Properties

Label 253.3.c.a.208.31
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(208,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.208");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.31
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.81287i q^{2} -2.41374 q^{3} +0.713501 q^{4} +4.05365 q^{5} -4.37579i q^{6} -13.5027i q^{7} +8.54497i q^{8} -3.17387 q^{9} +7.34874i q^{10} +(-8.89372 - 6.47315i) q^{11} -1.72220 q^{12} -22.1899i q^{13} +24.4787 q^{14} -9.78444 q^{15} -12.6369 q^{16} +2.51854i q^{17} -5.75382i q^{18} -18.9423i q^{19} +2.89228 q^{20} +32.5921i q^{21} +(11.7350 - 16.1232i) q^{22} -4.79583 q^{23} -20.6253i q^{24} -8.56793 q^{25} +40.2274 q^{26} +29.3845 q^{27} -9.63421i q^{28} +44.4146i q^{29} -17.7379i q^{30} +58.9192 q^{31} +11.2708i q^{32} +(21.4671 + 15.6245i) q^{33} -4.56579 q^{34} -54.7354i q^{35} -2.26456 q^{36} +27.8878 q^{37} +34.3400 q^{38} +53.5605i q^{39} +34.6383i q^{40} -35.5308i q^{41} -59.0852 q^{42} -23.8456i q^{43} +(-6.34568 - 4.61860i) q^{44} -12.8658 q^{45} -8.69422i q^{46} -18.3044 q^{47} +30.5022 q^{48} -133.324 q^{49} -15.5325i q^{50} -6.07910i q^{51} -15.8325i q^{52} -10.6548 q^{53} +53.2703i q^{54} +(-36.0520 - 26.2399i) q^{55} +115.380 q^{56} +45.7218i q^{57} -80.5180 q^{58} +12.3620 q^{59} -6.98121 q^{60} +33.3369i q^{61} +106.813i q^{62} +42.8560i q^{63} -70.9801 q^{64} -89.9500i q^{65} +(-28.3252 + 38.9171i) q^{66} +97.8030 q^{67} +1.79698i q^{68} +11.5759 q^{69} +99.2281 q^{70} -92.8328 q^{71} -27.1206i q^{72} +59.0459i q^{73} +50.5570i q^{74} +20.6807 q^{75} -13.5154i q^{76} +(-87.4053 + 120.090i) q^{77} -97.0983 q^{78} -82.0385i q^{79} -51.2256 q^{80} -42.3617 q^{81} +64.4127 q^{82} +26.5309i q^{83} +23.2545i q^{84} +10.2093i q^{85} +43.2289 q^{86} -107.205i q^{87} +(55.3129 - 75.9966i) q^{88} +28.0260 q^{89} -23.3240i q^{90} -299.624 q^{91} -3.42183 q^{92} -142.216 q^{93} -33.1835i q^{94} -76.7855i q^{95} -27.2047i q^{96} +54.0964 q^{97} -241.699i q^{98} +(28.2275 + 20.5450i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81287i 0.906435i 0.891400 + 0.453218i \(0.149724\pi\)
−0.891400 + 0.453218i \(0.850276\pi\)
\(3\) −2.41374 −0.804579 −0.402290 0.915512i \(-0.631785\pi\)
−0.402290 + 0.915512i \(0.631785\pi\)
\(4\) 0.713501 0.178375
\(5\) 4.05365 0.810730 0.405365 0.914155i \(-0.367144\pi\)
0.405365 + 0.914155i \(0.367144\pi\)
\(6\) 4.37579i 0.729299i
\(7\) 13.5027i 1.92896i −0.264151 0.964481i \(-0.585092\pi\)
0.264151 0.964481i \(-0.414908\pi\)
\(8\) 8.54497i 1.06812i
\(9\) −3.17387 −0.352653
\(10\) 7.34874i 0.734874i
\(11\) −8.89372 6.47315i −0.808520 0.588468i
\(12\) −1.72220 −0.143517
\(13\) 22.1899i 1.70691i −0.521164 0.853457i \(-0.674502\pi\)
0.521164 0.853457i \(-0.325498\pi\)
\(14\) 24.4787 1.74848
\(15\) −9.78444 −0.652296
\(16\) −12.6369 −0.789807
\(17\) 2.51854i 0.148150i 0.997253 + 0.0740748i \(0.0236004\pi\)
−0.997253 + 0.0740748i \(0.976400\pi\)
\(18\) 5.75382i 0.319657i
\(19\) 18.9423i 0.996964i −0.866900 0.498482i \(-0.833891\pi\)
