Properties

Label 253.3.c.a.208.26
Level 253253
Weight 33
Character 253.208
Analytic conductor 6.8946.894
Analytic rank 00
Dimension 4444
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(208,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.208");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 253=1123 253 = 11 \cdot 23
Weight: k k == 3 3
Character orbit: [χ][\chi] == 253.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.893750688326.89375068832
Analytic rank: 00
Dimension: 4444
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 208.26
Character χ\chi == 253.208
Dual form 253.3.c.a.208.19

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.919935iq2+4.75301q3+3.15372q4+0.241391q5+4.37246iq63.10005iq7+6.58096iq8+13.5911q9+0.222064iq10+(9.14341+6.11540i)q11+14.9897q124.95337iq13+2.85185q14+1.14733q15+6.56082q16+23.5594iq17+12.5030iq1832.7967iq19+0.761278q2014.7346iq21+(5.625778.41134i)q224.79583q23+31.2794iq2424.9417q25+4.55677q26+21.8217q279.77670iq2847.1256iq29+1.05547iq30+25.6526q31+32.3594iq32+(43.4587+29.0666i)q3321.6731q340.748324iq35+42.8626q3650.3573q37+30.1708q3823.5434iq39+1.58858iq40+13.0072iq41+13.5549q42+48.3618iq43+(28.8357+19.2863i)q44+3.28077q454.41185iq46+30.1624q47+31.1837q48+39.3897q4922.9448iq50+111.978iq5115.6215iq52+5.53710q53+20.0745iq54+(2.20713+1.47620i)q55+20.4013q56155.883iq57+43.3525q5832.5864q59+3.61836q60+83.2209iq61+23.5988iq6242.1332iq633.52523q641.19570iq65+(26.739439.9792i)q66127.307q67+74.2997iq6822.7946q69+0.688409q70+40.3863q71+89.4426iq7257.4513iq7346.3254iq74118.548q75103.431iq76+(18.9581+28.3450i)q77+21.6584q7876.1879iq79+1.58372q8018.6015q8111.9657q82115.062iq8346.4688iq84+5.68701iq8544.4897q86223.989iq87+(40.245260.1724i)q8846.9157q89+3.01809iq9015.3557q9115.1247q92+121.927q93+27.7475iq947.91681iq95+153.804iq9614.0830q97+36.2359iq98+(124.269+83.1152i)q99+O(q100)q+0.919935i q^{2} +4.75301 q^{3} +3.15372 q^{4} +0.241391 q^{5} +4.37246i q^{6} -3.10005i q^{7} +6.58096i q^{8} +13.5911 q^{9} +0.222064i q^{10} +(-9.14341 + 6.11540i) q^{11} +14.9897 q^{12} -4.95337i q^{13} +2.85185 q^{14} +1.14733 q^{15} +6.56082 q^{16} +23.5594i q^{17} +12.5030i q^{18} -32.7967i q^{19} +0.761278 q^{20} -14.7346i q^{21} +(-5.62577 - 8.41134i) q^{22} -4.79583 q^{23} +31.2794i q^{24} -24.9417 q^{25} +4.55677 q^{26} +21.8217 q^{27} -9.77670i q^{28} -47.1256i q^{29} +1.05547i q^{30} +25.6526 q^{31} +32.3594i q^{32} +(-43.4587 + 29.0666i) q^{33} -21.6731 q^{34} -0.748324i q^{35} +42.8626 q^{36} -50.3573 q^{37} +30.1708 q^{38} -23.5434i q^{39} +1.58858i q^{40} +13.0072i q^{41} +13.5549 q^{42} +48.3618i q^{43} +(-28.8357 + 19.2863i) q^{44} +3.28077 q^{45} -4.41185i q^{46} +30.1624 q^{47} +31.1837 q^{48} +39.3897 q^{49} -22.9448i q^{50} +111.978i q^{51} -15.6215i q^{52} +5.53710 q^{53} +20.0745i q^{54} +(-2.20713 + 1.47620i) q^{55} +20.4013 q^{56} -155.883i q^{57} +43.3525 q^{58} -32.5864 q^{59} +3.61836 q^{60} +83.2209i q^{61} +23.5988i q^{62} -42.1332i q^{63} -3.52523 q^{64} -1.19570i q^{65} +(-26.7394 - 39.9792i) q^{66} -127.307 q^{67} +74.2997i q^{68} -22.7946 q^{69} +0.688409 q^{70} +40.3863 q^{71} +89.4426i q^{72} -57.4513i q^{73} -46.3254i q^{74} -118.548 q^{75} -103.431i q^{76} +(18.9581 + 28.3450i) q^{77} +21.6584 q^{78} -76.1879i q^{79} +1.58372 q^{80} -18.6015 q^{81} -11.9657 q^{82} -115.062i q^{83} -46.4688i q^{84} +5.68701i q^{85} -44.4897 q^{86} -223.989i q^{87} +(-40.2452 - 60.1724i) q^{88} -46.9157 q^{89} +3.01809i q^{90} -15.3557 q^{91} -15.1247 q^{92} +121.927 q^{93} +27.7475i q^{94} -7.91681i q^{95} +153.804i q^{96} -14.0830 q^{97} +36.2359i q^{98} +(-124.269 + 83.1152i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 44q+8q388q4+100q9+8q148q15+72q1640q2076q22+268q2540q26+32q27+72q3190q33+60q34312q36+4q37+40q38++494q99+O(q100) 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/253Z)×\left(\mathbb{Z}/253\mathbb{Z}\right)^\times.

nn 2424 166166
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.919935i 0.459968i 0.973194 + 0.229984i 0.0738673π0.0738673\pi
−0.973194 + 0.229984i 0.926133π0.926133\pi
33 4.75301 1.58434 0.792169 0.610302i 0.208952π-0.208952\pi
0.792169 + 0.610302i 0.208952π0.208952\pi
44 3.15372 0.788430
55 0.241391 0.0482781 0.0241391 0.999709i 0.492316π-0.492316\pi
0.0241391 + 0.999709i 0.492316π0.492316\pi
66 4.37246i 0.728744i
77 3.10005i 0.442865i −0.975176 0.221432i 0.928927π-0.928927\pi
0.975176 0.221432i 0.0710732π-0.0710732\pi
88 6.58096i 0.822620i
99 13.5911 1.51012
1010 0.222064i 0.0222064i
1111 −9.14341 + 6.11540i −0.831219 + 0.555946i
1212 14.9897 1.24914
1313 4.95337i 0.381028i −0.981684 0.190514i 0.938985π-0.938985\pi
0.981684 0.190514i 0.0610155π-0.0610155\pi
1414 2.85185 0.203703
1515 1.14733 0.0764888
1616 6.56082 0.410051
1717 23.5594i 1.38585i 0.721012 + 0.692923i 0.243677π0.243677\pi
−0.721012 + 0.692923i 0.756323π0.756323\pi
1818 12.5030i 0.694608i
1919 32.7967i 1.72614i −0.505084 0.863070i 0.668538π-0.668538\pi
0.505084 0.863070i 0.331462π-0.331462\pi
2020 0.761278 0.0380639
2121 14.7346i 0.701647i
2222 −5.62577 8.41134i −0.255717 0.382334i
2323 −4.79583 −0.208514
2424 31.2794i 1.30331i
2525 −24.9417 −0.997669
2626 4.55677 0.175261
2727 21.8217 0.808209
2828 9.77670i 0.349168i
2929 47.1256i 1.62502i −0.582946 0.812511i 0.698100π-0.698100\pi
0.582946 0.812511i 0.301900π-0.301900\pi
3030 1.05547i 0.0351824i
3131 25.6526 0.827504 0.413752 0.910390i 0.364218π-0.364218\pi
0.413752 + 0.910390i 0.364218π0.364218\pi
3232 32.3594i 1.01123i
3333 −43.4587 + 29.0666i −1.31693 + 0.880805i
3434 −21.6731 −0.637444
3535 0.748324i 0.0213807i
3636 42.8626 1.19063
3737 −50.3573 −1.36101 −0.680503 0.732745i 0.738239π-0.738239\pi
−0.680503 + 0.732745i 0.738239π0.738239\pi
3838 30.1708 0.793969
