i 1.32859i
\(317\) 295.212 0.931269 0.465635 0.884977i \(-0.345826\pi\)
0.465635 + 0.884977i \(0.345826\pi\)
\(318\) 128.003i 0.402524i
\(319\) −3.94366 356.252i −0.0123626 1.11678i
\(320\) −42.0935 −0.131542
\(321\) 8.90874i 0.0277531i
\(322\) 39.1770 0.121668
\(323\) 7.29305 0.0225791
\(324\) −354.356 −1.09369
\(325\) 205.022i 0.630838i
\(326\) 98.2186i 0.301284i
\(327\) 142.957i 0.437178i
\(328\) −182.175 −0.555411
\(329\) 210.407i 0.639536i
\(330\) 0.632209 + 57.1108i 0.00191579 + 0.173063i
\(331\) −45.1322 −0.136351 −0.0681755 0.997673i \(-0.521718\pi\)
−0.0681755 + 0.997673i \(0.521718\pi\)
\(332\) 487.650i 1.46883i
\(333\) 207.561 0.623307
\(334\) −216.894 −0.649384
\(335\) 71.2855 0.212793
\(336\) 445.802i 1.32679i
\(337\) 169.284i 0.502328i 0.967945 + 0.251164i \(0.0808133\pi\)
−0.967945 + 0.251164i \(0.919187\pi\)
\(338\) 52.3401i 0.154852i
\(339\) 369.906 1.09117
\(340\) 1.73447i 0.00510139i
\(341\) −476.135 + 5.27076i −1.39629 + 0.0154568i
\(342\) −100.318 −0.293327
\(343\) 427.234i 1.24558i
\(344\) 169.205 0.491875
\(345\) −35.3908 −0.102582
\(346\) 178.947 0.517188
\(347\) 310.292i 0.894214i 0.894481 + 0.447107i \(0.147546\pi\)
−0.894481 + 0.447107i \(0.852454\pi\)
\(348\) 423.007i 1.21554i
\(349\) 114.024i 0.326717i 0.986567 + 0.163359i \(0.0522328\pi\)
−0.986567 + 0.163359i \(0.947767\pi\)
\(350\) −172.186 −0.491960
\(351\) 149.142i 0.424905i
\(352\) −3.45462 312.074i −0.00981427 0.886575i
\(353\) −63.6894 −0.180423 −0.0902116 0.995923i \(-0.528754\pi\)
−0.0902116 + 0.995923i \(0.528754\pi\)
\(354\) 71.5557i 0.202135i
\(355\) 125.878 0.354585
\(356\) −32.5292 −0.0913741
\(357\) −10.8107 −0.0302820
\(358\) 224.658i 0.627536i
\(359\) 96.2534i 0.268115i 0.990974 + 0.134058i \(0.0428008\pi\)
−0.990974 + 0.134058i \(0.957199\pi\)
\(360\) 51.0861i 0.141906i
\(361\) −490.818 −1.35961
\(362\) 93.7402i 0.258951i
\(363\) 450.769 9.98115i 1.24179 0.0274963i
\(364\) −395.817 −1.08741
\(365\) 118.051i 0.323429i
\(366\) −122.708 −0.335268
\(367\) 284.656 0.775630 0.387815 0.921737i \(-0.373230\pi\)
0.387815 + 0.921737i \(0.373230\pi\)
\(368\) 49.4184 0.134289
\(369\) 168.536i 0.456738i
\(370\) 59.2030i 0.160008i
\(371\) 566.839i 1.52787i
\(372\) −565.355 −1.51977
\(373\) 595.762i 1.59722i 0.601851 + 0.798608i \(0.294430\pi\)
−0.601851 + 0.798608i \(0.705570\pi\)
\(374\) 1.93387 0.0214077i 0.00517078 5.72399e-5i
\(375\) 340.032 0.906753
\(376\) 95.6958i 0.254510i
\(377\) 315.037 0.835642
\(378\) −125.255 −0.331363
\(379\) 280.699 0.740631 0.370315 0.928906i \(-0.379250\pi\)
0.370315 + 0.928906i \(0.379250\pi\)
\(380\) 202.584i 0.533116i
\(381\) 337.407i 0.885582i
\(382\) 84.7011i 0.221731i
\(383\) −394.446 −1.02989 −0.514943 0.857225i \(-0.672187\pi\)
−0.514943 + 0.857225i \(0.672187\pi\)
\(384\) 478.617i 1.24640i
\(385\) −2.79963 252.906i −0.00727178 0.656898i
\(386\) −40.4019 −0.104668
\(387\) 156.537i 0.404489i
\(388\) −430.702 −1.11006
\(389\) −493.302 −1.26813 −0.634064 0.773280i \(-0.718615\pi\)
−0.634064 + 0.773280i \(0.718615\pi\)
\(390\) −50.5036 −0.129496
\(391\) 1.19839i 0.00306495i
\(392\) 453.055i 1.15575i
\(393\) 591.609i 1.50537i
\(394\) 91.2243 0.231534
\(395\) 237.218i 0.600553i
\(396\) 188.333 2.08482i 0.475588 0.00526470i
\(397\) −420.647 −1.05956 −0.529782 0.848134i \(-0.677726\pi\)
−0.529782 + 0.848134i \(0.677726\pi\)
\(398\) 6.02981i 0.0151503i
\(399\) 1262.67 3.16459
\(400\) −217.198 −0.542994
\(401\) −719.525 −1.79433 −0.897164 0.441698i \(-0.854376\pi\)