0.866900 0.498482i \(-0.166109\pi\)
\(20\) 2.89228 0.144614
\(21\) 32.5921i 1.55200i
\(22\) 11.7350 16.1232i 0.533408 0.732871i
\(23\) −4.79583 −0.208514
\(24\) 20.6253i 0.859388i
\(25\) −8.56793 −0.342717
\(26\) 40.2274 1.54721
\(27\) 29.3845 1.08832
\(28\) 9.63421i 0.344079i
\(29\) 44.4146i 1.53154i 0.643115 + 0.765769i \(0.277642\pi\)
−0.643115 + 0.765769i \(0.722358\pi\)
\(30\) 17.7379i 0.591264i
\(31\) 58.9192 1.90062 0.950310 0.311305i \(-0.100766\pi\)
0.950310 + 0.311305i \(0.100766\pi\)
\(32\) 11.2708i 0.352212i
\(33\) 21.4671 + 15.6245i 0.650518 + 0.473469i
\(34\) −4.56579 −0.134288
\(35\) 54.7354i 1.56387i
\(36\) −2.26456 −0.0629045
\(37\) 27.8878 0.753725 0.376863 0.926269i \(-0.377003\pi\)
0.376863 + 0.926269i \(0.377003\pi\)
\(38\) 34.3400 0.903683
\(39\) 53.5605i 1.37335i
\(40\) 34.6383i 0.865957i
\(41\) 35.5308i 0.866604i −0.901249 0.433302i \(-0.857348\pi\)
0.901249 0.433302i \(-0.142652\pi\)
\(42\) −59.0852 −1.40679
\(43\) 23.8456i 0.554548i −0.960791 0.277274i \(-0.910569\pi\)
0.960791 0.277274i \(-0.0894309\pi\)
\(44\) −6.34568 4.61860i −0.144220 0.104968i
\(45\) −12.8658 −0.285906
\(46\) 8.69422i 0.189005i
\(47\) −18.3044 −0.389455 −0.194727 0.980857i \(-0.562382\pi\)
−0.194727 + 0.980857i \(0.562382\pi\)
\(48\) 30.5022 0.635462
\(49\) −133.324 −2.72090
\(50\) 15.5325i 0.310651i
\(51\) 6.07910i 0.119198i
\(52\) 15.8325i 0.304471i
\(53\) −10.6548 −0.201034 −0.100517 0.994935i \(-0.532050\pi\)
−0.100517 + 0.994935i \(0.532050\pi\)
\(54\) 53.2703i 0.986488i
\(55\) −36.0520 26.2399i −0.655492 0.477089i
\(56\) 115.380 2.06037
\(57\) 45.7218i 0.802136i
\(58\) −80.5180 −1.38824
\(59\) 12.3620 0.209526 0.104763 0.994497i \(-0.466592\pi\)
0.104763 + 0.994497i \(0.466592\pi\)
\(60\) −6.98121 −0.116353
\(61\) 33.3369i 0.546507i 0.961942 + 0.273253i \(0.0880998\pi\)
−0.961942 + 0.273253i \(0.911900\pi\)
\(62\) 106.813i 1.72279i
\(63\) 42.8560i 0.680254i
\(64\) −70.9801 −1.10906
\(65\) 89.9500i 1.38385i
\(66\) −28.3252 + 38.9171i −0.429169 + 0.589653i
\(67\) 97.8030 1.45975 0.729873 0.683582i \(-0.239579\pi\)
0.729873 + 0.683582i \(0.239579\pi\)
\(68\) 1.79698i 0.0264262i
\(69\) 11.5759 0.167766
\(70\) 99.2281 1.41754
\(71\) −92.8328 −1.30750 −0.653752 0.756709i \(-0.726806\pi\)
−0.653752 + 0.756709i \(0.726806\pi\)
\(72\) 27.1206i 0.376676i
\(73\) 59.0459i 0.808848i 0.914572 + 0.404424i \(0.132528\pi\)
−0.914572 + 0.404424i \(0.867472\pi\)
\(74\) 50.5570i 0.683203i
\(75\) 20.6807 0.275743
\(76\) 13.5154i 0.177834i
\(77\) −87.4053 + 120.090i −1.13513 + 1.55961i
\(78\) −97.0983 −1.24485
\(79\) 82.0385i 1.03846i −0.854634 0.519231i \(-0.826218\pi\)
0.854634 0.519231i \(-0.173782\pi\)
\(80\) −51.2256 −0.640320
\(81\) −42.3617 −0.522984
\(82\) 64.4127 0.785521
\(83\) 26.5309i 0.319649i 0.987145 + 0.159824i \(0.0510928\pi\)
−0.987145 + 0.159824i \(0.948907\pi\)
\(84\) 23.2545i 0.276839i
\(85\) 10.2093i 0.120109i
\(86\) 43.2289 0.502662
\(87\) 107.205i 1.23224i
\(88\) 55.3129 75.9966i 0.628555 0.863597i