3939 23.5434i 0.603677i
4040 1.58858i 0.0397145i
4141 13.0072i 0.317248i 0.987339 + 0.158624i 0.0507057π0.0507057\pi
−0.987339 + 0.158624i 0.949294π0.949294\pi
4242 13.5549 0.322735
4343 48.3618i 1.12469i 0.826901 + 0.562347i 0.190101π0.190101\pi
−0.826901 + 0.562347i 0.809899π0.809899\pi
4444 −28.8357 + 19.2863i −0.655358 + 0.438324i
4545 3.28077 0.0729060
4646 4.41185i 0.0959099i
4747 30.1624 0.641754 0.320877 0.947121i 0.396022π-0.396022\pi
0.320877 + 0.947121i 0.396022π0.396022\pi
4848 31.1837 0.649660
4949 39.3897 0.803871
5050 22.9448i 0.458896i
5151 111.978i 2.19565i
5252 15.6215i 0.300414i
5353 5.53710 0.104474 0.0522368 0.998635i 0.483365π-0.483365\pi
0.0522368 + 0.998635i 0.483365π0.483365\pi
5454 20.0745i 0.371750i
5555 −2.20713 + 1.47620i −0.0401297 + 0.0268400i
5656 20.4013 0.364309
5757 155.883i 2.73479i
5858 43.3525 0.747457
5959 −32.5864 −0.552312 −0.276156 0.961113i 0.589061π-0.589061\pi
−0.276156 + 0.961113i 0.589061π0.589061\pi
6060 3.61836 0.0603061
6161 83.2209i 1.36428i 0.731223 + 0.682139i 0.238950π0.238950\pi
−0.731223 + 0.682139i 0.761050π0.761050\pi
6262 23.5988i 0.380625i
6363 42.1332i 0.668781i
6464 −3.52523 −0.0550817
6565 1.19570i 0.0183953i
6666 −26.7394 39.9792i −0.405142 0.605745i
6767 −127.307 −1.90011 −0.950053 0.312090i 0.898971π-0.898971\pi
−0.950053 + 0.312090i 0.898971π0.898971\pi
6868 74.2997i 1.09264i
6969 −22.7946 −0.330357
7070 0.688409 0.00983442
7171 40.3863 0.568821 0.284410 0.958703i 0.408202π-0.408202\pi
0.284410 + 0.958703i 0.408202π0.408202\pi
7272 89.4426i 1.24226i
7373 57.4513i 0.787004i −0.919324 0.393502i 0.871263π-0.871263\pi
0.919324 0.393502i 0.128737π-0.128737\pi
7474 46.3254i 0.626019i
7575 −118.548 −1.58064
7676 103.431i 1.36094i
7777 18.9581 + 28.3450i 0.246209 + 0.368117i
7878 21.6584 0.277672
7979 76.1879i 0.964404i −0.876060 0.482202i 0.839837π-0.839837\pi
0.876060 0.482202i 0.160163π-0.160163\pi
8080 1.58372 0.0197965
8181 −18.6015 −0.229648
8282 −11.9657 −0.145924
8383 115.062i 1.38629i −0.720797 0.693147i 0.756224π-0.756224\pi
0.720797 0.693147i 0.243776π-0.243776\pi
8484 46.4688i 0.553200i
8585 5.68701i 0.0669060i
8686 −44.4897 −0.517323
8787 223.989i 2.57458i
8888 −40.2452 60.1724i −0.457332 0.683777i
8989 −46.9157 −0.527143 −0.263572 0.964640i 0.584901π-0.584901\pi
−0.263572 + 0.964640i 0.584901π0.584901\pi
9090 3.01809i 0.0335344i
9191 −15.3557 −0.168744
9292 −15.1247 −0.164399
9393 121.927 1.31105
9494 27.7475i 0.295186i
9595 7.91681i 0.0833348i
9696 153.804i 1.60213i
9797 −14.0830 −0.145185 −0.0725927 0.997362i 0.523127π-0.523127\pi
−0.0725927 + 0.997362i 0.523127π0.523127\pi
9898 36.2359i 0.369755i
9999 −124.269 + 83.1152i −1.25524 + 0.839547i
100100 −78.6592 −0.786592
101101 182.129i 1.80325i 0.432514 + 0.901627i 0.357627π0.357627\pi
−0.432514 + 0.901627i 0.642373π0.642373\pi
102102 −103.012 −1.00993
103103 79.4738 0.771590 0.385795 0.922584i 0.373927π-0.373927\pi
0.385795 + 0.922584i 0.373927π0.373927\pi
104104 32.5979 0.313441
105105 3.55679i 0.0338742i
106106 5.09377i 0.0480545i
107107 69.2284i 0.646994i −0.946229 0.323497i 0.895141π-0.895141\pi
0.946229 0.323497i 0.104859π-0.104859\pi
108108 68.8194 0.637216
109109 136.265i 1.25014i −0.780571 0.625068i 0.785071π-0.785071\pi
0.780571 0.625068i 0.214929π-0.214929\pi
110110 −1.35801 2.03042i −0.0123455 0.0184583i
111111 −239.349 −2.15629
112112 20.3389i 0.181597i
113113 46.4667 0.411210 0.205605 0.978635i 0.434084π-0.434084\pi
0.205605 + 0.978635i 0.434084π0.434084\pi
114114 143.402 1.25791
115115 −1.15767 −0.0100667
116116 148.621i 1.28122i
117117 67.3218i 0.575400i
118118 29.9774i 0.254046i
119119 73.0353 0.613742
120120 7.55055i 0.0629212i
121121 46.2037 111.831i 0.381849 0.924225i
122122 −76.5578 −0.627523
123123 61.8232i 0.502628i
124124 80.9012 0.652429
125125 −12.0555 −0.0964437
126126 38.7598 0.307618
127127 151.594i 1.19366i 0.802369 + 0.596828i 0.203572π0.203572\pi
−0.802369 + 0.596828i 0.796428π0.796428\pi
128128 126.194i 0.985894i
129129 229.864i 1.78189i
130130 1.09996 0.00846125
131131 55.2684i 0.421896i −0.977497 0.210948i 0.932345π-0.932345\pi
0.977497 0.210948i 0.0676551π-0.0676551\pi
132132 −137.057 + 91.6678i −1.03831 + 0.694453i
133133 −101.671 −0.764447
134134 117.114i 0.873987i
135135 5.26754 0.0390188
136136 −155.043 −1.14002
137137 205.118 1.49721 0.748605 0.663016i 0.230724π-0.230724\pi
0.748605 + 0.663016i 0.230724π0.230724\pi
138138 20.9696i 0.151954i
139139 32.4284i 0.233298i 0.993173 + 0.116649i 0.0372152π0.0372152\pi
−0.993173 + 0.116649i 0.962785π0.962785\pi
140140 2.36000i 0.0168572i
141141 143.362 1.01675
142142 37.1528i 0.261639i
143143 30.2918 + 45.2906i 0.211831 + 0.316718i
144144 89.1689 0.619229
145145 11.3757i 0.0784530i
146146 52.8515 0.361996
147147 187.220 1.27360
148148 −158.813 −1.07306
149149 220.472i 1.47968i 0.672783 + 0.739840i 0.265099π0.265099\pi
−0.672783 + 0.739840i 0.734901π0.734901\pi
150150 109.057i 0.727045i
151151 1.92316i 0.0127361i 0.999980 + 0.00636807i 0.00202703π0.00202703\pi
−0.999980 + 0.00636807i 0.997973π0.997973\pi
152152 215.834 1.41996
153153 320.198i 2.09280i
154154 −26.0756 + 17.4402i −0.169322 + 0.113248i
155155 6.19230 0.0399503
156156 74.2493i 0.475957i
157157 −82.1805 −0.523443 −0.261721 0.965143i 0.584290π-0.584290\pi
−0.261721 + 0.965143i 0.584290π0.584290\pi
158158 70.0879 0.443594
159159 26.3179 0.165521
160160 7.81125i 0.0488203i
161161 14.8673i 0.0923437i
162162 17.1122i 0.105631i
163163 275.874 1.69248 0.846240 0.532801i 0.178861π-0.178861\pi
0.846240 + 0.532801i 0.178861π0.178861\pi
164164 41.0209i 0.250128i
165165 −10.4905 + 7.01640i −0.0635789 + 0.0425236i
166166 105.850 0.637650
167167 118.203i 0.707805i 0.935282 + 0.353902i 0.115145π0.115145\pi
