Properties

Label 253.3.c.a.208.26
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(208,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.208");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.26
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.919935i q^{2} +4.75301 q^{3} +3.15372 q^{4} +0.241391 q^{5} +4.37246i q^{6} -3.10005i q^{7} +6.58096i q^{8} +13.5911 q^{9} +0.222064i q^{10} +(-9.14341 + 6.11540i) q^{11} +14.9897 q^{12} -4.95337i q^{13} +2.85185 q^{14} +1.14733 q^{15} +6.56082 q^{16} +23.5594i q^{17} +12.5030i q^{18} -32.7967i q^{19} +0.761278 q^{20} -14.7346i q^{21} +(-5.62577 - 8.41134i) q^{22} -4.79583 q^{23} +31.2794i q^{24} -24.9417 q^{25} +4.55677 q^{26} +21.8217 q^{27} -9.77670i q^{28} -47.1256i q^{29} +1.05547i q^{30} +25.6526 q^{31} +32.3594i q^{32} +(-43.4587 + 29.0666i) q^{33} -21.6731 q^{34} -0.748324i q^{35} +42.8626 q^{36} -50.3573 q^{37} +30.1708 q^{38} -23.5434i q^{39} +1.58858i q^{40} +13.0072i q^{41} +13.5549 q^{42} +48.3618i q^{43} +(-28.8357 + 19.2863i) q^{44} +3.28077 q^{45} -4.41185i q^{46} +30.1624 q^{47} +31.1837 q^{48} +39.3897 q^{49} -22.9448i q^{50} +111.978i q^{51} -15.6215i q^{52} +5.53710 q^{53} +20.0745i q^{54} +(-2.20713 + 1.47620i) q^{55} +20.4013 q^{56} -155.883i q^{57} +43.3525 q^{58} -32.5864 q^{59} +3.61836 q^{60} +83.2209i q^{61} +23.5988i q^{62} -42.1332i q^{63} -3.52523 q^{64} -1.19570i q^{65} +(-26.7394 - 39.9792i) q^{66} -127.307 q^{67} +74.2997i q^{68} -22.7946 q^{69} +0.688409 q^{70} +40.3863 q^{71} +89.4426i q^{72} -57.4513i q^{73} -46.3254i q^{74} -118.548 q^{75} -103.431i q^{76} +(18.9581 + 28.3450i) q^{77} +21.6584 q^{78} -76.1879i q^{79} +1.58372 q^{80} -18.6015 q^{81} -11.9657 q^{82} -115.062i q^{83} -46.4688i q^{84} +5.68701i q^{85} -44.4897 q^{86} -223.989i q^{87} +(-40.2452 - 60.1724i) q^{88} -46.9157 q^{89} +3.01809i q^{90} -15.3557 q^{91} -15.1247 q^{92} +121.927 q^{93} +27.7475i q^{94} -7.91681i q^{95} +153.804i q^{96} -14.0830 q^{97} +36.2359i q^{98} +(-124.269 + 83.1152i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.919935i 0.459968i 0.973194 + 0.229984i \(0.0738673\pi\)
−0.973194 + 0.229984i \(0.926133\pi\)
\(3\) 4.75301 1.58434 0.792169 0.610302i \(-0.208952\pi\)
0.792169 + 0.610302i \(0.208952\pi\)
\(4\) 3.15372 0.788430
\(5\) 0.241391 0.0482781 0.0241391 0.999709i \(-0.492316\pi\)
0.0241391 + 0.999709i \(0.492316\pi\)
\(6\) 4.37246i 0.728744i
\(7\) 3.10005i 0.442865i −0.975176 0.221432i \(-0.928927\pi\)
0.975176 0.221432i \(-0.0710732\pi\)
\(8\) 6.58096i 0.822620i
\(9\) 13.5911 1.51012
\(10\) 0.222064i 0.0222064i
\(11\) −9.14341 + 6.11540i −0.831219 + 0.555946i
\(12\) 14.9897 1.24914
\(13\) 4.95337i 0.381028i −0.981684 0.190514i \(-0.938985\pi\)
0.981684 0.190514i \(-0.0610155\pi\)
\(14\) 2.85185 0.203703
\(15\) 1.14733 0.0764888
\(16\) 6.56082 0.410051
\(17\) 23.5594i 1.38585i 0.721012 + 0.692923i \(0.243677\pi\)
−0.721012 + 0.692923i \(0.756323\pi\)
\(18\) 12.5030i 0.694608i
\(19\) 32.7967i 1.72614i −0.505084 0.863070i \(-0.668538\pi\)
0.505084 0.863070i \(-0.331462\pi\)
\(20\) 0.761278 0.0380639
\(21\) 14.7346i 0.701647i
\(22\) −5.62577 8.41134i −0.255717 0.382334i
\(23\) −4.79583 −0.208514
\(24\) 31.2794i 1.30331i
\(25\) −24.9417 −0.997669
\(26\) 4.55677 0.175261
\(27\) 21.8217 0.808209
\(28\) 9.77670i 0.349168i
\(29\) 47.1256i 1.62502i −0.582946 0.812511i \(-0.698100\pi\)
0.582946 0.812511i \(-0.301900\pi\)
\(30\) 1.05547i 0.0351824i
\(31\) 25.6526 0.827504 0.413752 0.910390i \(-0.364218\pi\)
0.413752 + 0.910390i \(0.364218\pi\)
\(32\) 32.3594i 1.01123i
\(33\) −43.4587 + 29.0666i −1.31693 + 0.880805i
\(34\) −21.6731 −0.637444
\(35\) 0.748324i 0.0213807i
\(36\) 42.8626 1.19063
\(37\) −50.3573 −1.36101 −0.680503 0.732745i \(-0.738239\pi\)
−0.680503 + 0.732745i \(0.738239\pi\)
\(38\) 30.1708 0.793969
\(39\) 23.5434i 0.603677i
\(40\) 1.58858i 0.0397145i
\(41\) 13.0072i 0.317248i 0.987339 + 0.158624i \(0.0507057\pi\)
−0.987339 + 0.158624i \(0.949294\pi\)
\(42\) 13.5549 0.322735
\(43\) 48.3618i 1.12469i 0.826901 + 0.562347i \(0.190101\pi\)
−0.826901 + 0.562347i \(0.809899\pi\)
\(44\) −28.8357 + 19.2863i −0.655358 + 0.438324i
\(45\) 3.28077 0.0729060
\(46\) 4.41185i 0.0959099i
\(47\) 30.1624 0.641754 0.320877 0.947121i \(-0.396022\pi\)
0.320877 + 0.947121i \(0.396022\pi\)
\(48\) 31.1837 0.649660
\(49\) 39.3897 0.803871
\(50\) 22.9448i 0.458896i
\(51\) 111.978i 2.19565i
\(52\) 15.6215i 0.300414i
\(53\) 5.53710 0.104474 0.0522368 0.998635i \(-0.483365\pi\)
0.0522368 + 0.998635i \(0.483365\pi\)
\(54\) 20.0745i 0.371750i
\(55\) −2.20713 + 1.47620i −0.0401297 + 0.0268400i
\(56\) 20.4013 0.364309
\(57\) 155.883i 2.73479i
\(58\) 43.3525 0.747457
\(59\) −32.5864 −0.552312 −0.276156 0.961113i \(-0.589061\pi\)
−0.276156 + 0.961113i \(0.589061\pi\)
\(60\) 3.61836 0.0603061
\(61\) 83.2209i 1.36428i 0.731223 + 0.682139i \(0.238950\pi\)
−0.731223 + 0.682139i \(0.761050\pi\)
\(62\) 23.5988i 0.380625i
\(63\) 42.1332i 0.668781i
\(64\) −3.52523 −0.0550817
\(65\) 1.19570i 0.0183953i
\(66\) −26.7394 39.9792i −0.405142 0.605745i
\(67\) −127.307 −1.90011 −0.950053 0.312090i \(-0.898971\pi\)
−0.950053 + 0.312090i \(0.898971\pi\)
\(68\) 74.2997i 1.09264i
\(69\) −22.7946 −0.330357
\(70\) 0.688409 0.00983442
\(71\) 40.3863 0.568821 0.284410 0.958703i \(-0.408202\pi\)
0.284410 + 0.958703i \(0.408202\pi\)
\(72\) 89.4426i 1.24226i
\(73\) 57.4513i 0.787004i −0.919324 0.393502i \(-0.871263\pi\)