−0.897164 + 0.441698i \(0.854376\pi\)
\(402\) 94.3739i 0.234761i
\(403\) 421.051i 1.04479i
\(404\) 124.709i 0.308685i
\(405\) 200.221 0.494372
\(406\) 264.581i 0.651677i
\(407\) 467.341 5.17340i 1.14826 0.0127111i
\(408\) 4.91682 0.0120510
\(409\) 377.723i 0.923528i 0.887003 + 0.461764i \(0.152783\pi\)
−0.887003 + 0.461764i \(0.847217\pi\)
\(410\) 48.0719 0.117249
\(411\) −440.289 −1.07126
\(412\) −20.0731 −0.0487210
\(413\) 316.873i 0.767246i
\(414\) 16.4842i 0.0398170i
\(415\) 275.536i 0.663941i
\(416\) 275.970 0.663391
\(417\) 676.415i 1.62210i
\(418\) −225.873 + 2.50039i −0.540367 + 0.00598180i
\(419\) 674.048 1.60871 0.804354 0.594151i \(-0.202512\pi\)
0.804354 + 0.594151i \(0.202512\pi\)
\(420\) 300.296i 0.714990i
\(421\) 454.458 1.07947 0.539737 0.841834i \(-0.318524\pi\)
0.539737 + 0.841834i \(0.318524\pi\)
\(422\) 293.980 0.696634
\(423\) 88.5315 0.209294
\(424\) 257.805i 0.608030i
\(425\) 5.26704i 0.0123930i
\(426\) 166.648i 0.391192i
\(427\) 543.392 1.27258
\(428\) 8.37958i 0.0195785i
\(429\) 4.41322 + 398.669i 0.0102872 + 0.929298i
\(430\) −44.6494 −0.103836
\(431\) 594.735i 1.37990i 0.723859 + 0.689948i \(0.242367\pi\)
−0.723859 + 0.689948i \(0.757633\pi\)
\(432\) −157.998 −0.365737
\(433\) 382.466 0.883294 0.441647 0.897189i \(-0.354394\pi\)
0.441647 + 0.897189i \(0.354394\pi\)
\(434\) −353.616 −0.814784
\(435\) 239.010i 0.549449i
\(436\) 134.466i 0.308408i
\(437\) 139.971i 0.320299i
\(438\) −156.287 −0.356819
\(439\) 457.197i 1.04145i 0.853724 + 0.520725i \(0.174338\pi\)
−0.853724 + 0.520725i \(0.825662\pi\)
\(440\) 1.27331 + 115.024i 0.00289388 + 0.261419i
\(441\) −419.137 −0.950424
\(442\) 1.71014i 0.00386910i
\(443\) 182.385 0.411704 0.205852 0.978583i \(-0.434003\pi\)
0.205852 + 0.978583i \(0.434003\pi\)
\(444\) 554.912 1.24980
\(445\) 18.3799 0.0413031
\(446\) 138.819i 0.311253i
\(447\) 4.78958i 0.0107150i
\(448\) 246.778i 0.550843i
\(449\) −97.9290 −0.218105 −0.109052 0.994036i \(-0.534782\pi\)
−0.109052 + 0.994036i \(0.534782\pi\)
\(450\) 72.4495i 0.160999i
\(451\) −4.20072 379.473i −0.00931424 0.841404i
\(452\) 347.935 0.769767
\(453\) 1116.92i 2.46560i
\(454\) 139.277 0.306778
\(455\) 223.647 0.491532
\(456\) −574.278 −1.25938
\(457\) 233.838i 0.511680i 0.966719 + 0.255840i \(0.0823521\pi\)
−0.966719 + 0.255840i \(0.917648\pi\)
\(458\) 121.477i 0.265234i
\(459\) 3.83146i 0.00834740i
\(460\) −33.2886 −0.0723666
\(461\) 121.687i 0.263962i −0.991252 0.131981i \(-0.957866\pi\)
0.991252 0.131981i \(-0.0421339\pi\)
\(462\) 334.818 3.70640i 0.724715 0.00802250i
\(463\) 279.698 0.604099 0.302050 0.953292i \(-0.402329\pi\)
0.302050 + 0.953292i \(0.402329\pi\)
\(464\) 333.745i 0.719279i
\(465\) 319.441 0.686970
\(466\) −37.0437 −0.0794928
\(467\) 239.544 0.512943 0.256471 0.966552i \(-0.417440\pi\)
0.256471 + 0.966552i \(0.417440\pi\)
\(468\) 166.545i 0.355865i
\(469\) 417.919i 0.891086i
\(470\) 25.2520i 0.0537276i
\(471\) 601.123 1.27627
\(472\) 144.117i 0.305334i
\(473\) 3.90165 + 352.456i 0.00824873 + 0.745151i
\(474\) 314.050 0.662553
\(475\) 615.182i 1.29512i
\(476\) −10.1685 −0.0213625
\(477\) 238.504 0.500009
\(478\) 27.9407 0.0584533
\(479\) 209.126i 0.436588i −0.975883 0.218294i \(-0.929951\pi\)
0.975883 0.218294i \(-0.0700492\pi\)
\(480\) 209.372i 0.436191i
\(481\) 413.274i 0.859198i
\(482\) 306.409 0.635704
\(483\) 207.482i 0.429570i
\(484\) 423.995 9.38829i 0.876022 0.0193973i
\(485\) 243.358 0.501770