−0.935282 + 0.353902i 0.884855π0.884855\pi
168168 96.9677 0.577189
169169 144.464 0.854818
170170 −5.23168 −0.0307746
171171 445.744i 2.60669i
172172 152.520i 0.886742i
173173 25.7292i 0.148724i 0.997231 + 0.0743619i 0.0236920π0.0236920\pi
−0.997231 + 0.0743619i 0.976308π0.976308\pi
174174 206.055 1.18422
175175 77.3207i 0.441833i
176176 −59.9883 + 40.1221i −0.340842 + 0.227966i
177177 −154.884 −0.875049
178178 43.1594i 0.242469i
179179 −332.909 −1.85983 −0.929914 0.367776i 0.880119π-0.880119\pi
−0.929914 + 0.367776i 0.880119π0.880119\pi
180180 10.3466 0.0574812
181181 −20.9848 −0.115938 −0.0579690 0.998318i 0.518462π-0.518462\pi
−0.0579690 + 0.998318i 0.518462π0.518462\pi
182182 14.1262i 0.0776167i
183183 395.550i 2.16148i
184184 31.5612i 0.171528i
185185 −12.1558 −0.0657069
186186 112.165i 0.603039i
187187 −144.075 215.413i −0.770455 1.15194i
188188 95.1238 0.505978
189189 67.6483i 0.357927i
190190 7.28295 0.0383313
191191 77.8598 0.407643 0.203822 0.979008i 0.434664π-0.434664\pi
0.203822 + 0.979008i 0.434664π0.434664\pi
192192 −16.7554 −0.0872680
193193 118.594i 0.614479i −0.951632 0.307239i 0.900595π-0.900595\pi
0.951632 0.307239i 0.0994052π-0.0994052\pi
194194 12.9554i 0.0667806i
195195 5.68316i 0.0291444i
196196 124.224 0.633796
197197 155.835i 0.791039i −0.918458 0.395520i 0.870565π-0.870565\pi
0.918458 0.395520i 0.129435π-0.129435\pi
198198 −76.4606 114.320i −0.386164 0.577371i
199199 217.530 1.09311 0.546557 0.837422i 0.315938π-0.315938\pi
0.546557 + 0.837422i 0.315938π0.315938\pi
200200 164.140i 0.820702i
201201 −605.092 −3.01041
202202 −167.547 −0.829439
203203 −146.092 −0.719665
204204 353.147i 1.73111i
205205 3.13981i 0.0153161i
206206 73.1107i 0.354907i
207207 −65.1807 −0.314883
208208 32.4981i 0.156241i
209209 200.565 + 299.873i 0.959640 + 1.43480i
210210 3.27202 0.0155810
211211 58.2739i 0.276180i −0.990420 0.138090i 0.955904π-0.955904\pi
0.990420 0.138090i 0.0440963π-0.0440963\pi
212212 17.4625 0.0823701
213213 191.956 0.901204
214214 63.6856 0.297596
215215 11.6741i 0.0542981i
216216 143.607i 0.664849i
217217 79.5245i 0.366472i
218218 125.355 0.575022
219219 273.067i 1.24688i
220220 −6.96068 + 4.65552i −0.0316394 + 0.0211615i
221221 116.698 0.528046
222222 220.185i 0.991825i
223223 59.5175 0.266895 0.133447 0.991056i 0.457395π-0.457395\pi
0.133447 + 0.991056i 0.457395π0.457395\pi
224224 100.316 0.447838
225225 −338.986 −1.50660
226226 42.7464i 0.189143i
227227 159.923i 0.704507i 0.935905 + 0.352254i 0.114585π0.114585\pi
−0.935905 + 0.352254i 0.885415π0.885415\pi
228228 491.611i 2.15619i
229229 192.230 0.839432 0.419716 0.907655i 0.362130π-0.362130\pi
0.419716 + 0.907655i 0.362130π0.362130\pi
230230 1.06498i 0.00463035i
231231 90.1079 + 134.724i 0.390078 + 0.583222i
232232 310.132 1.33678
233233 65.3915i 0.280650i 0.990105 + 0.140325i 0.0448148π0.0448148\pi
−0.990105 + 0.140325i 0.955185π0.955185\pi
234234 61.9317 0.264665
235235 7.28093 0.0309827
236236 −102.768 −0.435460
237237 362.122i 1.52794i
238238 67.1878i 0.282301i
239239 385.273i 1.61202i 0.591902 + 0.806010i 0.298377π0.298377\pi
−0.591902 + 0.806010i 0.701623π0.701623\pi
240240 7.52744 0.0313643
241241 87.4687i 0.362941i −0.983396 0.181470i 0.941914π-0.941914\pi
0.983396 0.181470i 0.0580857π-0.0580857\pi
242242 102.877 + 42.5044i 0.425113 + 0.175638i
243243 −284.808 −1.17205
244244 262.455i 1.07564i
245245 9.50830 0.0388094
246246 −56.8733 −0.231192
247247 −162.454 −0.657708
248248 168.819i 0.680721i
249249 546.893i 2.19636i
250250 11.0902i 0.0443610i
251251 316.144 1.25954 0.629768 0.776783i 0.283150π-0.283150\pi
0.629768 + 0.776783i 0.283150π0.283150\pi
252252 132.876i 0.527287i
253253 43.8502 29.3284i 0.173321 0.115923i
254254 −139.457 −0.549043
255255 27.0304i 0.106002i
256256 −130.192 −0.508561
257257 −81.3376 −0.316489 −0.158244 0.987400i 0.550583π-0.550583\pi
−0.158244 + 0.987400i 0.550583π0.550583\pi
258258 −211.460 −0.819613
259259 156.110i 0.602742i
260260 3.77089i 0.0145034i
261261 640.490i 2.45399i
262262 50.8434 0.194059
263263 195.913i 0.744915i 0.928049 + 0.372457i 0.121485π0.121485\pi
−0.928049 + 0.372457i 0.878515π0.878515\pi
264264 −191.286 286.000i −0.724568 1.08333i
265265 1.33660 0.00504379
266266 93.5311i 0.351621i
267267 −222.991 −0.835173
268268 −401.491 −1.49810
269269 60.1229 0.223505 0.111753 0.993736i 0.464354π-0.464354\pi
0.111753 + 0.993736i 0.464354π0.464354\pi
270270 4.84580i 0.0179474i
271271 470.764i 1.73714i −0.495571 0.868568i 0.665041π-0.665041\pi
0.495571 0.868568i 0.334959π-0.334959\pi
272272 154.569i 0.568268i
273273 −72.9858 −0.267347
274274 188.695i 0.688668i
275275 228.052 152.529i 0.829281 0.554650i
276276 −71.8879 −0.260463
277277 221.514i 0.799690i 0.916583 + 0.399845i 0.130936π0.130936\pi
−0.916583 + 0.399845i 0.869064π0.869064\pi
278278 −29.8320 −0.107309
279279 348.648 1.24963
280280 4.92469 0.0175882
281281 211.716i 0.753438i −0.926328 0.376719i 0.877052π-0.877052\pi
0.926328 0.376719i 0.122948π-0.122948\pi
282282 131.884i 0.467674i
283283 479.560i 1.69456i 0.531148 + 0.847279i 0.321761π0.321761\pi
−0.531148 + 0.847279i 0.678239π0.678239\pi
284284 127.367 0.448475
285285 37.6287i 0.132030i
286286 −41.6644 + 27.8665i −0.145680 + 0.0974353i
287287 40.3229 0.140498
288288 439.800i 1.52708i
289289 −266.044 −0.920568
290290 10.4649 0.0360858
291291 −66.9366 −0.230023
292292 181.185i 0.620498i
293293 173.206i 0.591146i −0.955320 0.295573i 0.904489π-0.904489\pi
0.955320 0.295573i 0.0955106π-0.0955106\pi
294294 172.230i 0.585816i
295295 −7.86606 −0.0266646
296296 331.399i 1.11959i
297297 −199.524 + 133.448i −0.671799 + 0.449320i
298298 −202.820 −0.680604
299299 23.7555i 0.0794498i
300300 −373.868 −1.24623
301301 149.924 0.498087