0.919324 0.393502i \(-0.128737\pi\)
\(74\) 46.3254i 0.626019i
\(75\) −118.548 −1.58064
\(76\) 103.431i 1.36094i
\(77\) 18.9581 + 28.3450i 0.246209 + 0.368117i
\(78\) 21.6584 0.277672
\(79\) 76.1879i 0.964404i −0.876060 0.482202i \(-0.839837\pi\)
0.876060 0.482202i \(-0.160163\pi\)
\(80\) 1.58372 0.0197965
\(81\) −18.6015 −0.229648
\(82\) −11.9657 −0.145924
\(83\) 115.062i 1.38629i −0.720797 0.693147i \(-0.756224\pi\)
0.720797 0.693147i \(-0.243776\pi\)
\(84\) 46.4688i 0.553200i
\(85\) 5.68701i 0.0669060i
\(86\) −44.4897 −0.517323
\(87\) 223.989i 2.57458i
\(88\) −40.2452 60.1724i −0.457332 0.683777i
\(89\) −46.9157 −0.527143 −0.263572 0.964640i \(-0.584901\pi\)
−0.263572 + 0.964640i \(0.584901\pi\)
\(90\) 3.01809i 0.0335344i
\(91\) −15.3557 −0.168744
\(92\) −15.1247 −0.164399
\(93\) 121.927 1.31105
\(94\) 27.7475i 0.295186i
\(95\) 7.91681i 0.0833348i
\(96\) 153.804i 1.60213i
\(97\) −14.0830 −0.145185 −0.0725927 0.997362i \(-0.523127\pi\)
−0.0725927 + 0.997362i \(0.523127\pi\)
\(98\) 36.2359i 0.369755i
\(99\) −124.269 + 83.1152i −1.25524 + 0.839547i
\(100\) −78.6592 −0.786592
\(101\) 182.129i 1.80325i 0.432514 + 0.901627i \(0.357627\pi\)
−0.432514 + 0.901627i \(0.642373\pi\)
\(102\) −103.012 −1.00993
\(103\) 79.4738 0.771590 0.385795 0.922584i \(-0.373927\pi\)
0.385795 + 0.922584i \(0.373927\pi\)
\(104\) 32.5979 0.313441
\(105\) 3.55679i 0.0338742i
\(106\) 5.09377i 0.0480545i
\(107\) 69.2284i 0.646994i −0.946229 0.323497i \(-0.895141\pi\)
0.946229 0.323497i \(-0.104859\pi\)
\(108\) 68.8194 0.637216
\(109\) 136.265i 1.25014i −0.780571 0.625068i \(-0.785071\pi\)
0.780571 0.625068i \(-0.214929\pi\)
\(110\) −1.35801 2.03042i −0.0123455 0.0184583i
\(111\) −239.349 −2.15629
\(112\) 20.3389i 0.181597i
\(113\) 46.4667 0.411210 0.205605 0.978635i \(-0.434084\pi\)
0.205605 + 0.978635i \(0.434084\pi\)
\(114\) 143.402 1.25791
\(115\) −1.15767 −0.0100667
\(116\) 148.621i 1.28122i
\(117\) 67.3218i 0.575400i
\(118\) 29.9774i 0.254046i
\(119\) 73.0353 0.613742
\(120\) 7.55055i 0.0629212i
\(121\) 46.2037 111.831i 0.381849 0.924225i
\(122\) −76.5578 −0.627523
\(123\) 61.8232i 0.502628i
\(124\) 80.9012 0.652429
\(125\) −12.0555 −0.0964437
\(126\) 38.7598 0.307618
\(127\) 151.594i 1.19366i 0.802369 + 0.596828i \(0.203572\pi\)
−0.802369 + 0.596828i \(0.796428\pi\)
\(128\) 126.194i 0.985894i
\(129\) 229.864i 1.78189i
\(130\) 1.09996 0.00846125
\(131\) 55.2684i 0.421896i −0.977497 0.210948i \(-0.932345\pi\)
0.977497 0.210948i \(-0.0676551\pi\)
\(132\) −137.057 + 91.6678i −1.03831 + 0.694453i
\(133\) −101.671 −0.764447
\(134\) 117.114i 0.873987i
\(135\) 5.26754 0.0390188
\(136\) −155.043 −1.14002
\(137\) 205.118 1.49721 0.748605 0.663016i \(-0.230724\pi\)
0.748605 + 0.663016i \(0.230724\pi\)
\(138\) 20.9696i 0.151954i
\(139\) 32.4284i 0.233298i 0.993173 + 0.116649i \(0.0372152\pi\)
−0.993173 + 0.116649i \(0.962785\pi\)
\(140\) 2.36000i 0.0168572i
\(141\) 143.362 1.01675
\(142\) 37.1528i 0.261639i
\(143\) 30.2918 + 45.2906i 0.211831 + 0.316718i
\(144\) 89.1689 0.619229
\(145\) 11.3757i 0.0784530i
\(146\) 52.8515 0.361996
\(147\) 187.220 1.27360
\(148\) −158.813 −1.07306
\(149\) 220.472i 1.47968i 0.672783 + 0.739840i \(0.265099\pi\)
−0.672783 + 0.739840i \(0.734901\pi\)
\(150\) 109.057i 0.727045i
\(151\) 1.92316i 0.0127361i 0.999980 + 0.00636807i \(0.00202703\pi\)
−0.999980 + 0.00636807i \(0.997973\pi\)
\(152\) 215.834 1.41996
\(153\) 320.198i 2.09280i
\(154\) −26.0756 + 17.4402i −0.169322 + 0.113248i
\(155\) 6.19230 0.0399503
\(156\) 74.2493i 0.475957i
\(157\) −82.1805 −0.523443 −0.261721 0.965143i \(-0.584290\pi\)
−0.261721 + 0.965143i \(0.584290\pi\)
\(158\) 70.0879 0.443594
\(159\) 26.3179 0.165521
\(160\) 7.81125i 0.0488203i
\(161\) 14.8673i 0.0923437i
\(162\) 17.1122i 0.105631i
\(163\) 275.874 1.69248 0.846240 0.532801i \(-0.178861\pi\)
0.846240 + 0.532801i \(0.178861\pi\)
\(164\) 41.0209i 0.250128i
\(165\) −10.4905 + 7.01640i −0.0635789 + 0.0425236i
\(166\) 105.850 0.637650
\(167\) 118.203i 0.707805i 0.935282 + 0.353902i \(0.115145\pi\)
−0.935282 + 0.353902i \(0.884855\pi\)
\(168\) 96.9677 0.577189
\(169\) 144.464 0.854818
\(170\) −5.23168 −0.0307746
\(171\) 445.744i 2.60669i
\(172\) 152.520i 0.886742i
\(173\) 25.7292i 0.148724i 0.997231 + 0.0743619i \(0.0236920\pi\)
−0.997231 + 0.0743619i \(0.976308\pi\)
\(174\) 206.055 1.18422
\(175\) 77.3207i 0.441833i
\(176\) −59.9883 + 40.1221i −0.340842 + 0.227966i
\(177\) −154.884 −0.875049
\(178\) 43.1594i 0.242469i
\(179\) −332.909 −1.85983 −0.929914 0.367776i \(-0.880119\pi\)
−0.929914 + 0.367776i \(0.880119\pi\)
\(180\) 10.3466 0.0574812
\(181\) −20.9848 −0.115938 −0.0579690 0.998318i \(-0.518462\pi\)
−0.0579690 + 0.998318i \(0.518462\pi\)
\(182\) 14.1262i 0.0776167i
\(183\) 395.550i 2.16148i
\(184\) 31.5612i 0.171528i
\(185\) −12.1558 −0.0657069
\(186\) 112.165i 0.603039i
\(187\) −144.075 215.413i −0.770455 1.15194i
\(188\) 95.1238 0.505978
\(189\) 67.6483i 0.357927i
\(190\) 7.28295 0.0383313
\(191\) 77.8598 0.407643 0.203822 0.979008i \(-0.434664\pi\)
0.203822 + 0.979008i \(0.434664\pi\)
\(192\) −16.7554 −0.0872680
\(193\) 118.594i 0.614479i −0.951632 0.307239i \(-0.900595\pi\)
0.951632 0.307239i \(-0.0994052\pi\)
\(194\) 12.9554i 0.0667806i
\(195\) 5.68316i 0.0291444i
\(196\) 124.224 0.633796
\(197\) 155.835i 0.791039i −0.918458 0.395520i \(-0.870565\pi\)
0.918458 0.395520i \(-0.129435\pi\)
\(198\) −76.4606 114.320i −0.386164 0.577371i