\(486\) 167.974i 0.345626i
\(487\) −426.918 −0.876629 −0.438315 0.898822i \(-0.644424\pi\)
−0.438315 + 0.898822i \(0.644424\pi\)
\(488\) −247.141 −0.506437
\(489\) −520.168 −1.06374
\(490\) 119.551i 0.243982i
\(491\) 18.9288i 0.0385515i 0.999814 + 0.0192758i \(0.00613605\pi\)
−0.999814 + 0.0192758i \(0.993864\pi\)
\(492\) 450.580i 0.915813i
\(493\) 8.09331 0.0164165
\(494\) 199.742i 0.404336i
\(495\) −106.413 + 1.17798i −0.214976 + 0.00237976i
\(496\) −446.055 −0.899305
\(497\) 737.972i 1.48485i
\(498\) 364.778 0.732486
\(499\) −125.159 −0.250819 −0.125410 0.992105i \(-0.540025\pi\)
−0.125410 + 0.992105i \(0.540025\pi\)
\(500\) 319.835 0.639670
\(501\) 1148.68i 2.29277i
\(502\) 101.379i 0.201950i
\(503\) 442.570i 0.879860i 0.898032 + 0.439930i \(0.144997\pi\)
−0.898032 + 0.439930i \(0.855003\pi\)
\(504\) 299.498 0.594242
\(505\) 70.4637i 0.139532i
\(506\) −0.410865 37.1155i −0.000811985 0.0733509i
\(507\) 277.194 0.546734
\(508\) 317.365i 0.624735i
\(509\) −482.080 −0.947111 −0.473556 0.880764i \(-0.657030\pi\)
−0.473556 + 0.880764i \(0.657030\pi\)
\(510\) −1.29744 −0.00254400
\(511\) 692.090 1.35438
\(512\) 510.009i 0.996110i
\(513\) 447.509i 0.872337i
\(514\) 300.978i 0.585560i
\(515\) 11.3418 0.0220230
\(516\) 418.501i 0.811048i
\(517\) 199.336 2.20662i 0.385562 0.00426813i
\(518\) 347.084 0.670047
\(519\) 947.707i 1.82603i
\(520\) −101.717 −0.195610
\(521\) −329.382 −0.632212 −0.316106 0.948724i \(-0.602376\pi\)
−0.316106 + 0.948724i \(0.602376\pi\)
\(522\) −111.326 −0.213268
\(523\) 104.255i 0.199340i 0.995021 + 0.0996699i \(0.0317787\pi\)
−0.995021 + 0.0996699i \(0.968221\pi\)
\(524\) 556.469i 1.06196i
\(525\) 911.901i 1.73695i
\(526\) −160.686 −0.305488
\(527\) 10.8168i 0.0205253i
\(528\) 422.344 4.67529i 0.799893 0.00885472i
\(529\) 23.0000 0.0434783
\(530\) 68.0290i 0.128357i
\(531\) −133.328 −0.251089
\(532\) 1187.67 2.23247
\(533\) 335.572 0.629591
\(534\) 24.3329i 0.0455672i
\(535\) 4.73469i 0.00884988i
\(536\) 190.075i 0.354617i
\(537\) 1189.79 2.21563
\(538\) 304.312i 0.565635i
\(539\) −943.720 + 10.4469i −1.75087 + 0.0193819i
\(540\) 106.429 0.197091
\(541\) 289.851i 0.535768i −0.963451 0.267884i \(-0.913676\pi\)
0.963451 0.267884i \(-0.0863244\pi\)
\(542\) −74.2457 −0.136985
\(543\) −496.450 −0.914273
\(544\) 7.08970 0.0130325
\(545\) 75.9769i 0.139407i
\(546\) 296.083i 0.542277i
\(547\) 249.772i 0.456621i −0.973588 0.228311i \(-0.926680\pi\)
0.973588 0.228311i \(-0.0733202\pi\)
\(548\) −414.137 −0.755725
\(549\) 228.639i 0.416465i
\(550\) 1.80578 + 163.126i 0.00328324 + 0.296592i
\(551\) −945.288 −1.71559
\(552\) 94.3654i 0.170952i
\(553\) −1390.72 −2.51486
\(554\) −140.613 −0.253813
\(555\) −313.540 −0.564938
\(556\) 636.237i 1.14431i
\(557\) 275.005i 0.493726i 0.969050 + 0.246863i \(0.0793997\pi\)
−0.969050 + 0.246863i \(0.920600\pi\)
\(558\) 148.788i 0.266646i
\(559\) −311.681 −0.557568
\(560\) 236.928i 0.423086i
\(561\) 0.113376 + 10.2418i 0.000202096 + 0.0182564i
\(562\) −328.897 −0.585226
\(563\) 796.938i 1.41552i −0.706453 0.707760i \(-0.749706\pi\)
0.706453 0.707760i \(-0.250294\pi\)
\(564\) 236.688 0.419659
\(565\) −196.592 −0.347951
\(566\) −277.363 −0.490041
\(567\) 1173.82i 2.07022i
\(568\) 335.638i 0.590913i
\(569\) 451.435i 0.793383i −0.917952 0.396692i \(-0.870158\pi\)
0.917952 0.396692i \(-0.129842\pi\)
\(570\) 151.539 0.265858
\(571\) 102.109i 0.178825i 0.995995 + 0.0894125i \(0.0284989\pi\)
−0.995995 + 0.0894125i \(0.971501\pi\)