302302 −1.76918 −0.00585821
303303 865.660i 2.85696i
304304 215.173i 0.707806i
305305 20.0887i 0.0658647i
306306 −294.562 −0.962620
307307 569.909i 1.85638i 0.372106 + 0.928190i 0.378636π0.378636\pi
−0.372106 + 0.928190i 0.621364π0.621364\pi
308308 59.7884 + 89.3923i 0.194118 + 0.290235i
309309 377.740 1.22246
310310 5.69652i 0.0183759i
311311 235.096 0.755935 0.377968 0.925819i 0.376623π-0.376623\pi
0.377968 + 0.925819i 0.376623π0.376623\pi
312312 154.938 0.496597
313313 −258.020 −0.824346 −0.412173 0.911106i 0.635230π-0.635230\pi
−0.412173 + 0.911106i 0.635230π0.635230\pi
314314 75.6007i 0.240767i
315315 10.1706i 0.0322875i
316316 240.275i 0.760365i
317317 −168.593 −0.531839 −0.265919 0.963995i 0.585675π-0.585675\pi
−0.265919 + 0.963995i 0.585675π0.585675\pi
318318 24.2108i 0.0761345i
319319 288.192 + 430.889i 0.903424 + 1.35075i
320320 −0.850957 −0.00265924
321321 329.043i 1.02506i
322322 −13.6770 −0.0424751
323323 772.669 2.39216
324324 −58.6640 −0.181062
325325 123.545i 0.380140i
326326 253.787i 0.778486i
327327 647.668i 1.98064i
328328 −85.5996 −0.260974
329329 93.5051i 0.284210i
330330 −6.45463 9.65060i −0.0195595 0.0292443i
331331 94.0201 0.284049 0.142024 0.989863i 0.454639π-0.454639\pi
0.142024 + 0.989863i 0.454639π0.454639\pi
332332 362.874i 1.09299i
333333 −684.412 −2.05529
334334 −108.739 −0.325567
335335 −30.7307 −0.0917335
336336 96.6710i 0.287711i
337337 63.6075i 0.188746i 0.995537 + 0.0943731i 0.0300847π0.0300847\pi
−0.995537 + 0.0943731i 0.969915π0.969915\pi
338338 132.898i 0.393188i
339339 220.857 0.651496
340340 17.9352i 0.0527507i
341341 −234.552 + 156.876i −0.687837 + 0.460047i
342342 410.055 1.19899
343343 274.013i 0.798871i
344344 −318.267 −0.925195
345345 −5.50241 −0.0159490
346346 −23.6692 −0.0684081
347347 62.9423i 0.181390i 0.995879 + 0.0906949i 0.0289088π0.0289088\pi
−0.995879 + 0.0906949i 0.971091π0.971091\pi
348348 706.397i 2.02988i
349349 61.3543i 0.175800i −0.996129 0.0879001i 0.971984π-0.971984\pi
0.996129 0.0879001i 0.0280156π-0.0280156\pi
350350 −71.1300 −0.203229
351351 108.091i 0.307950i
352352 −197.891 295.875i −0.562189 0.840553i
353353 −574.052 −1.62621 −0.813105 0.582117i 0.802224π-0.802224\pi
−0.813105 + 0.582117i 0.802224π0.802224\pi
354354 142.483i 0.402494i
355355 9.74887 0.0274616
356356 −147.959 −0.415615
357357 347.138 0.972375
358358 306.255i 0.855461i
359359 125.281i 0.348972i −0.984660 0.174486i 0.944174π-0.944174\pi
0.984660 0.174486i 0.0558264π-0.0558264\pi
360360 21.5906i 0.0599739i
361361 −714.622 −1.97956
362362 19.3046i 0.0533277i
363363 219.607 531.535i 0.604977 1.46428i
364364 −48.4276 −0.133043
365365 13.8682i 0.0379951i
366366 −363.880 −0.994209
367367 522.627 1.42405 0.712026 0.702153i 0.247778π-0.247778\pi
0.712026 + 0.702153i 0.247778π0.247778\pi
368368 −31.4646 −0.0855016
369369 176.782i 0.479084i
370370 11.1825i 0.0302230i
371371 17.1653i 0.0462677i
372372 384.524 1.03367
373373 156.552i 0.419711i 0.977732 + 0.209855i 0.0672993π0.0672993\pi
−0.977732 + 0.209855i 0.932701π0.932701\pi
374374 198.166 132.540i 0.529855 0.354384i
375375 −57.2998 −0.152799
376376 198.498i 0.527919i
377377 −233.430 −0.619179
378378 62.2320 0.164635
379379 −512.268 −1.35163 −0.675815 0.737071i 0.736208π-0.736208\pi
−0.675815 + 0.737071i 0.736208π0.736208\pi
380380 24.9674i 0.0657037i
381381 720.529i 1.89115i
382382 71.6260i 0.187503i
383383 422.863 1.10408 0.552041 0.833817i 0.313849π-0.313849\pi
0.552041 + 0.833817i 0.313849π0.313849\pi
384384 599.804i 1.56199i
385385 4.57630 + 6.84223i 0.0118865 + 0.0177720i
386386 109.099 0.282640
387387 657.291i 1.69843i
388388 −44.4138 −0.114469
389389 238.322 0.612652 0.306326 0.951927i 0.400900π-0.400900\pi
0.306326 + 0.951927i 0.400900π0.400900\pi
390390 5.22814 0.0134055
391391 112.987i 0.288969i
392392 259.222i 0.661280i
393393 262.692i 0.668426i
394394 143.358 0.363852
395395 18.3910i 0.0465596i
396396 −391.910 + 262.122i −0.989672 + 0.661924i
397397 −228.549 −0.575691 −0.287845 0.957677i 0.592939π-0.592939\pi
−0.287845 + 0.957677i 0.592939π0.592939\pi
398398 200.113i 0.502797i
399399 −483.245 −1.21114
400400 −163.638 −0.409096
401401 181.116 0.451662 0.225831 0.974166i 0.427490π-0.427490\pi
0.225831 + 0.974166i 0.427490π0.427490\pi
402402 556.645i 1.38469i
403403 127.067i 0.315302i
404404 574.383i 1.42174i
405405 −4.49023 −0.0110870
406406 134.395i 0.331023i
407407 460.437 307.955i 1.13129 0.756646i
408408 −736.922 −1.80618
409409 243.302i 0.594870i −0.954742 0.297435i 0.903869π-0.903869\pi
0.954742 0.297435i 0.0961312π-0.0961312\pi
410410 −2.88842 −0.00704492
411411 974.928 2.37209
412412 250.638 0.608345
413413 101.020i 0.244600i
414414 59.9620i 0.144836i
415415 27.7750i 0.0669276i
416416 160.288 0.385307
417417 154.133i 0.369623i
418418 −275.864 + 184.507i −0.659962 + 0.441403i
419419 209.825 0.500775 0.250387 0.968146i 0.419442π-0.419442\pi
0.250387 + 0.968146i 0.419442π0.419442\pi
420420 11.2171i 0.0267074i
421421 22.7473 0.0540315 0.0270158 0.999635i 0.491400π-0.491400\pi
0.0270158 + 0.999635i 0.491400π0.491400\pi
422422 53.6082 0.127034
423423 409.941 0.969128
424424 36.4394i 0.0859420i
425425 587.612i 1.38262i
426426 176.587i 0.414525i
427427 257.989 0.604190
428428 218.327i 0.510110i
429429 143.977 + 215.267i 0.335612 + 0.501788i
430430 −10.7394 −0.0249754
431431 413.191i 0.958680i 0.877629 + 0.479340i 0.159124π0.159124\pi
−0.877629 + 0.479340i 0.840876π0.840876\pi
432432 143.168 0.331407
433433 317.438 0.733113 0.366556 0.930396i 0.380537π-0.380537\pi
0.366556 + 0.930396i 0.380537π0.380537\pi
434434 73.1574 0.168565
435435 54.0688i 0.124296i
436436 429.741i 0.985644i
437437 157.287i 0.359925i
438438 251.204 0.573524
439439 517.798i 1.17950i −0.807588 0.589748i 0.799227π-0.799227\pi