\(199\) 217.530 1.09311 0.546557 0.837422i \(-0.315938\pi\)
0.546557 + 0.837422i \(0.315938\pi\)
\(200\) 164.140i 0.820702i
\(201\) −605.092 −3.01041
\(202\) −167.547 −0.829439
\(203\) −146.092 −0.719665
\(204\) 353.147i 1.73111i
\(205\) 3.13981i 0.0153161i
\(206\) 73.1107i 0.354907i
\(207\) −65.1807 −0.314883
\(208\) 32.4981i 0.156241i
\(209\) 200.565 + 299.873i 0.959640 + 1.43480i
\(210\) 3.27202 0.0155810
\(211\) 58.2739i 0.276180i −0.990420 0.138090i \(-0.955904\pi\)
0.990420 0.138090i \(-0.0440963\pi\)
\(212\) 17.4625 0.0823701
\(213\) 191.956 0.901204
\(214\) 63.6856 0.297596
\(215\) 11.6741i 0.0542981i
\(216\) 143.607i 0.664849i
\(217\) 79.5245i 0.366472i
\(218\) 125.355 0.575022
\(219\) 273.067i 1.24688i
\(220\) −6.96068 + 4.65552i −0.0316394 + 0.0211615i
\(221\) 116.698 0.528046
\(222\) 220.185i 0.991825i
\(223\) 59.5175 0.266895 0.133447 0.991056i \(-0.457395\pi\)
0.133447 + 0.991056i \(0.457395\pi\)
\(224\) 100.316 0.447838
\(225\) −338.986 −1.50660
\(226\) 42.7464i 0.189143i
\(227\) 159.923i 0.704507i 0.935905 + 0.352254i \(0.114585\pi\)
−0.935905 + 0.352254i \(0.885415\pi\)
\(228\) 491.611i 2.15619i
\(229\) 192.230 0.839432 0.419716 0.907655i \(-0.362130\pi\)
0.419716 + 0.907655i \(0.362130\pi\)
\(230\) 1.06498i 0.00463035i
\(231\) 90.1079 + 134.724i 0.390078 + 0.583222i
\(232\) 310.132 1.33678
\(233\) 65.3915i 0.280650i 0.990105 + 0.140325i \(0.0448148\pi\)
−0.990105 + 0.140325i \(0.955185\pi\)
\(234\) 61.9317 0.264665
\(235\) 7.28093 0.0309827
\(236\) −102.768 −0.435460
\(237\) 362.122i 1.52794i
\(238\) 67.1878i 0.282301i
\(239\) 385.273i 1.61202i 0.591902 + 0.806010i \(0.298377\pi\)
−0.591902 + 0.806010i \(0.701623\pi\)
\(240\) 7.52744 0.0313643
\(241\) 87.4687i 0.362941i −0.983396 0.181470i \(-0.941914\pi\)
0.983396 0.181470i \(-0.0580857\pi\)
\(242\) 102.877 + 42.5044i 0.425113 + 0.175638i
\(243\) −284.808 −1.17205
\(244\) 262.455i 1.07564i
\(245\) 9.50830 0.0388094
\(246\) −56.8733 −0.231192
\(247\) −162.454 −0.657708
\(248\) 168.819i 0.680721i
\(249\) 546.893i 2.19636i
\(250\) 11.0902i 0.0443610i
\(251\) 316.144 1.25954 0.629768 0.776783i \(-0.283150\pi\)
0.629768 + 0.776783i \(0.283150\pi\)
\(252\) 132.876i 0.527287i
\(253\) 43.8502 29.3284i 0.173321 0.115923i
\(254\) −139.457 −0.549043
\(255\) 27.0304i 0.106002i
\(256\) −130.192 −0.508561
\(257\) −81.3376 −0.316489 −0.158244 0.987400i \(-0.550583\pi\)
−0.158244 + 0.987400i \(0.550583\pi\)
\(258\) −211.460 −0.819613
\(259\) 156.110i 0.602742i
\(260\) 3.77089i 0.0145034i
\(261\) 640.490i 2.45399i
\(262\) 50.8434 0.194059
\(263\) 195.913i 0.744915i 0.928049 + 0.372457i \(0.121485\pi\)
−0.928049 + 0.372457i \(0.878515\pi\)
\(264\) −191.286 286.000i −0.724568 1.08333i
\(265\) 1.33660 0.00504379
\(266\) 93.5311i 0.351621i
\(267\) −222.991 −0.835173
\(268\) −401.491 −1.49810
\(269\) 60.1229 0.223505 0.111753 0.993736i \(-0.464354\pi\)
0.111753 + 0.993736i \(0.464354\pi\)
\(270\) 4.84580i 0.0179474i
\(271\) 470.764i 1.73714i −0.495571 0.868568i \(-0.665041\pi\)
0.495571 0.868568i \(-0.334959\pi\)
\(272\) 154.569i 0.568268i
\(273\) −72.9858 −0.267347
\(274\) 188.695i 0.688668i
\(275\) 228.052 152.529i 0.829281 0.554650i
\(276\) −71.8879 −0.260463
\(277\) 221.514i 0.799690i 0.916583 + 0.399845i \(0.130936\pi\)
−0.916583 + 0.399845i \(0.869064\pi\)
\(278\) −29.8320 −0.107309
\(279\) 348.648 1.24963
\(280\) 4.92469 0.0175882
\(281\) 211.716i 0.753438i −0.926328 0.376719i \(-0.877052\pi\)
0.926328 0.376719i \(-0.122948\pi\)
\(282\) 131.884i 0.467674i
\(283\) 479.560i 1.69456i 0.531148 + 0.847279i \(0.321761\pi\)
−0.531148 + 0.847279i \(0.678239\pi\)
\(284\) 127.367 0.448475
\(285\) 37.6287i 0.132030i
\(286\) −41.6644 + 27.8665i −0.145680 + 0.0974353i
\(287\) 40.3229 0.140498
\(288\) 439.800i 1.52708i
\(289\) −266.044 −0.920568
\(290\) 10.4649 0.0360858
\(291\) −66.9366 −0.230023
\(292\) 181.185i 0.620498i
\(293\) 173.206i 0.591146i −0.955320 0.295573i \(-0.904489\pi\)
0.955320 0.295573i \(-0.0955106\pi\)
\(294\) 172.230i 0.585816i
\(295\) −7.86606 −0.0266646
\(296\) 331.399i 1.11959i
\(297\) −199.524 + 133.448i −0.671799 + 0.449320i
\(298\) −202.820 −0.680604
\(299\) 23.7555i 0.0794498i
\(300\) −373.868 −1.24623
\(301\) 149.924 0.498087
\(302\) −1.76918 −0.00585821
\(303\) 865.660i 2.85696i
\(304\) 215.173i 0.707806i
\(305\) 20.0887i 0.0658647i
\(306\) −294.562 −0.962620
\(307\) 569.909i 1.85638i 0.372106 + 0.928190i \(0.378636\pi\)
−0.372106 + 0.928190i \(0.621364\pi\)
\(308\) 59.7884 + 89.3923i 0.194118 + 0.290235i
\(309\) 377.740 1.22246
\(310\) 5.69652i 0.0183759i
\(311\) 235.096 0.755935 0.377968 0.925819i \(-0.376623\pi\)
0.377968 + 0.925819i \(0.376623\pi\)
\(312\) 154.938 0.496597
\(313\) −258.020 −0.824346 −0.412173 0.911106i \(-0.635230\pi\)
−0.412173 + 0.911106i \(0.635230\pi\)
\(314\) 75.6007i 0.240767i
\(315\) 10.1706i 0.0322875i
\(316\) 240.275i 0.760365i
\(317\) −168.593 −0.531839 −0.265919 0.963995i \(-0.585675\pi\)
−0.265919 + 0.963995i \(0.585675\pi\)
\(318\) 24.2108i 0.0761345i
\(319\) 288.192 + 430.889i 0.903424 + 1.35075i
\(320\) −0.850957 −0.00265924
\(321\) 329.043i 1.02506i
\(322\) −13.6770 −0.0424751
\(323\) 772.669 2.39216
\(324\) −58.6640 −0.181062
\(325\) 123.545i 0.380140i
\(326\) 253.787i 0.778486i
\(327\) 647.668i 1.98064i
\(328\) −85.5996 −0.260974
\(329\) 93.5051i 0.284210i
\(330\) −6.45463 9.65060i −0.0195595 0.0292443i