\(89\) 28.0260 0.314899 0.157450 0.987527i \(-0.449673\pi\)
0.157450 + 0.987527i \(0.449673\pi\)
\(90\) 23.3240i 0.259155i
\(91\) −299.624 −3.29257
\(92\) −3.42183 −0.0371938
\(93\) −142.216 −1.52920
\(94\) 33.1835i 0.353016i
\(95\) 76.7855i 0.808268i
\(96\) 27.2047i 0.283382i
\(97\) 54.0964 0.557694 0.278847 0.960335i \(-0.410048\pi\)
0.278847 + 0.960335i \(0.410048\pi\)
\(98\) 241.699i 2.46632i
\(99\) 28.2275 + 20.5450i 0.285127 + 0.207525i
\(100\) −6.11322 −0.0611322
\(101\) 133.004i 1.31687i −0.752638 0.658435i \(-0.771219\pi\)
0.752638 0.658435i \(-0.228781\pi\)
\(102\) 11.0206 0.108045
\(103\) 79.4892 0.771740 0.385870 0.922553i \(-0.373901\pi\)
0.385870 + 0.922553i \(0.373901\pi\)
\(104\) 189.612 1.82319
\(105\) 132.117i 1.25826i
\(106\) 19.3158i 0.182225i
\(107\) 56.2129i 0.525354i 0.964884 + 0.262677i \(0.0846054\pi\)
−0.964884 + 0.262677i \(0.915395\pi\)
\(108\) 20.9659 0.194129
\(109\) 85.6467i 0.785750i 0.919592 + 0.392875i \(0.128519\pi\)
−0.919592 + 0.392875i \(0.871481\pi\)
\(110\) 47.5695 65.3577i 0.432450 0.594161i
\(111\) −67.3139 −0.606432
\(112\) 170.633i 1.52351i
\(113\) 60.9071 0.539001 0.269500 0.963000i \(-0.413141\pi\)
0.269500 + 0.963000i \(0.413141\pi\)
\(114\) −82.8876 −0.727084
\(115\) −19.4406 −0.169049
\(116\) 31.6899i 0.273189i
\(117\) 70.4278i 0.601947i
\(118\) 22.4107i 0.189921i
\(119\) 34.0072 0.285775
\(120\) 83.6077i 0.696731i
\(121\) 37.1966 + 115.141i 0.307410 + 0.951577i
\(122\) −60.4355 −0.495373
\(123\) 85.7620i 0.697252i
\(124\) 42.0389 0.339023
\(125\) −136.073 −1.08858
\(126\) −77.6923 −0.616606
\(127\) 0.909716i 0.00716312i 0.999994 + 0.00358156i \(0.00114005\pi\)
−0.999994 + 0.00358156i \(0.998860\pi\)
\(128\) 83.5946i 0.653083i
\(129\) 57.5569i 0.446177i
\(130\) 163.068 1.25437
\(131\) 31.2111i 0.238253i 0.992879 + 0.119126i \(0.0380093\pi\)
−0.992879 + 0.119126i \(0.961991\pi\)
\(132\) 15.3168 + 11.1481i 0.116036 + 0.0844552i
\(133\) −255.773 −1.92311
\(134\) 177.304i 1.32317i
\(135\) 119.115 0.882330
\(136\) −21.5209 −0.158242
\(137\) 200.413 1.46287 0.731433 0.681914i \(-0.238852\pi\)
0.731433 + 0.681914i \(0.238852\pi\)
\(138\) 20.9856i 0.152069i
\(139\) 116.474i 0.837939i −0.908000 0.418969i \(-0.862391\pi\)
0.908000 0.418969i \(-0.137609\pi\)
\(140\) 39.0537i 0.278955i
\(141\) 44.1820 0.313347
\(142\) 168.294i 1.18517i
\(143\) −143.638 + 197.351i −1.00446 + 1.38007i
\(144\) 40.1080 0.278527
\(145\) 180.041i 1.24166i
\(146\) −107.043 −0.733168
\(147\) 321.809 2.18918
\(148\) 19.8980 0.134446
\(149\) 218.936i 1.46937i −0.678409 0.734685i \(-0.737330\pi\)
0.678409 0.734685i \(-0.262670\pi\)
\(150\) 37.4915i 0.249943i
\(151\) 3.91292i 0.0259134i 0.999916 + 0.0129567i \(0.00412436\pi\)
−0.999916 + 0.0129567i \(0.995876\pi\)
\(152\) 161.861 1.06488
\(153\) 7.99354i 0.0522454i
\(154\) −217.707 158.454i −1.41368 1.02893i
\(155\) 238.838 1.54089
\(156\) 38.2155i 0.244971i
\(157\) −14.2337 −0.0906603 −0.0453301 0.998972i \(-0.514434\pi\)