0.807588 0.589748i 0.200773π-0.200773\pi
440440 −9.71481 14.5250i −0.0220791 0.0330115i
441441 535.350 1.21395
442442 107.355i 0.242884i
443443 609.883 1.37671 0.688356 0.725373i 0.258333π-0.258333\pi
0.688356 + 0.725373i 0.258333π0.258333\pi
444444 −754.838 −1.70009
445445 −11.3250 −0.0254495
446446 54.7523i 0.122763i
447447 1047.91i 2.34431i
448448 10.9284i 0.0243937i
449449 −452.839 −1.00855 −0.504275 0.863543i 0.668240π-0.668240\pi
−0.504275 + 0.863543i 0.668240π0.668240\pi
450450 311.845i 0.692989i
451451 −79.5440 118.930i −0.176373 0.263702i
452452 146.543 0.324210
453453 9.14079i 0.0201783i
454454 −147.119 −0.324051
455455 −3.70672 −0.00814664
456456 1025.86 2.24969
457457 61.6607i 0.134925i −0.997722 0.0674625i 0.978510π-0.978510\pi
0.997722 0.0674625i 0.0214903π-0.0214903\pi
458458 176.839i 0.386112i
459459 514.104i 1.12005i
460460 −3.65096 −0.00793687
461461 135.343i 0.293586i 0.989167 + 0.146793i 0.0468952π0.0468952\pi
−0.989167 + 0.146793i 0.953105π0.953105\pi
462462 −123.938 + 82.8935i −0.268263 + 0.179423i
463463 243.122 0.525101 0.262551 0.964918i 0.415436π-0.415436\pi
0.262551 + 0.964918i 0.415436π0.415436\pi
464464 309.183i 0.666342i
465465 29.4321 0.0632948
466466 −60.1559 −0.129090
467467 −301.964 −0.646603 −0.323302 0.946296i 0.604793π-0.604793\pi
−0.323302 + 0.946296i 0.604793π0.604793\pi
468468 212.314i 0.453662i
469469 394.659i 0.841490i
470470 6.69798i 0.0142510i
471471 −390.605 −0.829310
472472 214.450i 0.454343i
473473 −295.752 442.192i −0.625269 0.934866i
474474 333.129 0.702803
475475 818.006i 1.72212i
476476 230.333 0.483893
477477 75.2554 0.157768
478478 −354.426 −0.741477
479479 62.5951i 0.130679i −0.997863 0.0653394i 0.979187π-0.979187\pi
0.997863 0.0653394i 0.0208130π-0.0208130\pi
480480 37.1269i 0.0773478i
481481 249.438i 0.518582i
482482 80.4656 0.166941
483483 70.6646i 0.146304i
484484 145.714 352.684i 0.301061 0.728686i
485485 −3.39950 −0.00700928
486486 262.005i 0.539105i
487487 671.784 1.37943 0.689716 0.724080i 0.257735π-0.257735\pi
0.689716 + 0.724080i 0.257735π0.257735\pi
488488 −547.673 −1.12228
489489 1311.23 2.68146
490490 8.74702i 0.0178511i
491491 908.554i 1.85042i −0.379461 0.925208i 0.623891π-0.623891\pi
0.379461 0.925208i 0.376109π-0.376109\pi
492492 194.973i 0.396287i
493493 1110.25 2.25203
494494 149.447i 0.302524i
495495 −29.9974 + 20.0632i −0.0606008 + 0.0405318i
496496 168.302 0.339319
497497 125.200i 0.251911i
498498 503.106 1.01025
499499 266.725 0.534518 0.267259 0.963625i 0.413882π-0.413882\pi
0.267259 + 0.963625i 0.413882π0.413882\pi
500500 −38.0196 −0.0760391
501501 561.822i 1.12140i
502502 290.832i 0.579346i
503503 388.128i 0.771626i 0.922577 + 0.385813i 0.126079π0.126079\pi
−0.922577 + 0.385813i 0.873921π0.873921\pi
504504 277.277 0.550152
505505 43.9642i 0.0870577i
506506 26.9803 + 40.3394i 0.0533207 + 0.0797221i
507507 686.640 1.35432
508508 478.086i 0.941114i
509509 −600.864 −1.18048 −0.590240 0.807228i 0.700967π-0.700967\pi
−0.590240 + 0.807228i 0.700967π0.700967\pi
510510 −24.8662 −0.0487573
511511 −178.102 −0.348536
512512 385.010i 0.751973i
513513 715.678i 1.39508i
514514 74.8253i 0.145575i
515515 19.1842 0.0372509
516516 724.928i 1.40490i
517517 −275.787 + 184.455i −0.533438 + 0.356780i
518518 −143.611 −0.277242
519519 122.291i 0.235629i
520520 7.86882 0.0151324
521521 −587.011 −1.12670 −0.563351 0.826218i 0.690488π-0.690488\pi
−0.563351 + 0.826218i 0.690488π0.690488\pi
522522 589.209 1.12875
523523 50.8944i 0.0973124i −0.998816 0.0486562i 0.984506π-0.984506\pi
0.998816 0.0486562i 0.0154939π-0.0154939\pi
524524 174.301i 0.332636i
525525 367.506i 0.700012i
526526 −180.227 −0.342637
527527 604.360i 1.14679i
528528 −285.125 + 190.701i −0.540009 + 0.361175i
529529 23.0000 0.0434783
530530 1.22959i 0.00231998i
531531 −442.886 −0.834060
532532 −320.643 −0.602713
533533 64.4292 0.120880
534534 205.137i 0.384152i
535535 16.7111i 0.0312357i
536536 837.802i 1.56306i
537537 −1582.32 −2.94660
538538 55.3092i 0.102805i
539539 −360.156 + 240.884i −0.668192 + 0.446908i
540540 16.6123 0.0307636
541541 702.333i 1.29821i −0.760698 0.649106i 0.775143π-0.775143\pi
0.760698 0.649106i 0.224857π-0.224857\pi
542542 433.072 0.799026
543543 −99.7408 −0.183685
544544 −762.366 −1.40141
545545 32.8930i 0.0603542i
546546 67.1422i 0.122971i
547547 352.041i 0.643585i 0.946810 + 0.321792i 0.104285π0.104285\pi
−0.946810 + 0.321792i 0.895715π0.895715\pi
548548 646.884 1.18045
549549 1131.07i 2.06023i
550550 140.317 + 209.793i 0.255121 + 0.381443i
551551 −1545.56 −2.80502
552552 150.011i 0.271758i
553553 −236.187 −0.427100
554554 −203.779 −0.367831
555555 −57.7765 −0.104102
556556 102.270i 0.183939i
557557 48.4433i 0.0869717i 0.999054 + 0.0434859i 0.0138463π0.0138463\pi
−0.999054 + 0.0434859i 0.986154π0.986154\pi
558558 320.734i 0.574791i
559559 239.554 0.428540
560560 4.90962i 0.00876718i
561561 −684.790 1023.86i −1.22066 1.82506i
562562 194.765 0.346557
563563 0.131791i 0.000234088i 1.00000 0.000117044i 3.72562e5π3.72562e-5\pi
−1.00000 0.000117044i 0.999963π0.999963\pi
564564 452.125 0.801639
565565 11.2166 0.0198525
566566 −441.164 −0.779442
567567 57.6657i 0.101703i
568568 265.780i 0.467923i
569569 685.858i 1.20537i −0.797978 0.602687i 0.794097π-0.794097\pi
0.797978 0.602687i 0.205903π-0.205903\pi
570570 34.6159 0.0607297
571571 708.095i 1.24010i −0.784563 0.620049i 0.787113π-0.787113\pi
0.784563 0.620049i 0.212887π-0.212887\pi
572572 95.5319 + 142.834i 0.167014 + 0.249710i
573573 370.069 0.645844
574574 37.0944i 0.0646245i
575575 119.616 0.208028
576576 −47.9118 −0.0831802
577577 −648.540 −1.12399 −0.561993 0.827142i 0.689965π-0.689965\pi
−0.561993 + 0.827142i 0.689965π0.689965\pi
578578 244.743i 0.423431i