\(331\) 94.0201 0.284049 0.142024 0.989863i \(-0.454639\pi\)
0.142024 + 0.989863i \(0.454639\pi\)
\(332\) 362.874i 1.09299i
\(333\) −684.412 −2.05529
\(334\) −108.739 −0.325567
\(335\) −30.7307 −0.0917335
\(336\) 96.6710i 0.287711i
\(337\) 63.6075i 0.188746i 0.995537 + 0.0943731i \(0.0300847\pi\)
−0.995537 + 0.0943731i \(0.969915\pi\)
\(338\) 132.898i 0.393188i
\(339\) 220.857 0.651496
\(340\) 17.9352i 0.0527507i
\(341\) −234.552 + 156.876i −0.687837 + 0.460047i
\(342\) 410.055 1.19899
\(343\) 274.013i 0.798871i
\(344\) −318.267 −0.925195
\(345\) −5.50241 −0.0159490
\(346\) −23.6692 −0.0684081
\(347\) 62.9423i 0.181390i 0.995879 + 0.0906949i \(0.0289088\pi\)
−0.995879 + 0.0906949i \(0.971091\pi\)
\(348\) 706.397i 2.02988i
\(349\) 61.3543i 0.175800i −0.996129 0.0879001i \(-0.971984\pi\)
0.996129 0.0879001i \(-0.0280156\pi\)
\(350\) −71.1300 −0.203229
\(351\) 108.091i 0.307950i
\(352\) −197.891 295.875i −0.562189 0.840553i
\(353\) −574.052 −1.62621 −0.813105 0.582117i \(-0.802224\pi\)
−0.813105 + 0.582117i \(0.802224\pi\)
\(354\) 142.483i 0.402494i
\(355\) 9.74887 0.0274616
\(356\) −147.959 −0.415615
\(357\) 347.138 0.972375
\(358\) 306.255i 0.855461i
\(359\) 125.281i 0.348972i −0.984660 0.174486i \(-0.944174\pi\)
0.984660 0.174486i \(-0.0558264\pi\)
\(360\) 21.5906i 0.0599739i
\(361\) −714.622 −1.97956
\(362\) 19.3046i 0.0533277i
\(363\) 219.607 531.535i 0.604977 1.46428i
\(364\) −48.4276 −0.133043
\(365\) 13.8682i 0.0379951i
\(366\) −363.880 −0.994209
\(367\) 522.627 1.42405 0.712026 0.702153i \(-0.247778\pi\)
0.712026 + 0.702153i \(0.247778\pi\)
\(368\) −31.4646 −0.0855016
\(369\) 176.782i 0.479084i
\(370\) 11.1825i 0.0302230i
\(371\) 17.1653i 0.0462677i
\(372\) 384.524 1.03367
\(373\) 156.552i 0.419711i 0.977732 + 0.209855i \(0.0672993\pi\)
−0.977732 + 0.209855i \(0.932701\pi\)
\(374\) 198.166 132.540i 0.529855 0.354384i
\(375\) −57.2998 −0.152799
\(376\) 198.498i 0.527919i
\(377\) −233.430 −0.619179
\(378\) 62.2320 0.164635
\(379\) −512.268 −1.35163 −0.675815 0.737071i \(-0.736208\pi\)
−0.675815 + 0.737071i \(0.736208\pi\)
\(380\) 24.9674i 0.0657037i
\(381\) 720.529i 1.89115i
\(382\) 71.6260i 0.187503i
\(383\) 422.863 1.10408 0.552041 0.833817i \(-0.313849\pi\)
0.552041 + 0.833817i \(0.313849\pi\)
\(384\) 599.804i 1.56199i
\(385\) 4.57630 + 6.84223i 0.0118865 + 0.0177720i
\(386\) 109.099 0.282640
\(387\) 657.291i 1.69843i
\(388\) −44.4138 −0.114469
\(389\) 238.322 0.612652 0.306326 0.951927i \(-0.400900\pi\)
0.306326 + 0.951927i \(0.400900\pi\)
\(390\) 5.22814 0.0134055
\(391\) 112.987i 0.288969i
\(392\) 259.222i 0.661280i
\(393\) 262.692i 0.668426i
\(394\) 143.358 0.363852
\(395\) 18.3910i 0.0465596i
\(396\) −391.910 + 262.122i −0.989672 + 0.661924i
\(397\) −228.549 −0.575691 −0.287845 0.957677i \(-0.592939\pi\)
−0.287845 + 0.957677i \(0.592939\pi\)
\(398\) 200.113i 0.502797i
\(399\) −483.245 −1.21114
\(400\) −163.638 −0.409096
\(401\) 181.116 0.451662 0.225831 0.974166i \(-0.427490\pi\)
0.225831 + 0.974166i \(0.427490\pi\)
\(402\) 556.645i 1.38469i
\(403\) 127.067i 0.315302i
\(404\) 574.383i 1.42174i
\(405\) −4.49023 −0.0110870
\(406\) 134.395i 0.331023i
\(407\) 460.437 307.955i 1.13129 0.756646i
\(408\) −736.922 −1.80618
\(409\) 243.302i 0.594870i −0.954742 0.297435i \(-0.903869\pi\)
0.954742 0.297435i \(-0.0961312\pi\)
\(410\) −2.88842 −0.00704492
\(411\) 974.928 2.37209
\(412\) 250.638 0.608345
\(413\) 101.020i 0.244600i
\(414\) 59.9620i 0.144836i
\(415\) 27.7750i 0.0669276i
\(416\) 160.288 0.385307
\(417\) 154.133i 0.369623i
\(418\) −275.864 + 184.507i −0.659962 + 0.441403i
\(419\) 209.825 0.500775 0.250387 0.968146i \(-0.419442\pi\)
0.250387 + 0.968146i \(0.419442\pi\)
\(420\) 11.2171i 0.0267074i
\(421\) 22.7473 0.0540315 0.0270158 0.999635i \(-0.491400\pi\)
0.0270158 + 0.999635i \(0.491400\pi\)
\(422\) 53.6082 0.127034
\(423\) 409.941 0.969128
\(424\) 36.4394i 0.0859420i
\(425\) 587.612i 1.38262i
\(426\) 176.587i 0.414525i
\(427\) 257.989 0.604190
\(428\) 218.327i 0.510110i
\(429\) 143.977 + 215.267i 0.335612 + 0.501788i
\(430\) −10.7394 −0.0249754
\(431\) 413.191i 0.958680i 0.877629 + 0.479340i \(0.159124\pi\)
−0.877629 + 0.479340i \(0.840876\pi\)
\(432\) 143.168 0.331407
\(433\) 317.438 0.733113 0.366556 0.930396i \(-0.380537\pi\)
0.366556 + 0.930396i \(0.380537\pi\)
\(434\) 73.1574 0.168565
\(435\) 54.0688i 0.124296i
\(436\) 429.741i 0.985644i
\(437\) 157.287i 0.359925i
\(438\) 251.204 0.573524
\(439\) 517.798i 1.17950i −0.807588 0.589748i \(-0.799227\pi\)
0.807588 0.589748i \(-0.200773\pi\)
\(440\) −9.71481 14.5250i −0.0220791 0.0330115i
\(441\) 535.350 1.21395
\(442\) 107.355i 0.242884i
\(443\) 609.883 1.37671 0.688356 0.725373i \(-0.258333\pi\)
0.688356 + 0.725373i \(0.258333\pi\)
\(444\) −754.838 −1.70009
\(445\) −11.3250 −0.0254495
\(446\) 54.7523i 0.122763i
\(447\) 1047.91i 2.34431i
\(448\) 10.9284i 0.0243937i
\(449\) −452.839 −1.00855 −0.504275 0.863543i \(-0.668240\pi\)
−0.504275 + 0.863543i \(0.668240\pi\)
\(450\) 311.845i 0.692989i
\(451\) −79.5440 118.930i −0.176373 0.263702i
\(452\) 146.543 0.324210
\(453\) 9.14079i 0.0201783i
\(454\) −147.119 −0.324051
\(455\) −3.70672 −0.00814664
\(456\) 1025.86 2.24969
\(457\) 61.6607i 0.134925i −0.997722 0.0674625i \(-0.978510\pi\)
0.997722 0.0674625i \(-0.0214903\pi\)
\(458\) 176.839i 0.386112i
\(459\) 514.104i 1.12005i
\(460\) −3.65096 −0.00793687
\(461\) 135.343i 0.293586i 0.989167 + 0.146793i \(0.0468952\pi\)