\(572\) 4.15108 + 374.989i 0.00725713 + 0.655575i
\(573\) −448.579 −0.782860
\(574\) 281.827i 0.490988i
\(575\) −101.087 −0.175803
\(576\) 103.835 0.180269
\(577\) −250.493 −0.434130 −0.217065 0.976157i \(-0.569648\pi\)
−0.217065 + 0.976157i \(0.569648\pi\)
\(578\) 203.296i 0.351724i
\(579\) 213.969i 0.369549i
\(580\) 224.814i 0.387610i
\(581\) −1615.36 −2.78031
\(582\) 322.179i 0.553572i
\(583\) 537.012 5.94465i 0.921118 0.0101967i
\(584\) −314.771 −0.538991
\(585\) 94.1023i 0.160859i
\(586\) −352.029 −0.600732
\(587\) −76.0110 −0.129491 −0.0647453 0.997902i \(-0.520623\pi\)
−0.0647453 + 0.997902i \(0.520623\pi\)
\(588\) −1120.56 −1.90571
\(589\) 1263.39i 2.14498i
\(590\) 38.0294i 0.0644566i
\(591\) 483.126i 0.817472i
\(592\) 437.816 0.739554
\(593\) 194.178i 0.327450i −0.986506 0.163725i \(-0.947649\pi\)
0.986506 0.163725i \(-0.0523509\pi\)
\(594\) 1.31360 + 118.664i 0.00221145 + 0.199772i
\(595\) 5.74550 0.00965631
\(596\) 4.50509i 0.00755888i
\(597\) −31.9340 −0.0534908
\(598\) 32.8217 0.0548857
\(599\) −365.873 −0.610806 −0.305403 0.952223i \(-0.598791\pi\)
−0.305403 + 0.952223i \(0.598791\pi\)
\(600\) 414.743i 0.691239i
\(601\) 573.111i 0.953596i 0.879013 + 0.476798i \(0.158203\pi\)
−0.879013 + 0.476798i \(0.841797\pi\)
\(602\) 261.762i 0.434821i
\(603\) −175.845 −0.291617
\(604\) 1050.57i 1.73936i
\(605\) −239.568 + 5.30464i −0.395981 + 0.00876799i
\(606\) 93.2859 0.153937
\(607\) 110.986i 0.182844i −0.995812 0.0914221i \(-0.970859\pi\)
0.995812 0.0914221i \(-0.0291412\pi\)
\(608\) −828.067 −1.36195
\(609\) 1401.23 2.30086
\(610\) 65.2151 0.106910
\(611\) 176.275i 0.288502i
\(612\) 4.27854i 0.00699108i
\(613\) 759.528i 1.23903i 0.784983 + 0.619517i \(0.212671\pi\)
−0.784983 + 0.619517i \(0.787329\pi\)
\(614\) 204.951 0.333796
\(615\) 254.590i 0.413967i
\(616\) 674.344 7.46490i 1.09471 0.0121183i
\(617\) −960.616 −1.55691 −0.778457 0.627698i \(-0.783997\pi\)
−0.778457 + 0.627698i \(0.783997\pi\)
\(618\) 15.0153i 0.0242966i
\(619\) −993.833 −1.60555 −0.802773 0.596285i \(-0.796643\pi\)
−0.802773 + 0.596285i \(0.796643\pi\)
\(620\) 300.467 0.484624
\(621\) −73.5347 −0.118413
\(622\) 280.958i 0.451701i
\(623\) 107.754i 0.172960i
\(624\) 373.483i 0.598530i
\(625\) 346.236 0.553977
\(626\) 68.0111i 0.108644i
\(627\) −13.2421 1196.23i −0.0211198 1.90786i
\(628\) 565.418 0.900347
\(629\) 10.6170i 0.0168792i
\(630\) −79.0309 −0.125446
\(631\) −1038.08 −1.64513 −0.822564 0.568672i \(-0.807457\pi\)
−0.822564 + 0.568672i \(0.807457\pi\)
\(632\) 632.516 1.00082
\(633\) 1556.92i 2.45959i
\(634\) 207.711i 0.327620i
\(635\) 179.320i 0.282394i
\(636\) 637.639 1.00258
\(637\) 834.542i 1.31011i
\(638\) −250.659 + 2.77476i −0.392882 + 0.00434915i
\(639\) −310.511 −0.485933
\(640\) 254.368i 0.397451i
\(641\) −1100.66 −1.71710 −0.858551 0.512729i \(-0.828635\pi\)
−0.858551 + 0.512729i \(0.828635\pi\)
\(642\) −6.26819 −0.00976353
\(643\) 614.843 0.956210 0.478105 0.878303i \(-0.341324\pi\)
0.478105 + 0.878303i \(0.341324\pi\)
\(644\) 195.158i 0.303041i
\(645\) 236.464i 0.366611i
\(646\) 5.13139i 0.00794332i
\(647\) 139.332 0.215351 0.107676 0.994186i \(-0.465659\pi\)
0.107676 + 0.994186i \(0.465659\pi\)
\(648\) 533.865i 0.823866i
\(649\) −300.199 + 3.32317i −0.462556 + 0.00512044i
\(650\) −144.254 −0.221929
\(651\) 1872.76i 2.87674i
\(652\) −489.271 −0.750416
\(653\) 323.650 0.495635 0.247817 0.968807i \(-0.420287\pi\)
0.247817 + 0.968807i \(0.420287\pi\)