579579 563.681i 0.973542i
580580 35.8757i 0.0618547i
581581 −356.699 −0.613940
582582 61.5774i 0.105803i
583583 −50.6279 + 33.8616i −0.0868404 + 0.0580816i
584584 378.085 0.647405
585585 16.2508i 0.0277792i
586586 159.338 0.271908
587587 −697.051 −1.18748 −0.593740 0.804657i 0.702349π-0.702349\pi
−0.593740 + 0.804657i 0.702349π0.702349\pi
588588 590.438 1.00415
589589 841.321i 1.42839i
590590 7.23626i 0.0122649i
591591 740.684i 1.25327i
592592 −330.385 −0.558083
593593 1062.57i 1.79185i −0.444201 0.895927i 0.646512π-0.646512\pi
0.444201 0.895927i 0.353488π-0.353488\pi
594594 −122.764 183.549i −0.206673 0.309006i
595595 17.6300 0.0296303
596596 695.307i 1.16662i
597597 1033.92 1.73186
598598 −21.8535 −0.0365444
599599 −763.078 −1.27392 −0.636960 0.770897i 0.719808π-0.719808\pi
−0.636960 + 0.770897i 0.719808π0.719808\pi
600600 780.162i 1.30027i
601601 590.953i 0.983283i 0.870798 + 0.491641i 0.163603π0.163603\pi
−0.870798 + 0.491641i 0.836397π0.836397\pi
602602 137.921i 0.229104i
603603 −1730.25 −2.86940
604604 6.06510i 0.0100416i
605605 11.1531 26.9950i 0.0184349 0.0446198i
606606 −796.351 −1.31411
607607 555.046i 0.914408i −0.889362 0.457204i 0.848851π-0.848851\pi
0.889362 0.457204i 0.151149π-0.151149\pi
608608 1061.28 1.74553
609609 −694.377 −1.14019
610610 −18.4803 −0.0302956
611611 149.405i 0.244526i
612612 1009.82i 1.65003i
613613 986.980i 1.61008i −0.593219 0.805041i 0.702143π-0.702143\pi
0.593219 0.805041i 0.297857π-0.297857\pi
614614 −524.279 −0.853875
615615 14.9235i 0.0242659i
616616 −186.538 + 124.762i −0.302821 + 0.202536i
617617 43.7170 0.0708542 0.0354271 0.999372i 0.488721π-0.488721\pi
0.0354271 + 0.999372i 0.488721π0.488721\pi
618618 347.496i 0.562292i
619619 276.474 0.446646 0.223323 0.974745i 0.428310π-0.428310\pi
0.223323 + 0.974745i 0.428310π0.428310\pi
620620 19.5288 0.0314980
621621 −104.653 −0.168523
622622 216.273i 0.347706i
623623 145.441i 0.233453i
624624 154.464i 0.247539i
625625 620.633 0.993013
626626 237.362i 0.379173i
627627 953.287 + 1425.30i 1.52039 + 2.27321i
628628 −259.174 −0.412698
629629 1186.39i 1.88615i
630630 9.35625 0.0148512
631631 −663.581 −1.05163 −0.525817 0.850598i 0.676240π-0.676240\pi
−0.525817 + 0.850598i 0.676240π0.676240\pi
632632 501.389 0.793338
633633 276.977i 0.437562i
634634 155.095i 0.244629i
635635 36.5934i 0.0576275i
636636 82.9993 0.130502
637637 195.111i 0.306297i
638638 −396.390 + 265.118i −0.621301 + 0.415546i
639639 548.895 0.858990
640640 30.4622i 0.0475971i
641641 −871.988 −1.36036 −0.680178 0.733047i 0.738097π-0.738097\pi
−0.680178 + 0.733047i 0.738097π0.738097\pi
642642 302.699 0.471493
643643 27.1370 0.0422038 0.0211019 0.999777i 0.493283π-0.493283\pi
0.0211019 + 0.999777i 0.493283π0.493283\pi
644644 46.8874i 0.0728065i
645645 55.4871i 0.0860265i
646646 710.805i 1.10032i
647647 −104.324 −0.161242 −0.0806212 0.996745i 0.525690π-0.525690\pi
−0.0806212 + 0.996745i 0.525690π0.525690\pi
648648 122.416i 0.188913i
649649 297.951 199.279i 0.459092 0.307056i
650650 −113.654 −0.174852
651651 377.981i 0.580616i
652652 870.030 1.33440
653653 −1186.19 −1.81652 −0.908262 0.418402i 0.862590π-0.862590\pi
−0.908262 + 0.418402i 0.862590π0.862590\pi
654654 595.813 0.911028
655655 13.3413i 0.0203684i
656656 85.3377i 0.130088i
657657 780.828i 1.18847i
658658 86.0186 0.130727
659659 229.570i 0.348362i 0.984714 + 0.174181i 0.0557278π0.0557278\pi
−0.984714 + 0.174181i 0.944272π0.944272\pi
660660 −33.0842 + 22.1278i −0.0501275 + 0.0335269i
661661 −822.477 −1.24429 −0.622146 0.782902i 0.713739π-0.713739\pi
−0.622146 + 0.782902i 0.713739π0.713739\pi
662662 86.4924i 0.130653i
663663 554.668 0.836603
664664 757.220 1.14039
665665 −24.5425 −0.0369061
666666 629.614i 0.945367i
667667 226.007i 0.338840i
668668 372.780i 0.558054i
669669 282.887 0.422851
670670 28.2703i 0.0421944i
671671 −508.929 760.923i −0.758464 1.13401i
672672 476.802 0.709527
673673 1016.85i 1.51092i 0.655192 + 0.755462i 0.272588π0.272588\pi
−0.655192 + 0.755462i 0.727412π0.727412\pi
674674 −58.5148 −0.0868172
675675 −544.270 −0.806326
676676 455.599 0.673964
677677 527.044i 0.778499i 0.921132 + 0.389250i 0.127266π0.127266\pi
−0.921132 + 0.389250i 0.872734π0.872734\pi
678678 203.174i 0.299667i
679679 43.6580i 0.0642975i
680680 −37.4260 −0.0550382
681681 760.117i 1.11618i
682682 −144.316 215.773i −0.211607 0.316383i
683683 −1263.63 −1.85012 −0.925059 0.379823i 0.875985π-0.875985\pi
−0.925059 + 0.379823i 0.875985π0.875985\pi
684684 1405.75i 2.05519i
685685 49.5135 0.0722825
686686 252.074 0.367455
687687 913.671 1.32994
688688 317.293i 0.461182i
689689 27.4273i 0.0398074i
690690 5.06186i 0.00733603i
691691 −51.0978 −0.0739476 −0.0369738 0.999316i 0.511772π-0.511772\pi
−0.0369738 + 0.999316i 0.511772π0.511772\pi
692692 81.1427i 0.117258i
693693 257.661 + 385.241i 0.371806 + 0.555903i
694694 −57.9028 −0.0834334
695695 7.82791i 0.0112632i
696696 1474.06 2.11790
697697 −306.441 −0.439657
698698 56.4420 0.0808624
699699 310.806i 0.444644i
700700 243.848i 0.348354i
701701 260.871i 0.372141i −0.982536 0.186071i 0.940425π-0.940425\pi
0.982536 0.186071i 0.0595754π-0.0595754\pi
702702 99.4364 0.141647
703703 1651.55i 2.34929i
704704 32.2326 21.5582i 0.0457849 0.0306224i
705705 34.6063 0.0490870
706706 528.091i 0.748004i
707707 564.609 0.798598
708708 −488.460 −0.689915
709709 200.950 0.283427 0.141713 0.989908i 0.454739π-0.454739\pi
0.141713 + 0.989908i 0.454739π0.454739\pi
710710 8.96833i 0.0126314i
711711 1035.48i 1.45637i
712712 308.751i 0.433638i
713713 −123.026 −0.172547
714714 319.344i 0.447261i
715715 7.31216 + 10.9327i 0.0102268 + 0.0152905i
716716 −1049.90 −1.46634
717717 1831.21i 2.55398i
718718 115.250 0.160516
719719 1116.70 1.55312 0.776562 0.630041i 0.216962π-0.216962\pi