−0.989167 + 0.146793i \(0.953105\pi\)
\(462\) −123.938 + 82.8935i −0.268263 + 0.179423i
\(463\) 243.122 0.525101 0.262551 0.964918i \(-0.415436\pi\)
0.262551 + 0.964918i \(0.415436\pi\)
\(464\) 309.183i 0.666342i
\(465\) 29.4321 0.0632948
\(466\) −60.1559 −0.129090
\(467\) −301.964 −0.646603 −0.323302 0.946296i \(-0.604793\pi\)
−0.323302 + 0.946296i \(0.604793\pi\)
\(468\) 212.314i 0.453662i
\(469\) 394.659i 0.841490i
\(470\) 6.69798i 0.0142510i
\(471\) −390.605 −0.829310
\(472\) 214.450i 0.454343i
\(473\) −295.752 442.192i −0.625269 0.934866i
\(474\) 333.129 0.702803
\(475\) 818.006i 1.72212i
\(476\) 230.333 0.483893
\(477\) 75.2554 0.157768
\(478\) −354.426 −0.741477
\(479\) 62.5951i 0.130679i −0.997863 0.0653394i \(-0.979187\pi\)
0.997863 0.0653394i \(-0.0208130\pi\)
\(480\) 37.1269i 0.0773478i
\(481\) 249.438i 0.518582i
\(482\) 80.4656 0.166941
\(483\) 70.6646i 0.146304i
\(484\) 145.714 352.684i 0.301061 0.728686i
\(485\) −3.39950 −0.00700928
\(486\) 262.005i 0.539105i
\(487\) 671.784 1.37943 0.689716 0.724080i \(-0.257735\pi\)
0.689716 + 0.724080i \(0.257735\pi\)
\(488\) −547.673 −1.12228
\(489\) 1311.23 2.68146
\(490\) 8.74702i 0.0178511i
\(491\) 908.554i 1.85042i −0.379461 0.925208i \(-0.623891\pi\)
0.379461 0.925208i \(-0.376109\pi\)
\(492\) 194.973i 0.396287i
\(493\) 1110.25 2.25203
\(494\) 149.447i 0.302524i
\(495\) −29.9974 + 20.0632i −0.0606008 + 0.0405318i
\(496\) 168.302 0.339319
\(497\) 125.200i 0.251911i
\(498\) 503.106 1.01025
\(499\) 266.725 0.534518 0.267259 0.963625i \(-0.413882\pi\)
0.267259 + 0.963625i \(0.413882\pi\)
\(500\) −38.0196 −0.0760391
\(501\) 561.822i 1.12140i
\(502\) 290.832i 0.579346i
\(503\) 388.128i 0.771626i 0.922577 + 0.385813i \(0.126079\pi\)
−0.922577 + 0.385813i \(0.873921\pi\)
\(504\) 277.277 0.550152
\(505\) 43.9642i 0.0870577i
\(506\) 26.9803 + 40.3394i 0.0533207 + 0.0797221i
\(507\) 686.640 1.35432
\(508\) 478.086i 0.941114i
\(509\) −600.864 −1.18048 −0.590240 0.807228i \(-0.700967\pi\)
−0.590240 + 0.807228i \(0.700967\pi\)
\(510\) −24.8662 −0.0487573
\(511\) −178.102 −0.348536
\(512\) 385.010i 0.751973i
\(513\) 715.678i 1.39508i
\(514\) 74.8253i 0.145575i
\(515\) 19.1842 0.0372509
\(516\) 724.928i 1.40490i
\(517\) −275.787 + 184.455i −0.533438 + 0.356780i
\(518\) −143.611 −0.277242
\(519\) 122.291i 0.235629i
\(520\) 7.86882 0.0151324
\(521\) −587.011 −1.12670 −0.563351 0.826218i \(-0.690488\pi\)
−0.563351 + 0.826218i \(0.690488\pi\)
\(522\) 589.209 1.12875
\(523\) 50.8944i 0.0973124i −0.998816 0.0486562i \(-0.984506\pi\)
0.998816 0.0486562i \(-0.0154939\pi\)
\(524\) 174.301i 0.332636i
\(525\) 367.506i 0.700012i
\(526\) −180.227 −0.342637
\(527\) 604.360i 1.14679i
\(528\) −285.125 + 190.701i −0.540009 + 0.361175i
\(529\) 23.0000 0.0434783
\(530\) 1.22959i 0.00231998i
\(531\) −442.886 −0.834060
\(532\) −320.643 −0.602713
\(533\) 64.4292 0.120880
\(534\) 205.137i 0.384152i
\(535\) 16.7111i 0.0312357i
\(536\) 837.802i 1.56306i
\(537\) −1582.32 −2.94660
\(538\) 55.3092i 0.102805i
\(539\) −360.156 + 240.884i −0.668192 + 0.446908i
\(540\) 16.6123 0.0307636
\(541\) 702.333i 1.29821i −0.760698 0.649106i \(-0.775143\pi\)
0.760698 0.649106i \(-0.224857\pi\)
\(542\) 433.072 0.799026
\(543\) −99.7408 −0.183685
\(544\) −762.366 −1.40141
\(545\) 32.8930i 0.0603542i
\(546\) 67.1422i 0.122971i
\(547\) 352.041i 0.643585i 0.946810 + 0.321792i \(0.104285\pi\)
−0.946810 + 0.321792i \(0.895715\pi\)
\(548\) 646.884 1.18045
\(549\) 1131.07i 2.06023i
\(550\) 140.317 + 209.793i 0.255121 + 0.381443i
\(551\) −1545.56 −2.80502
\(552\) 150.011i 0.271758i
\(553\) −236.187 −0.427100
\(554\) −203.779 −0.367831
\(555\) −57.7765 −0.104102
\(556\) 102.270i 0.183939i
\(557\) 48.4433i 0.0869717i 0.999054 + 0.0434859i \(0.0138463\pi\)
−0.999054 + 0.0434859i \(0.986154\pi\)
\(558\) 320.734i 0.574791i
\(559\) 239.554 0.428540
\(560\) 4.90962i 0.00876718i
\(561\) −684.790 1023.86i −1.22066 1.82506i
\(562\) 194.765 0.346557
\(563\) 0.131791i 0.000234088i 1.00000 0.000117044i \(3.72562e-5\pi\)
−1.00000 0.000117044i \(0.999963\pi\)
\(564\) 452.125 0.801639
\(565\) 11.2166 0.0198525
\(566\) −441.164 −0.779442
\(567\) 57.6657i 0.101703i
\(568\) 265.780i 0.467923i
\(569\) 685.858i 1.20537i −0.797978 0.602687i \(-0.794097\pi\)
0.797978 0.602687i \(-0.205903\pi\)
\(570\) 34.6159 0.0607297
\(571\) 708.095i 1.24010i −0.784563 0.620049i \(-0.787113\pi\)
0.784563 0.620049i \(-0.212887\pi\)
\(572\) 95.5319 + 142.834i 0.167014 + 0.249710i
\(573\) 370.069 0.645844
\(574\) 37.0944i 0.0646245i
\(575\) 119.616 0.208028
\(576\) −47.9118 −0.0831802
\(577\) −648.540 −1.12399 −0.561993 0.827142i \(-0.689965\pi\)
−0.561993 + 0.827142i \(0.689965\pi\)
\(578\) 244.743i 0.423431i
\(579\) 563.681i 0.973542i
\(580\) 35.8757i 0.0618547i
\(581\) −356.699 −0.613940
\(582\) 61.5774i 0.105803i
\(583\) −50.6279 + 33.8616i −0.0868404 + 0.0580816i
\(584\) 378.085 0.647405
\(585\) 16.2508i 0.0277792i
\(586\) 159.338 0.271908
\(587\) −697.051 −1.18748 −0.593740 0.804657i \(-0.702349\pi\)
−0.593740 + 0.804657i \(0.702349\pi\)
\(588\) 590.438 1.00415
\(589\) 841.321i 1.42839i
\(590\) 7.23626i 0.0122649i
\(591\) 740.684i 1.25327i
\(592\) −330.385 −0.558083
\(593\) 1062.57i 1.79185i −0.444201 0.895927i \(-0.646512\pi\)
0.444201 0.895927i \(-0.353488\pi\)
\(594\) −122.764 183.549i −0.206673 0.309006i
\(595\) 17.6300 0.0296303
\(596\) 695.307i 1.16662i
\(597\) 1033.92 1.73186
\(598\) −21.8535 −0.0365444