\(654\) 100.585 0.153799
\(655\) 314.420i 0.480031i
\(656\) 355.500i 0.541920i
\(657\) 291.205i 0.443235i
\(658\) 148.043 0.224989
\(659\) 423.958i 0.643335i −0.946853 0.321667i \(-0.895757\pi\)
0.946853 0.321667i \(-0.104243\pi\)
\(660\) −284.494 + 3.14932i −0.431052 + 0.00477169i
\(661\) 396.034 0.599144 0.299572 0.954074i \(-0.403156\pi\)
0.299572 + 0.954074i \(0.403156\pi\)
\(662\) 31.7550i 0.0479683i
\(663\) −9.05695 −0.0136606
\(664\) 734.684 1.10645
\(665\) −671.067 −1.00912
\(666\) 146.040i 0.219279i
\(667\) 155.330i 0.232878i
\(668\) 1080.45i 1.61744i
\(669\) 735.187 1.09893
\(670\) 50.1565i 0.0748605i
\(671\) −5.69876 514.799i −0.00849294 0.767212i
\(672\) 1227.47 1.82658
\(673\) 762.021i 1.13228i 0.824311 + 0.566138i \(0.191563\pi\)
−0.824311 + 0.566138i \(0.808437\pi\)
\(674\) 119.109 0.176719
\(675\) 323.191 0.478801
\(676\) 260.730 0.385695
\(677\) 877.508i 1.29617i 0.761567 + 0.648086i \(0.224430\pi\)
−0.761567 + 0.648086i \(0.775570\pi\)
\(678\) 260.266i 0.383873i
\(679\) 1426.71i 2.10120i
\(680\) −2.61312 −0.00384283
\(681\) 737.615i 1.08314i
\(682\) 3.70851 + 335.009i 0.00543769 + 0.491215i
\(683\) 808.057 1.18310 0.591550 0.806268i \(-0.298516\pi\)
0.591550 + 0.806268i \(0.298516\pi\)
\(684\) 499.728i 0.730596i
\(685\) 233.999 0.341604
\(686\) −300.602 −0.438196
\(687\) −643.345 −0.936455
\(688\) 330.190i 0.479927i
\(689\) 474.885i 0.689238i
\(690\) 24.9009i 0.0360883i
\(691\) −671.447 −0.971704 −0.485852 0.874041i \(-0.661491\pi\)
−0.485852 + 0.874041i \(0.661491\pi\)
\(692\) 891.416i 1.28817i
\(693\) 6.90605 + 623.859i 0.00996544 + 0.900230i
\(694\) 218.322 0.314584
\(695\) 359.491i 0.517254i
\(696\) −637.294 −0.915652
\(697\) 8.62086 0.0123685
\(698\) 80.2276 0.114939
\(699\) 196.184i 0.280664i
\(700\) 857.736i 1.22534i
\(701\) 1063.53i 1.51716i −0.651580 0.758580i \(-0.725893\pi\)
0.651580 0.758580i \(-0.274107\pi\)
\(702\) −104.936 −0.149482
\(703\) 1240.05i 1.76395i
\(704\) 233.792 2.58805i 0.332091 0.00367621i
\(705\) −133.735 −0.189695
\(706\) 44.8118i 0.0634729i
\(707\) −413.101 −0.584302
\(708\) −356.451 −0.503462
\(709\) 646.580 0.911960 0.455980 0.889990i \(-0.349289\pi\)
0.455980 + 0.889990i \(0.349289\pi\)
\(710\) 88.5675i 0.124743i
\(711\) 585.163i 0.823014i
\(712\) 49.0078i 0.0688312i
\(713\) −207.600 −0.291165
\(714\) 7.60639i 0.0106532i
\(715\) −2.34547 211.879i −0.00328038 0.296334i
\(716\) 1119.12 1.56302
\(717\) 147.974i 0.206380i
\(718\) 67.7239 0.0943230
\(719\) −1075.38 −1.49565 −0.747827 0.663893i \(-0.768903\pi\)
−0.747827 + 0.663893i \(0.768903\pi\)
\(720\) −99.6905 −0.138459
\(721\) 66.4927i 0.0922229i
\(722\) 345.339i 0.478309i
\(723\) 1622.75i 2.24447i
\(724\) −466.962 −0.644975
\(725\) 682.687i 0.941637i
\(726\) −7.02273 317.161i −0.00967319 0.436861i
\(727\) 722.664 0.994036 0.497018 0.867740i \(-0.334428\pi\)
0.497018 + 0.867740i \(0.334428\pi\)
\(728\) 596.329i 0.819133i
\(729\) 20.3191 0.0278725
\(730\) 83.0610 0.113782
\(731\) −8.00710 −0.0109536
\(732\) 611.264i 0.835060i
\(733\) 856.241i 1.16813i −0.811706 0.584066i \(-0.801461\pi\)
0.811706 0.584066i \(-0.198539\pi\)
\(734\) 200.284i 0.272866i
\(735\) 633.145 0.861422
\(736\) 136.068i 0.184875i
\(737\) −395.929 + 4.38288i −0.537217 + 0.00594692i
\(738\) −118.582 −0.160680
\(739\) 934.190i 1.26413i 0.774916 + 0.632064i \(0.217792\pi\)
−0.774916 + 0.632064i \(0.782208\pi\)
\(740\) −294.917 −0.398536
\(741\) 1057.84 1.42758
\(742\) 398.828 0.537504