0.776562 + 0.630041i 0.216962π0.216962\pi
720720 21.5245 0.0298952
721721 246.373i 0.341710i
722722 657.406i 0.910534i
723723 415.740i 0.575021i
724724 −66.1801 −0.0914089
725725 1175.39i 1.62123i
726726 488.978 + 202.024i 0.673523 + 0.278270i
727727 967.146 1.33032 0.665162 0.746699i 0.268362π-0.268362\pi
0.665162 + 0.746699i 0.268362π0.268362\pi
728728 101.055i 0.138812i
729729 −1186.28 −1.62727
730730 12.7579 0.0174765
731731 −1139.37 −1.55865
732732 1247.45i 1.70417i
733733 917.994i 1.25238i −0.779671 0.626190i 0.784614π-0.784614\pi
0.779671 0.626190i 0.215386π-0.215386\pi
734734 480.783i 0.655017i
735735 45.1930 0.0614871
736736 155.190i 0.210856i
737737 1164.02 778.534i 1.57940 1.05636i
738738 −162.628 −0.220363
739739 307.451i 0.416037i −0.978125 0.208019i 0.933299π-0.933299\pi
0.978125 0.208019i 0.0667014π-0.0667014\pi
740740 −38.3359 −0.0518052
741741 −772.145 −1.04203
742742 15.7910 0.0212816
743743 93.6153i 0.125996i 0.998014 + 0.0629982i 0.0200662π0.0200662\pi
−0.998014 + 0.0629982i 0.979934π0.979934\pi
744744 802.398i 1.07849i
745745 53.2199i 0.0714361i
746746 −144.018 −0.193053
747747 1563.83i 2.09348i
748748 −454.372 679.352i −0.607450 0.908224i
749749 −214.612 −0.286531
750750 52.7121i 0.0702828i
751751 1095.93 1.45929 0.729646 0.683825i 0.239685π-0.239685\pi
0.729646 + 0.683825i 0.239685π0.239685\pi
752752 197.890 0.263152
753753 1502.63 1.99553
754754 214.741i 0.284802i
755755 0.464232i 0.000614877i
756756 213.344i 0.282201i
757757 768.810 1.01560 0.507800 0.861475i 0.330459π-0.330459\pi
0.507800 + 0.861475i 0.330459π0.330459\pi
758758 471.253i 0.621706i
759759 208.421 139.398i 0.274599 0.183661i
760760 52.1002 0.0685529
761761 293.017i 0.385042i −0.981293 0.192521i 0.938334π-0.938334\pi
0.981293 0.192521i 0.0616663π-0.0616663\pi
762762 −662.840 −0.869869
763763 −422.428 −0.553641
764764 245.548 0.321398
765765 77.2929i 0.101036i
766766 389.007i 0.507842i
767767 161.412i 0.210447i
768768 −618.802 −0.805732
769769 468.021i 0.608609i −0.952575 0.304305i 0.901576π-0.901576\pi
0.952575 0.304305i 0.0984241π-0.0984241\pi
770770 −6.29441 + 4.20990i −0.00817455 + 0.00546740i
771771 −386.599 −0.501425
772772 374.013i 0.484473i
773773 −350.939 −0.453996 −0.226998 0.973895i 0.572891π-0.572891\pi
−0.226998 + 0.973895i 0.572891π0.572891\pi
774774 −604.666 −0.781222
775775 −639.821 −0.825575
776776 92.6796i 0.119432i
777777 741.993i 0.954946i
778778 219.240i 0.281800i
779779 426.592 0.547614
780780 17.9231i 0.0229783i
781781 −369.268 + 246.978i −0.472814 + 0.316233i
782782 103.941 0.132916
783783 1028.36i 1.31336i
784784 258.429 0.329628
785785 −19.8376 −0.0252708
786786 241.659 0.307454
787787 528.020i 0.670927i 0.942053 + 0.335464i 0.108893π0.108893\pi
−0.942053 + 0.335464i 0.891107π0.891107\pi
788788 491.459i 0.623679i
789789 931.175i 1.18020i
790790 16.9186 0.0214159
791791 144.049i 0.182110i
792792 −546.977 817.810i −0.690628 1.03259i
793793 412.224 0.519828
794794 210.250i 0.264799i
795795 6.35289 0.00799106
796796 686.027 0.861843
797797 −517.639 −0.649484 −0.324742 0.945803i 0.605277π-0.605277\pi
−0.324742 + 0.945803i 0.605277π0.605277\pi
798798 444.555i 0.557086i
799799 710.608i 0.889371i
800800 807.099i 1.00887i
801801 −637.638 −0.796052
802802 166.615i 0.207750i
803803 351.338 + 525.301i 0.437532 + 0.654173i
804804 −1908.29 −2.37349
805805 3.58883i 0.00445818i
806806 116.893 0.145029
807807 285.765 0.354108
808808 −1198.58 −1.48339
809809 915.954i 1.13221i −0.824335 0.566103i 0.808451π-0.808451\pi
0.824335 0.566103i 0.191549π-0.191549\pi
810810 4.13072i 0.00509966i
811811 474.314i 0.584851i 0.956288 + 0.292426i 0.0944624π0.0944624\pi
−0.956288 + 0.292426i 0.905538π0.905538\pi
812812 −460.733 −0.567405
813813 2237.54i 2.75221i
814814 283.298 + 423.572i 0.348033 + 0.520359i
815815 66.5935 0.0817098
816816 734.668i 0.900328i
817817 1586.11 1.94138
818818 223.822 0.273621
819819 −208.701 −0.254824
820820 9.90207i 0.0120757i
821821 185.729i 0.226223i −0.993582 0.113111i 0.963918π-0.963918\pi
0.993582 0.113111i 0.0360817π-0.0360817\pi
822822 896.870i 1.09108i
823823 −342.547 −0.416217 −0.208109 0.978106i 0.566731π-0.566731\pi
−0.208109 + 0.978106i 0.566731π0.566731\pi
824824 523.014i 0.634725i
825825 1083.94 724.971i 1.31386 0.878752i
826826 −92.9315 −0.112508
827827 226.568i 0.273964i 0.990574 + 0.136982i 0.0437402π0.0437402\pi
−0.990574 + 0.136982i 0.956260π0.956260\pi
828828 −205.562 −0.248263
829829 866.076 1.04472 0.522362 0.852724i 0.325051π-0.325051\pi
0.522362 + 0.852724i 0.325051π0.325051\pi
830830 25.5512 0.0307845
831831 1052.86i 1.26698i
832832 17.4617i 0.0209877i
833833 927.996i 1.11404i
834834 −141.792 −0.170014
835835 28.5332i 0.0341715i
836836 632.525 + 945.716i 0.756609 + 1.13124i
837837 559.783 0.668797
838838 193.025i 0.230340i
839839 −840.329 −1.00158 −0.500792 0.865567i 0.666958π-0.666958\pi
−0.500792 + 0.865567i 0.666958π0.666958\pi
840840 23.4071 0.0278656
841841 −1379.83 −1.64070
842842 20.9260i 0.0248527i
843843 1006.29i 1.19370i
844844 183.780i 0.217748i
845845 34.8723 0.0412690
846846 377.119i 0.445767i
847847 −346.683 143.234i −0.409307 0.169107i
848848 36.3279 0.0428395
849849 2279.35i 2.68475i
850850 540.565 0.635958
851851 241.505 0.283790
852852 605.377 0.710536
853853 1146.48i 1.34405i 0.740528 + 0.672026i 0.234576π0.234576\pi
−0.740528 + 0.672026i 0.765424π0.765424\pi
854854 237.333i 0.277908i
855855 107.598i 0.125846i
856856 455.589 0.532230
857857 145.376i 0.169634i −0.996397 0.0848170i 0.972969π-0.972969\pi
0.996397 0.0848170i 0.0270306π-0.0270306\pi
858858 −198.032 + 132.450i −0.230806 + 0.154370i
859859 −589.556 −0.686328 −0.343164 0.939276i 0.611499π-0.611499\pi
−0.343164 + 0.939276i 0.611499π0.611499\pi