\(599\) −763.078 −1.27392 −0.636960 0.770897i \(-0.719808\pi\)
−0.636960 + 0.770897i \(0.719808\pi\)
\(600\) 780.162i 1.30027i
\(601\) 590.953i 0.983283i 0.870798 + 0.491641i \(0.163603\pi\)
−0.870798 + 0.491641i \(0.836397\pi\)
\(602\) 137.921i 0.229104i
\(603\) −1730.25 −2.86940
\(604\) 6.06510i 0.0100416i
\(605\) 11.1531 26.9950i 0.0184349 0.0446198i
\(606\) −796.351 −1.31411
\(607\) 555.046i 0.914408i −0.889362 0.457204i \(-0.848851\pi\)
0.889362 0.457204i \(-0.151149\pi\)
\(608\) 1061.28 1.74553
\(609\) −694.377 −1.14019
\(610\) −18.4803 −0.0302956
\(611\) 149.405i 0.244526i
\(612\) 1009.82i 1.65003i
\(613\) 986.980i 1.61008i −0.593219 0.805041i \(-0.702143\pi\)
0.593219 0.805041i \(-0.297857\pi\)
\(614\) −524.279 −0.853875
\(615\) 14.9235i 0.0242659i
\(616\) −186.538 + 124.762i −0.302821 + 0.202536i
\(617\) 43.7170 0.0708542 0.0354271 0.999372i \(-0.488721\pi\)
0.0354271 + 0.999372i \(0.488721\pi\)
\(618\) 347.496i 0.562292i
\(619\) 276.474 0.446646 0.223323 0.974745i \(-0.428310\pi\)
0.223323 + 0.974745i \(0.428310\pi\)
\(620\) 19.5288 0.0314980
\(621\) −104.653 −0.168523
\(622\) 216.273i 0.347706i
\(623\) 145.441i 0.233453i
\(624\) 154.464i 0.247539i
\(625\) 620.633 0.993013
\(626\) 237.362i 0.379173i
\(627\) 953.287 + 1425.30i 1.52039 + 2.27321i
\(628\) −259.174 −0.412698
\(629\) 1186.39i 1.88615i
\(630\) 9.35625 0.0148512
\(631\) −663.581 −1.05163 −0.525817 0.850598i \(-0.676240\pi\)
−0.525817 + 0.850598i \(0.676240\pi\)
\(632\) 501.389 0.793338
\(633\) 276.977i 0.437562i
\(634\) 155.095i 0.244629i
\(635\) 36.5934i 0.0576275i
\(636\) 82.9993 0.130502
\(637\) 195.111i 0.306297i
\(638\) −396.390 + 265.118i −0.621301 + 0.415546i
\(639\) 548.895 0.858990
\(640\) 30.4622i 0.0475971i
\(641\) −871.988 −1.36036 −0.680178 0.733047i \(-0.738097\pi\)
−0.680178 + 0.733047i \(0.738097\pi\)
\(642\) 302.699 0.471493
\(643\) 27.1370 0.0422038 0.0211019 0.999777i \(-0.493283\pi\)
0.0211019 + 0.999777i \(0.493283\pi\)
\(644\) 46.8874i 0.0728065i
\(645\) 55.4871i 0.0860265i
\(646\) 710.805i 1.10032i
\(647\) −104.324 −0.161242 −0.0806212 0.996745i \(-0.525690\pi\)
−0.0806212 + 0.996745i \(0.525690\pi\)
\(648\) 122.416i 0.188913i
\(649\) 297.951 199.279i 0.459092 0.307056i
\(650\) −113.654 −0.174852
\(651\) 377.981i 0.580616i
\(652\) 870.030 1.33440
\(653\) −1186.19 −1.81652 −0.908262 0.418402i \(-0.862590\pi\)
−0.908262 + 0.418402i \(0.862590\pi\)
\(654\) 595.813 0.911028
\(655\) 13.3413i 0.0203684i
\(656\) 85.3377i 0.130088i
\(657\) 780.828i 1.18847i
\(658\) 86.0186 0.130727
\(659\) 229.570i 0.348362i 0.984714 + 0.174181i \(0.0557278\pi\)
−0.984714 + 0.174181i \(0.944272\pi\)
\(660\) −33.0842 + 22.1278i −0.0501275 + 0.0335269i
\(661\) −822.477 −1.24429 −0.622146 0.782902i \(-0.713739\pi\)
−0.622146 + 0.782902i \(0.713739\pi\)
\(662\) 86.4924i 0.130653i
\(663\) 554.668 0.836603
\(664\) 757.220 1.14039
\(665\) −24.5425 −0.0369061
\(666\) 629.614i 0.945367i
\(667\) 226.007i 0.338840i
\(668\) 372.780i 0.558054i
\(669\) 282.887 0.422851
\(670\) 28.2703i 0.0421944i
\(671\) −508.929 760.923i −0.758464 1.13401i
\(672\) 476.802 0.709527
\(673\) 1016.85i 1.51092i 0.655192 + 0.755462i \(0.272588\pi\)
−0.655192 + 0.755462i \(0.727412\pi\)
\(674\) −58.5148 −0.0868172
\(675\) −544.270 −0.806326
\(676\) 455.599 0.673964
\(677\) 527.044i 0.778499i 0.921132 + 0.389250i \(0.127266\pi\)
−0.921132 + 0.389250i \(0.872734\pi\)
\(678\) 203.174i 0.299667i
\(679\) 43.6580i 0.0642975i
\(680\) −37.4260 −0.0550382
\(681\) 760.117i 1.11618i
\(682\) −144.316 215.773i −0.211607 0.316383i
\(683\) −1263.63 −1.85012 −0.925059 0.379823i \(-0.875985\pi\)
−0.925059 + 0.379823i \(0.875985\pi\)
\(684\) 1405.75i 2.05519i
\(685\) 49.5135 0.0722825
\(686\) 252.074 0.367455
\(687\) 913.671 1.32994
\(688\) 317.293i 0.461182i
\(689\) 27.4273i 0.0398074i
\(690\) 5.06186i 0.00733603i
\(691\) −51.0978 −0.0739476 −0.0369738 0.999316i \(-0.511772\pi\)
−0.0369738 + 0.999316i \(0.511772\pi\)
\(692\) 81.1427i 0.117258i
\(693\) 257.661 + 385.241i 0.371806 + 0.555903i
\(694\) −57.9028 −0.0834334
\(695\) 7.82791i 0.0112632i
\(696\) 1474.06 2.11790
\(697\) −306.441 −0.439657
\(698\) 56.4420 0.0808624
\(699\) 310.806i 0.444644i
\(700\) 243.848i 0.348354i
\(701\) 260.871i 0.372141i −0.982536 0.186071i \(-0.940425\pi\)
0.982536 0.186071i \(-0.0595754\pi\)
\(702\) 99.4364 0.141647
\(703\) 1651.55i 2.34929i
\(704\) 32.2326 21.5582i 0.0457849 0.0306224i
\(705\) 34.6063 0.0490870
\(706\) 528.091i 0.748004i
\(707\) 564.609 0.798598
\(708\) −488.460 −0.689915
\(709\) 200.950 0.283427 0.141713 0.989908i \(-0.454739\pi\)
0.141713 + 0.989908i \(0.454739\pi\)
\(710\) 8.96833i 0.0126314i
\(711\) 1035.48i 1.45637i
\(712\) 308.751i 0.433638i
\(713\) −123.026 −0.172547
\(714\) 319.344i 0.447261i
\(715\) 7.31216 + 10.9327i 0.0102268 + 0.0152905i
\(716\) −1049.90 −1.46634
\(717\) 1831.21i 2.55398i
\(718\) 115.250 0.160516
\(719\) 1116.70 1.55312 0.776562 0.630041i \(-0.216962\pi\)
0.776562 + 0.630041i \(0.216962\pi\)
\(720\) 21.5245 0.0298952
\(721\) 246.373i 0.341710i
\(722\) 657.406i 0.910534i
\(723\) 415.740i 0.575021i
\(724\) −66.1801 −0.0914089
\(725\) 1175.39i 1.62123i
\(726\) 488.978 + 202.024i 0.673523 + 0.278270i
\(727\) 967.146 1.33032 0.665162 0.746699i \(-0.268362\pi\)
0.665162 + 0.746699i \(0.268362\pi\)
\(728\) 101.055i 0.138812i
\(729\) −1186.28 −1.62727
\(730\) 12.7579 0.0174765
\(731\) −1139.37 −1.55865