\(743\) 1281.71i 1.72505i 0.506012 + 0.862527i \(0.331119\pi\)
−0.506012 + 0.862527i \(0.668881\pi\)
\(744\) 851.752i 1.14483i
\(745\) 2.54550i 0.00341678i
\(746\) 419.178 0.561901
\(747\) 679.682i 0.909883i
\(748\) 0.106641 + 9.63348i 0.000142569 + 0.0128790i
\(749\) 27.7576 0.0370596
\(750\) 239.247i 0.318996i
\(751\) 382.291 0.509043 0.254521 0.967067i \(-0.418082\pi\)
0.254521 + 0.967067i \(0.418082\pi\)
\(752\) 186.743 0.248328
\(753\) 536.904 0.713020
\(754\) 221.660i 0.293979i
\(755\) 593.603i 0.786229i
\(756\) 623.953i 0.825334i
\(757\) 477.647 0.630974 0.315487 0.948930i \(-0.397832\pi\)
0.315487 + 0.948930i \(0.397832\pi\)
\(758\) 197.500i 0.260554i
\(759\) 196.565 2.17595i 0.258978 0.00286686i
\(760\) 305.209 0.401591
\(761\) 1243.89i 1.63455i −0.576247 0.817275i \(-0.695484\pi\)
0.576247 0.817275i \(-0.304516\pi\)
\(762\) −237.399 −0.311548
\(763\) −445.423 −0.583778
\(764\) −421.934 −0.552270
\(765\) 2.41749i 0.00316012i
\(766\) 277.532i 0.362314i
\(767\) 265.469i 0.346113i
\(768\) −19.9445 −0.0259694
\(769\) 216.593i 0.281655i −0.990034 0.140828i \(-0.955024\pi\)
0.990034 0.140828i \(-0.0449763\pi\)
\(770\) −177.944 + 1.96982i −0.231097 + 0.00255821i
\(771\) −1593.98 −2.06742
\(772\) 201.260i 0.260699i
\(773\) −900.023 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(774\) 110.140 0.142299
\(775\) 912.420 1.17732
\(776\) 648.887i 0.836194i
\(777\) 1838.17i 2.36572i
\(778\) 347.087i 0.446128i
\(779\) −1006.90 −1.29256
\(780\) 251.581i 0.322540i
\(781\) −699.140 + 7.73940i −0.895186 + 0.00990960i
\(782\) 0.843190 0.00107825
\(783\) 496.614i 0.634245i
\(784\) −884.101 −1.12768
\(785\) −319.476 −0.406976
\(786\) −416.256 −0.529588
\(787\) 187.916i 0.238774i −0.992848 0.119387i \(-0.961907\pi\)
0.992848 0.119387i \(-0.0380930\pi\)
\(788\) 454.429i 0.576687i
\(789\) 850.999i 1.07858i
\(790\) −166.907 −0.211275
\(791\) 1152.55i 1.45707i
\(792\) −3.14095 283.739i −0.00396585 0.358256i
\(793\) 455.242 0.574076
\(794\) 295.967i 0.372755i
\(795\) −360.283 −0.453186
\(796\) −30.0372 −0.0377352
\(797\) −506.433 −0.635425 −0.317712 0.948187i \(-0.602915\pi\)
−0.317712 + 0.948187i \(0.602915\pi\)
\(798\) 888.416i 1.11330i
\(799\) 4.52851i 0.00566772i
\(800\) 598.029i 0.747537i
\(801\) −45.3389 −0.0566028
\(802\) 506.258i 0.631245i
\(803\) −7.25821 655.672i −0.00903887 0.816528i
\(804\) −470.119 −0.584725
\(805\) 110.270i 0.136981i
\(806\) −296.252 −0.367558
\(807\) 1611.64 1.99708
\(808\) 187.883 0.232529
\(809\) 1150.44i 1.42205i −0.703166 0.711026i \(-0.748231\pi\)
0.703166 0.711026i \(-0.251769\pi\)
\(810\) 140.875i 0.173920i
\(811\) 579.421i 0.714453i −0.934018 0.357226i \(-0.883722\pi\)
0.934018 0.357226i \(-0.116278\pi\)
\(812\) 1318.00 1.62315
\(813\) 393.206i 0.483649i
\(814\) −3.64001 328.821i −0.00447175 0.403957i
\(815\) 276.451 0.339204
\(816\) 9.59479i 0.0117583i
\(817\) 935.217 1.14470
\(818\) 265.766 0.324897
\(819\) −551.685 −0.673608
\(820\) 239.468i 0.292034i
\(821\) 575.883i 0.701441i −0.936480 0.350721i \(-0.885937\pi\)
0.936480 0.350721i \(-0.114063\pi\)
\(822\) 309.788i 0.376871i
\(823\) 236.800 0.287728 0.143864 0.989597i \(-0.454047\pi\)
0.143864 + 0.989597i \(0.454047\pi\)
\(824\) 30.2417i 0.0367011i
\(825\) −863.917 + 9.56346i −1.04717 + 0.0115921i
\(826\) −222.952 −0.269917
\(827\) 1004.62i 1.21478i 0.794404 + 0.607389i \(0.207783\pi\)
−0.794404 + 0.607389i \(0.792217\pi\)
\(828\) 82.1153 0.0991731