860860 36.8168i 0.0428102i
861861 191.655 0.222596
862862 −380.109 −0.440962
863863 304.169 0.352456 0.176228 0.984349i 0.443610π-0.443610\pi
0.176228 + 0.984349i 0.443610π0.443610\pi
864864 706.135i 0.817286i
865865 6.21079i 0.00718011i
866866 292.022i 0.337208i
867867 −1264.51 −1.45849
868868 250.798i 0.288938i
869869 465.920 + 696.617i 0.536156 + 0.801630i
870870 49.7398 0.0571721
871871 630.598i 0.723993i
872872 896.753 1.02839
873873 −191.404 −0.219248
874874 −144.694 −0.165554
875875 37.3726i 0.0427115i
876876 861.176i 0.983078i
877877 689.912i 0.786673i −0.919395 0.393337i 0.871321π-0.871321\pi
0.919395 0.393337i 0.128679π-0.128679\pi
878878 476.341 0.542530
879879 823.250i 0.936575i
880880 −14.4806 + 9.68509i −0.0164552 + 0.0110058i
881881 −427.634 −0.485396 −0.242698 0.970102i 0.578032π-0.578032\pi
−0.242698 + 0.970102i 0.578032π0.578032\pi
882882 492.487i 0.558375i
883883 567.615 0.642825 0.321413 0.946939i 0.395842π-0.395842\pi
0.321413 + 0.946939i 0.395842π0.395842\pi
884884 368.033 0.416327
885885 −37.3875 −0.0422457
886886 561.053i 0.633243i
887887 1101.68i 1.24203i −0.783800 0.621014i 0.786721π-0.786721\pi
0.783800 0.621014i 0.213279π-0.213279\pi
888888 1575.14i 1.77381i
889889 469.950 0.528628
890890 10.4183i 0.0117059i
891891 170.081 113.756i 0.190888 0.127672i
892892 187.702 0.210428
893893 989.227i 1.10776i
894894 −964.006 −1.07831
895895 −80.3612 −0.0897890
896896 391.210 0.436618
897897 112.910i 0.125875i
898898 416.582i 0.463900i
899899 1208.90i 1.34471i
900900 −1069.07 −1.18785
901901 130.451i 0.144784i
902902 109.408 73.1753i 0.121295 0.0811257i
903903 712.592 0.789138
904904 305.796i 0.338270i
905905 −5.06553 −0.00559727
906906 −8.40893 −0.00928138
907907 216.538 0.238740 0.119370 0.992850i 0.461912π-0.461912\pi
0.119370 + 0.992850i 0.461912π0.461912\pi
908908 504.353i 0.555455i
909909 2475.33i 2.72314i
910910 3.40994i 0.00374719i
911911 −396.334 −0.435054 −0.217527 0.976054i 0.569799π-0.569799\pi
−0.217527 + 0.976054i 0.569799π0.569799\pi
912912 1022.72i 1.12140i
913913 703.652 + 1052.06i 0.770704 + 1.15231i
914914 56.7239 0.0620611
915915 95.4820i 0.104352i
916916 606.239 0.661833
917917 −171.335 −0.186843
918918 −472.943 −0.515188
919919 1473.35i 1.60321i 0.597856 + 0.801604i 0.296019π0.296019\pi
−0.597856 + 0.801604i 0.703981π0.703981\pi
920920 7.61857i 0.00828105i
921921 2708.78i 2.94113i
922922 −124.507 −0.135040
923923 200.048i 0.216737i
924924 284.175 + 424.883i 0.307549 + 0.459830i
925925 1256.00 1.35783
926926 223.656i 0.241530i
927927 1080.14 1.16520
928928 1524.96 1.64327
929929 −32.1342 −0.0345901 −0.0172950 0.999850i 0.505505π-0.505505\pi
−0.0172950 + 0.999850i 0.505505π0.505505\pi
930930 27.0756i 0.0291136i
931931 1291.85i 1.38759i
932932 206.226i 0.221273i
933933 1117.41 1.19766
934934 277.787i 0.297417i
935935 −34.7784 51.9987i −0.0371961 0.0556135i
936936 443.042 0.473335
937937 422.290i 0.450683i −0.974280 0.225341i 0.927650π-0.927650\pi
0.974280 0.225341i 0.0723498π-0.0723498\pi
938938 −363.060 −0.387058
939939 −1226.37 −1.30604
940940 22.9620 0.0244277
941941 1414.84i 1.50355i −0.659422 0.751773i 0.729199π-0.729199\pi
0.659422 0.751773i 0.270801π-0.270801\pi
942942 359.331i 0.381456i
943943 62.3802i 0.0661507i
944944 −213.794 −0.226476
945945 16.3297i 0.0172801i
946946 406.788 272.073i 0.430008 0.287603i
947947 1748.72 1.84659 0.923295 0.384093i 0.125486π-0.125486\pi
0.923295 + 0.384093i 0.125486π0.125486\pi
948948 1142.03i 1.20467i
949949 −284.577 −0.299871
950950 −752.512 −0.792118
951951 −801.324 −0.842612
952952 480.642i 0.504876i
953953 1142.34i 1.19868i 0.800494 + 0.599341i 0.204571π0.204571\pi
−0.800494 + 0.599341i 0.795429π0.795429\pi
954954 69.2301i 0.0725682i
955955 18.7946 0.0196802
956956 1215.04i 1.27096i
957957 1369.78 + 2048.02i 1.43133 + 2.14004i
958958 57.5834 0.0601080
959959 635.876i 0.663062i
960960 −4.04461 −0.00421313
961961 −302.943 −0.315237
962962 −229.467 −0.238531
963963 940.891i 0.977042i
964964 275.852i 0.286153i
965965 28.6276i 0.0296659i
966966 −65.0069 −0.0672949
967967 263.434i 0.272424i 0.990680 + 0.136212i 0.0434928π0.0434928\pi
−0.990680 + 0.136212i 0.956507π0.956507\pi
968968 735.956 + 304.065i 0.760286 + 0.314116i
969969 3672.51 3.78999
970970 3.12732i 0.00322404i
971971 −1372.06 −1.41304 −0.706519 0.707694i 0.749736π-0.749736\pi
−0.706519 + 0.707694i 0.749736π0.749736\pi
972972 −898.205 −0.924079
973973 100.530 0.103319
974974 617.997i 0.634494i
975975 587.213i 0.602270i
976976 545.998i 0.559424i
977977 −96.5589 −0.0988320 −0.0494160 0.998778i 0.515736π-0.515736\pi
−0.0494160 + 0.998778i 0.515736π0.515736\pi
978978 1206.25i 1.23338i
979979 428.970 286.909i 0.438171 0.293063i
980980 29.9865 0.0305985
981981 1851.99i 1.88786i
982982 835.811 0.851131
983983 −265.797 −0.270393 −0.135197 0.990819i 0.543167π-0.543167\pi
−0.135197 + 0.990819i 0.543167π0.543167\pi
984984 −406.856 −0.413471
985985 37.6170i 0.0381899i
986986 1021.36i 1.03586i
987987 444.431i 0.450285i
988988 −512.334 −0.518557
989989 231.935i 0.234515i
990990 −18.4569 27.5957i −0.0186433 0.0278744i
991991 1823.58 1.84014 0.920072 0.391750i 0.128130π-0.128130\pi
0.920072 + 0.391750i 0.128130π0.128130\pi
992992 830.103i 0.836797i
993993 446.879 0.450029
994994 115.176 0.115871
995995 52.5096 0.0527734
996996 1724.75i 1.73167i
997997 91.1503i 0.0914246i −0.998955 0.0457123i 0.985444π-0.985444\pi
0.998955 0.0457123i 0.0145557π-0.0145557\pi
998998 245.369i 0.245861i
999999 −1098.88 −1.09998
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.26 yes 44
11.10 odd 2 inner 253.3.c.a.208.19 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.19 44 11.10 odd 2 inner
253.3.c.a.208.26 yes 44 1.1 even 1 trivial