\(732\) 1247.45i 1.70417i
\(733\) 917.994i 1.25238i −0.779671 0.626190i \(-0.784614\pi\)
0.779671 0.626190i \(-0.215386\pi\)
\(734\) 480.783i 0.655017i
\(735\) 45.1930 0.0614871
\(736\) 155.190i 0.210856i
\(737\) 1164.02 778.534i 1.57940 1.05636i
\(738\) −162.628 −0.220363
\(739\) 307.451i 0.416037i −0.978125 0.208019i \(-0.933299\pi\)
0.978125 0.208019i \(-0.0667014\pi\)
\(740\) −38.3359 −0.0518052
\(741\) −772.145 −1.04203
\(742\) 15.7910 0.0212816
\(743\) 93.6153i 0.125996i 0.998014 + 0.0629982i \(0.0200662\pi\)
−0.998014 + 0.0629982i \(0.979934\pi\)
\(744\) 802.398i 1.07849i
\(745\) 53.2199i 0.0714361i
\(746\) −144.018 −0.193053
\(747\) 1563.83i 2.09348i
\(748\) −454.372 679.352i −0.607450 0.908224i
\(749\) −214.612 −0.286531
\(750\) 52.7121i 0.0702828i
\(751\) 1095.93 1.45929 0.729646 0.683825i \(-0.239685\pi\)
0.729646 + 0.683825i \(0.239685\pi\)
\(752\) 197.890 0.263152
\(753\) 1502.63 1.99553
\(754\) 214.741i 0.284802i
\(755\) 0.464232i 0.000614877i
\(756\) 213.344i 0.282201i
\(757\) 768.810 1.01560 0.507800 0.861475i \(-0.330459\pi\)
0.507800 + 0.861475i \(0.330459\pi\)
\(758\) 471.253i 0.621706i
\(759\) 208.421 139.398i 0.274599 0.183661i
\(760\) 52.1002 0.0685529
\(761\) 293.017i 0.385042i −0.981293 0.192521i \(-0.938334\pi\)
0.981293 0.192521i \(-0.0616663\pi\)
\(762\) −662.840 −0.869869
\(763\) −422.428 −0.553641
\(764\) 245.548 0.321398
\(765\) 77.2929i 0.101036i
\(766\) 389.007i 0.507842i
\(767\) 161.412i 0.210447i
\(768\) −618.802 −0.805732
\(769\) 468.021i 0.608609i −0.952575 0.304305i \(-0.901576\pi\)
0.952575 0.304305i \(-0.0984241\pi\)
\(770\) −6.29441 + 4.20990i −0.00817455 + 0.00546740i
\(771\) −386.599 −0.501425
\(772\) 374.013i 0.484473i
\(773\) −350.939 −0.453996 −0.226998 0.973895i \(-0.572891\pi\)
−0.226998 + 0.973895i \(0.572891\pi\)
\(774\) −604.666 −0.781222
\(775\) −639.821 −0.825575
\(776\) 92.6796i 0.119432i
\(777\) 741.993i 0.954946i
\(778\) 219.240i 0.281800i
\(779\) 426.592 0.547614
\(780\) 17.9231i 0.0229783i
\(781\) −369.268 + 246.978i −0.472814 + 0.316233i
\(782\) 103.941 0.132916
\(783\) 1028.36i 1.31336i
\(784\) 258.429 0.329628
\(785\) −19.8376 −0.0252708
\(786\) 241.659 0.307454
\(787\) 528.020i 0.670927i 0.942053 + 0.335464i \(0.108893\pi\)
−0.942053 + 0.335464i \(0.891107\pi\)
\(788\) 491.459i 0.623679i
\(789\) 931.175i 1.18020i
\(790\) 16.9186 0.0214159
\(791\) 144.049i 0.182110i
\(792\) −546.977 817.810i −0.690628 1.03259i
\(793\) 412.224 0.519828
\(794\) 210.250i 0.264799i
\(795\) 6.35289 0.00799106
\(796\) 686.027 0.861843
\(797\) −517.639 −0.649484 −0.324742 0.945803i \(-0.605277\pi\)
−0.324742 + 0.945803i \(0.605277\pi\)
\(798\) 444.555i 0.557086i
\(799\) 710.608i 0.889371i
\(800\) 807.099i 1.00887i
\(801\) −637.638 −0.796052
\(802\) 166.615i 0.207750i
\(803\) 351.338 + 525.301i 0.437532 + 0.654173i
\(804\) −1908.29 −2.37349
\(805\) 3.58883i 0.00445818i
\(806\) 116.893 0.145029
\(807\) 285.765 0.354108
\(808\) −1198.58 −1.48339
\(809\) 915.954i 1.13221i −0.824335 0.566103i \(-0.808451\pi\)
0.824335 0.566103i \(-0.191549\pi\)
\(810\) 4.13072i 0.00509966i
\(811\) 474.314i 0.584851i 0.956288 + 0.292426i \(0.0944624\pi\)
−0.956288 + 0.292426i \(0.905538\pi\)
\(812\) −460.733 −0.567405
\(813\) 2237.54i 2.75221i
\(814\) 283.298 + 423.572i 0.348033 + 0.520359i
\(815\) 66.5935 0.0817098
\(816\) 734.668i 0.900328i
\(817\) 1586.11 1.94138
\(818\) 223.822 0.273621
\(819\) −208.701 −0.254824
\(820\) 9.90207i 0.0120757i
\(821\) 185.729i 0.226223i −0.993582 0.113111i \(-0.963918\pi\)
0.993582 0.113111i \(-0.0360817\pi\)
\(822\) 896.870i 1.09108i
\(823\) −342.547 −0.416217 −0.208109 0.978106i \(-0.566731\pi\)
−0.208109 + 0.978106i \(0.566731\pi\)
\(824\) 523.014i 0.634725i
\(825\) 1083.94 724.971i 1.31386 0.878752i
\(826\) −92.9315 −0.112508
\(827\) 226.568i 0.273964i 0.990574 + 0.136982i \(0.0437402\pi\)
−0.990574 + 0.136982i \(0.956260\pi\)
\(828\) −205.562 −0.248263
\(829\) 866.076 1.04472 0.522362 0.852724i \(-0.325051\pi\)
0.522362 + 0.852724i \(0.325051\pi\)
\(830\) 25.5512 0.0307845
\(831\) 1052.86i 1.26698i
\(832\) 17.4617i 0.0209877i
\(833\) 927.996i 1.11404i
\(834\) −141.792 −0.170014
\(835\) 28.5332i 0.0341715i
\(836\) 632.525 + 945.716i 0.756609 + 1.13124i
\(837\) 559.783 0.668797
\(838\) 193.025i 0.230340i
\(839\) −840.329 −1.00158 −0.500792 0.865567i \(-0.666958\pi\)
−0.500792 + 0.865567i \(0.666958\pi\)
\(840\) 23.4071 0.0278656
\(841\) −1379.83 −1.64070
\(842\) 20.9260i 0.0248527i
\(843\) 1006.29i 1.19370i
\(844\) 183.780i 0.217748i
\(845\) 34.8723 0.0412690
\(846\) 377.119i 0.445767i
\(847\) −346.683 143.234i −0.409307 0.169107i
\(848\) 36.3279 0.0428395
\(849\) 2279.35i 2.68475i
\(850\) 540.565 0.635958
\(851\) 241.505 0.283790
\(852\) 605.377 0.710536
\(853\) 1146.48i 1.34405i 0.740528 + 0.672026i \(0.234576\pi\)
−0.740528 + 0.672026i \(0.765424\pi\)
\(854\) 237.333i 0.277908i
\(855\) 107.598i 0.125846i
\(856\) 455.589 0.532230
\(857\) 145.376i 0.169634i −0.996397 0.0848170i \(-0.972969\pi\)
0.996397 0.0848170i \(-0.0270306\pi\)
\(858\) −198.032 + 132.450i −0.230806 + 0.154370i
\(859\) −589.556 −0.686328 −0.343164 0.939276i \(-0.611499\pi\)
−0.343164 + 0.939276i \(0.611499\pi\)
\(860\) 36.8168i 0.0428102i
\(861\) 191.655 0.222596
\(862\) −380.109 −0.440962
\(863\) 304.169 0.352456 0.176228 0.984349i \(-0.443610\pi\)
0.176228 + 0.984349i \(0.443610\pi\)
\(864\) 706.135i 0.817286i
\(865\) 6.21079i 0.00718011i