\(829\) 1062.33 1.28146 0.640729 0.767767i \(-0.278632\pi\)
0.640729 + 0.767767i \(0.278632\pi\)
\(830\) −193.867 −0.233575
\(831\) 744.687i 0.896134i
\(832\) 206.745i 0.248491i
\(833\) 21.4394i 0.0257376i
\(834\) −475.925 −0.570654
\(835\) 610.482i 0.731117i
\(836\) −12.4556 1125.18i −0.0148990 1.34591i
\(837\) 663.732 0.792989
\(838\) 474.261i 0.565943i
\(839\) 720.469 0.858724 0.429362 0.903133i \(-0.358738\pi\)
0.429362 + 0.903133i \(0.358738\pi\)
\(840\) −452.419 −0.538595
\(841\) −208.014 −0.247342
\(842\) 319.757i 0.379759i
\(843\) 1741.84i 2.06624i
\(844\) 1464.44i 1.73512i
\(845\) −147.319 −0.174342
\(846\) 62.2908i 0.0736298i
\(847\) 31.0990 + 1404.50i 0.0367167 + 1.65820i
\(848\) 503.086 0.593262
\(849\) 1468.92i 1.73018i
\(850\) −3.70589 −0.00435987
\(851\) 203.766 0.239443
\(852\) −830.147 −0.974351
\(853\) 461.992i 0.541609i 0.962634 + 0.270804i \(0.0872897\pi\)
−0.962634 + 0.270804i \(0.912710\pi\)
\(854\) 382.331i 0.447694i
\(855\) 282.360i 0.330245i
\(856\) −12.6245 −0.0147482
\(857\) 306.615i 0.357777i 0.983869 + 0.178888i \(0.0572501\pi\)
−0.983869 + 0.178888i \(0.942750\pi\)
\(858\) 280.503 3.10514i 0.326927 0.00361904i
\(859\) −620.173 −0.721971 −0.360985 0.932572i \(-0.617560\pi\)
−0.360985 + 0.932572i \(0.617560\pi\)
\(860\) 222.419i 0.258626i
\(861\) 1492.56 1.73352
\(862\) 418.456 0.485447
\(863\) 698.049 0.808863 0.404431 0.914568i \(-0.367469\pi\)
0.404431 + 0.914568i \(0.367469\pi\)
\(864\) 435.031i 0.503508i
\(865\) 503.674i 0.582282i
\(866\) 269.103i 0.310743i
\(867\) 1076.66 1.24182
\(868\) 1761.52i 2.02940i
\(869\) 14.5850 + 1317.54i 0.0167837 + 1.51616i
\(870\) 168.168 0.193296
\(871\) 350.124i 0.401979i
\(872\) 202.584 0.232321
\(873\) −600.308 −0.687638
\(874\) −98.4834 −0.112681
\(875\) 1059.46i 1.21082i
\(876\) 778.534i 0.888737i
\(877\) 791.973i 0.903048i −0.892259 0.451524i \(-0.850881\pi\)
0.892259 0.451524i \(-0.149119\pi\)
\(878\) 321.684 0.366382
\(879\) 1864.35i 2.12099i
\(880\) −224.461 + 2.48476i −0.255069 + 0.00282359i
\(881\) −1106.71 −1.25620 −0.628098 0.778134i \(-0.716166\pi\)
−0.628098 + 0.778134i \(0.716166\pi\)
\(882\) 294.905i 0.334359i
\(883\) −483.052 −0.547058 −0.273529 0.961864i \(-0.588191\pi\)
−0.273529 + 0.961864i \(0.588191\pi\)
\(884\) −8.51899 −0.00963686
\(885\) 201.405 0.227576
\(886\) 128.326i 0.144837i
\(887\) 841.033i 0.948177i 0.880477 + 0.474088i \(0.157222\pi\)
−0.880477 + 0.474088i \(0.842778\pi\)
\(888\) 836.019i 0.941463i
\(889\) 1051.28 1.18255
\(890\) 12.9321i 0.0145304i
\(891\) −1112.05 + 12.3103i −1.24809 + 0.0138162i
\(892\) 691.518 0.775245
\(893\) 528.923i 0.592299i
\(894\) 3.36995 0.00376952
\(895\) −632.334 −0.706519
\(896\) 1491.26 1.66436
\(897\) 173.824i 0.193784i
\(898\) 68.9028i 0.0767292i
\(899\) 1402.02i 1.55954i
\(900\) −360.903 −0.401004
\(901\) 12.1998i 0.0135403i
\(902\) −266.997 + 2.95563i −0.296006 + 0.00327675i
\(903\) −1386.30 −1.53521
\(904\) 524.191i 0.579858i
\(905\) 263.846 0.291543
\(906\) 785.863 0.867398
\(907\) 1522.59 1.67871 0.839357 0.543580i \(-0.182931\pi\)
0.839357 + 0.543580i \(0.182931\pi\)
\(908\) 693.803i 0.764100i
\(909\) 173.818i 0.191218i
\(910\) 157.358i 0.172921i
\(911\) 501.279 0.550251 0.275125 0.961408i \(-0.411281\pi\)
0.275125 + 0.961408i \(0.411281\pi\)
\(912\) 1120.66i 1.22879i
\(913\) 16.9409 + 1530.36i 0.0185552 + 1.67619i
\(914\) 164.528 0.180009
\(915\) 345.380i 0.377465i
\(916\) −605.131 −0.660624
\(917\) 1843.32 2.01017
\(918\) −2.69581 −0.00293662