\(866\) 292.022i 0.337208i
\(867\) −1264.51 −1.45849
\(868\) 250.798i 0.288938i
\(869\) 465.920 + 696.617i 0.536156 + 0.801630i
\(870\) 49.7398 0.0571721
\(871\) 630.598i 0.723993i
\(872\) 896.753 1.02839
\(873\) −191.404 −0.219248
\(874\) −144.694 −0.165554
\(875\) 37.3726i 0.0427115i
\(876\) 861.176i 0.983078i
\(877\) 689.912i 0.786673i −0.919395 0.393337i \(-0.871321\pi\)
0.919395 0.393337i \(-0.128679\pi\)
\(878\) 476.341 0.542530
\(879\) 823.250i 0.936575i
\(880\) −14.4806 + 9.68509i −0.0164552 + 0.0110058i
\(881\) −427.634 −0.485396 −0.242698 0.970102i \(-0.578032\pi\)
−0.242698 + 0.970102i \(0.578032\pi\)
\(882\) 492.487i 0.558375i
\(883\) 567.615 0.642825 0.321413 0.946939i \(-0.395842\pi\)
0.321413 + 0.946939i \(0.395842\pi\)
\(884\) 368.033 0.416327
\(885\) −37.3875 −0.0422457
\(886\) 561.053i 0.633243i
\(887\) 1101.68i 1.24203i −0.783800 0.621014i \(-0.786721\pi\)
0.783800 0.621014i \(-0.213279\pi\)
\(888\) 1575.14i 1.77381i
\(889\) 469.950 0.528628
\(890\) 10.4183i 0.0117059i
\(891\) 170.081 113.756i 0.190888 0.127672i
\(892\) 187.702 0.210428
\(893\) 989.227i 1.10776i
\(894\) −964.006 −1.07831
\(895\) −80.3612 −0.0897890
\(896\) 391.210 0.436618
\(897\) 112.910i 0.125875i
\(898\) 416.582i 0.463900i
\(899\) 1208.90i 1.34471i
\(900\) −1069.07 −1.18785
\(901\) 130.451i 0.144784i
\(902\) 109.408 73.1753i 0.121295 0.0811257i
\(903\) 712.592 0.789138
\(904\) 305.796i 0.338270i
\(905\) −5.06553 −0.00559727
\(906\) −8.40893 −0.00928138
\(907\) 216.538 0.238740 0.119370 0.992850i \(-0.461912\pi\)
0.119370 + 0.992850i \(0.461912\pi\)
\(908\) 504.353i 0.555455i
\(909\) 2475.33i 2.72314i
\(910\) 3.40994i 0.00374719i
\(911\) −396.334 −0.435054 −0.217527 0.976054i \(-0.569799\pi\)
−0.217527 + 0.976054i \(0.569799\pi\)
\(912\) 1022.72i 1.12140i
\(913\) 703.652 + 1052.06i 0.770704 + 1.15231i
\(914\) 56.7239 0.0620611
\(915\) 95.4820i 0.104352i
\(916\) 606.239 0.661833
\(917\) −171.335 −0.186843
\(918\) −472.943 −0.515188
\(919\) 1473.35i 1.60321i 0.597856 + 0.801604i \(0.296019\pi\)
−0.597856 + 0.801604i \(0.703981\pi\)
\(920\) 7.61857i 0.00828105i
\(921\) 2708.78i 2.94113i
\(922\) −124.507 −0.135040
\(923\) 200.048i 0.216737i
\(924\) 284.175 + 424.883i 0.307549 + 0.459830i
\(925\) 1256.00 1.35783
\(926\) 223.656i 0.241530i
\(927\) 1080.14 1.16520
\(928\) 1524.96 1.64327
\(929\) −32.1342 −0.0345901 −0.0172950 0.999850i \(-0.505505\pi\)
−0.0172950 + 0.999850i \(0.505505\pi\)
\(930\) 27.0756i 0.0291136i
\(931\) 1291.85i 1.38759i
\(932\) 206.226i 0.221273i
\(933\) 1117.41 1.19766
\(934\) 277.787i 0.297417i
\(935\) −34.7784 51.9987i −0.0371961 0.0556135i
\(936\) 443.042 0.473335
\(937\) 422.290i 0.450683i −0.974280 0.225341i \(-0.927650\pi\)
0.974280 0.225341i \(-0.0723498\pi\)
\(938\) −363.060 −0.387058
\(939\) −1226.37 −1.30604
\(940\) 22.9620 0.0244277
\(941\) 1414.84i 1.50355i −0.659422 0.751773i \(-0.729199\pi\)
0.659422 0.751773i \(-0.270801\pi\)
\(942\) 359.331i 0.381456i
\(943\) 62.3802i 0.0661507i
\(944\) −213.794 −0.226476
\(945\) 16.3297i 0.0172801i
\(946\) 406.788 272.073i 0.430008 0.287603i
\(947\) 1748.72 1.84659 0.923295 0.384093i \(-0.125486\pi\)
0.923295 + 0.384093i \(0.125486\pi\)
\(948\) 1142.03i 1.20467i
\(949\) −284.577 −0.299871
\(950\) −752.512 −0.792118
\(951\) −801.324 −0.842612
\(952\) 480.642i 0.504876i
\(953\) 1142.34i 1.19868i 0.800494 + 0.599341i \(0.204571\pi\)
−0.800494 + 0.599341i \(0.795429\pi\)
\(954\) 69.2301i 0.0725682i
\(955\) 18.7946 0.0196802
\(956\) 1215.04i 1.27096i
\(957\) 1369.78 + 2048.02i 1.43133 + 2.14004i
\(958\) 57.5834 0.0601080
\(959\) 635.876i 0.663062i
\(960\) −4.04461 −0.00421313
\(961\) −302.943 −0.315237
\(962\) −229.467 −0.238531
\(963\) 940.891i 0.977042i
\(964\) 275.852i 0.286153i
\(965\) 28.6276i 0.0296659i
\(966\) −65.0069 −0.0672949
\(967\) 263.434i 0.272424i 0.990680 + 0.136212i \(0.0434928\pi\)
−0.990680 + 0.136212i \(0.956507\pi\)
\(968\) 735.956 + 304.065i 0.760286 + 0.314116i
\(969\) 3672.51 3.78999
\(970\) 3.12732i 0.00322404i
\(971\) −1372.06 −1.41304 −0.706519 0.707694i \(-0.749736\pi\)
−0.706519 + 0.707694i \(0.749736\pi\)
\(972\) −898.205 −0.924079
\(973\) 100.530 0.103319
\(974\) 617.997i 0.634494i
\(975\) 587.213i 0.602270i
\(976\) 545.998i 0.559424i
\(977\) −96.5589 −0.0988320 −0.0494160 0.998778i \(-0.515736\pi\)
−0.0494160 + 0.998778i \(0.515736\pi\)
\(978\) 1206.25i 1.23338i
\(979\) 428.970 286.909i 0.438171 0.293063i
\(980\) 29.9865 0.0305985
\(981\) 1851.99i 1.88786i
\(982\) 835.811 0.851131
\(983\) −265.797 −0.270393 −0.135197 0.990819i \(-0.543167\pi\)
−0.135197 + 0.990819i \(0.543167\pi\)
\(984\) −406.856 −0.413471
\(985\) 37.6170i 0.0381899i
\(986\) 1021.36i 1.03586i
\(987\) 444.431i 0.450285i
\(988\) −512.334 −0.518557
\(989\) 231.935i 0.234515i
\(990\) −18.4569 27.5957i −0.0186433 0.0278744i
\(991\) 1823.58 1.84014 0.920072 0.391750i \(-0.128130\pi\)
0.920072 + 0.391750i \(0.128130\pi\)
\(992\) 830.103i 0.836797i
\(993\) 446.879 0.450029
\(994\) 115.176 0.115871
\(995\) 52.5096 0.0527734
\(996\) 1724.75i 1.73167i
\(997\) 91.1503i 0.0914246i −0.998955 0.0457123i \(-0.985444\pi\)
0.998955 0.0457123i \(-0.0145557\pi\)
\(998\) 245.369i 0.245861i
\(999\) −1098.88 −1.09998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.26 yes 44
11.10 odd 2 inner 253.3.c.a.208.19 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.19 44 11.10 odd 2 inner
253.3.c.a.208.26 yes 44 1.1 even 1 trivial