\(919\) 337.336i 0.367068i 0.983013 + 0.183534i \(0.0587538\pi\)
−0.983013 + 0.183534i \(0.941246\pi\)
\(920\) 50.1520i 0.0545130i
\(921\) 1085.42i 1.17853i
\(922\) −85.6187 −0.0928620
\(923\) 618.257i 0.669834i
\(924\) 18.4632 + 1667.88i 0.0199818 + 1.80506i
\(925\) −895.567 −0.968180
\(926\) 196.796i 0.212522i
\(927\) −27.9776 −0.0301808
\(928\) −918.930 −0.990227
\(929\) 1214.27 1.30708 0.653538 0.756894i \(-0.273284\pi\)
0.653538 + 0.756894i \(0.273284\pi\)
\(930\) 224.759i 0.241676i
\(931\) 2504.09i 2.68968i
\(932\) 184.531i 0.197995i
\(933\) 1487.96 1.59481
\(934\) 168.543i 0.180453i
\(935\) −0.0602553 5.44318i −6.44442e−5 0.00582158i
\(936\) 250.913 0.268069
\(937\) 357.662i 0.381710i 0.981618 + 0.190855i \(0.0611260\pi\)
−0.981618 + 0.190855i \(0.938874\pi\)
\(938\) −294.048 −0.313484
\(939\) 360.188 0.383587
\(940\) −125.792 −0.133821
\(941\) 89.8930i 0.0955292i 0.998859 + 0.0477646i \(0.0152097\pi\)
−0.998859 + 0.0477646i \(0.984790\pi\)
\(942\) 422.950i 0.448992i
\(943\) 165.455i 0.175456i
\(944\) −281.234 −0.297917
\(945\) 352.550i 0.373069i
\(946\) 247.988 2.74520i 0.262144 0.00290190i
\(947\) 118.257 0.124875 0.0624375 0.998049i \(-0.480113\pi\)
0.0624375 + 0.998049i \(0.480113\pi\)
\(948\) 1564.43i 1.65024i
\(949\) 579.818 0.610977
\(950\) 432.842 0.455623
\(951\) 1100.04 1.15672
\(952\) 15.3197i 0.0160921i
\(953\) 1376.56i 1.44445i −0.691660 0.722223i \(-0.743120\pi\)
0.691660 0.722223i \(-0.256880\pi\)
\(954\) 167.812i 0.175903i
\(955\) 238.404 0.249638
\(956\) 139.185i 0.145591i
\(957\) −14.6952 1327.49i −0.0153555 1.38714i
\(958\) −147.141 −0.153592
\(959\) 1371.84i 1.43049i
\(960\) −156.852 −0.163387
\(961\) 912.824 0.949869
\(962\) 290.780 0.302266
\(963\) 11.6794i 0.0121281i
\(964\) 1526.36i 1.58336i
\(965\) 113.717i 0.117842i
\(966\) 145.985 0.151123
\(967\) 1127.11i 1.16558i −0.812624 0.582789i \(-0.801962\pi\)
0.812624 0.582789i \(-0.198038\pi\)
\(968\) −14.1442 638.782i −0.0146118 0.659898i
\(969\) 27.1759 0.0280453
\(970\) 171.227i 0.176523i
\(971\) −1563.51 −1.61020 −0.805102 0.593136i \(-0.797890\pi\)
−0.805102 + 0.593136i \(0.797890\pi\)
\(972\) −836.756 −0.860860
\(973\) 2107.56 2.16604
\(974\) 300.380i 0.308398i
\(975\) 763.971i 0.783560i
\(976\) 482.277i 0.494136i
\(977\) 37.5412 0.0384250 0.0192125 0.999815i \(-0.493884\pi\)
0.0192125 + 0.999815i \(0.493884\pi\)
\(978\) 365.990i 0.374223i
\(979\) −102.084 + 1.13006i −0.104274 + 0.00115430i
\(980\) 595.538 0.607692
\(981\) 187.417i 0.191047i
\(982\) 13.3183 0.0135624
\(983\) 436.375 0.443921 0.221961 0.975056i \(-0.428754\pi\)
0.221961 + 0.975056i \(0.428754\pi\)
\(984\) −678.834 −0.689872
\(985\) 256.765i 0.260675i
\(986\) 5.69446i 0.00577531i
\(987\) 784.037i 0.794363i
\(988\) 995.005 1.00709
\(989\) 153.675i 0.155384i
\(990\) 0.828828 + 74.8723i 0.000837200 + 0.0756286i
\(991\) 421.446 0.425273 0.212637 0.977131i \(-0.431795\pi\)
0.212637 + 0.977131i \(0.431795\pi\)
\(992\) 1228.16i 1.23807i
\(993\) −168.175 −0.169361
\(994\) −519.237 −0.522371
\(995\) 16.9718 0.0170571
\(996\) 1817.12i 1.82442i
\(997\) 1400.04i 1.40425i −0.712053 0.702126i \(-0.752235\pi\)
0.712053 0.702126i \(-0.247765\pi\)
\(998\) 88.0617i 0.0882382i
\(999\) −651.472 −0.652124
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.20 44
11.10 odd 2 inner 253.3.c.a.208.25 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.20 44 1.1 even 1 trivial
253.3.c.a.208.25 yes 44 11.10 odd 2 inner