−0.0453301 + 0.998972i \(0.514434\pi\)
\(158\) 148.725 0.941298
\(159\) 25.7179 0.161748
\(160\) 45.6878i 0.285549i
\(161\) 64.7569i 0.402217i
\(162\) 76.7962i 0.474051i
\(163\) 117.514 0.720947 0.360474 0.932769i \(-0.382615\pi\)
0.360474 + 0.932769i \(0.382615\pi\)
\(164\) 25.3512i 0.154581i
\(165\) 87.0201 + 63.3362i 0.527395 + 0.383856i
\(166\) −48.0970 −0.289741
\(167\) 154.210i 0.923411i −0.887033 0.461705i \(-0.847238\pi\)
0.887033 0.461705i \(-0.152762\pi\)
\(168\) −278.498 −1.65773
\(169\) −323.390 −1.91355
\(170\) −18.5081 −0.108871
\(171\) 60.1205i 0.351582i
\(172\) 17.0138i 0.0989176i
\(173\) 34.9790i 0.202191i −0.994877 0.101095i \(-0.967765\pi\)
0.994877 0.101095i \(-0.0322347\pi\)
\(174\) 194.349 1.11695
\(175\) 115.690i 0.661088i
\(176\) 112.389 + 81.8007i 0.638575 + 0.464777i
\(177\) −29.8386 −0.168580
\(178\) 50.8076i 0.285436i
\(179\) 21.6631 0.121023 0.0605116 0.998167i \(-0.480727\pi\)
0.0605116 + 0.998167i \(0.480727\pi\)
\(180\) −9.17974 −0.0509985
\(181\) −185.090 −1.02259 −0.511297 0.859404i \(-0.670835\pi\)
−0.511297 + 0.859404i \(0.670835\pi\)
\(182\) 543.180i 2.98450i
\(183\) 80.4666i 0.439708i
\(184\) 40.9802i 0.222719i
\(185\) 113.048 0.611068
\(186\) 257.818i 1.38612i
\(187\) 16.3029 22.3992i 0.0871814 0.119782i
\(188\) −13.0602 −0.0694691
\(189\) 396.772i 2.09932i
\(190\) 139.202 0.732643
\(191\) 49.3509 0.258382 0.129191 0.991620i \(-0.458762\pi\)
0.129191 + 0.991620i \(0.458762\pi\)
\(192\) 171.327 0.892330
\(193\) 334.290i 1.73207i 0.499981 + 0.866036i \(0.333340\pi\)
−0.499981 + 0.866036i \(0.666660\pi\)
\(194\) 98.0697i 0.505514i
\(195\) 217.116i 1.11341i
\(196\) −95.1267 −0.485341
\(197\) 94.5191i 0.479792i 0.970799 + 0.239896i \(0.0771134\pi\)
−0.970799 + 0.239896i \(0.922887\pi\)
\(198\) −37.2454 + 51.1729i −0.188108 + 0.258449i
\(199\) 232.703 1.16936 0.584680 0.811264i \(-0.301220\pi\)
0.584680 + 0.811264i \(0.301220\pi\)
\(200\) 73.2126i 0.366063i
\(201\) −236.071 −1.17448
\(202\) 241.119 1.19366
\(203\) 599.719 2.95428
\(204\) 4.33745i 0.0212620i
\(205\) 144.029i 0.702582i
\(206\) 144.104i 0.699532i
\(207\) 15.2214 0.0735331
\(208\) 280.412i 1.34813i
\(209\) −122.616 + 168.468i −0.586682 + 0.806065i
\(210\) −239.511 −1.14053
\(211\) 24.8409i 0.117729i 0.998266 + 0.0588647i \(0.0187481\pi\)
−0.998266 + 0.0588647i \(0.981252\pi\)
\(212\) −7.60222 −0.0358595
\(213\) 224.074 1.05199
\(214\) −101.907 −0.476200
\(215\) 96.6615i 0.449588i
\(216\) 251.090i 1.16245i
\(217\) 795.571i 3.66623i
\(218\) −155.266 −0.712231
\(219\) 142.521i 0.650782i
\(220\) −25.7232 18.7222i −0.116923 0.0851008i
\(221\) 55.8862 0.252879
\(222\) 122.031i 0.549691i
\(223\) 45.9524 0.206065 0.103032 0.994678i \(-0.467145\pi\)
0.103032 + 0.994678i \(0.467145\pi\)
\(224\) 152.186 0.679403
\(225\) 27.1935 0.120860
\(226\) 110.417i 0.488569i
\(227\) 31.3188i 0.137968i −0.997618 0.0689841i \(-0.978024\pi\)
0.997618 0.0689841i \(-0.0219758\pi\)
\(228\) 32.6225i 0.143081i
\(229\) −133.525 −0.583080 −0.291540 0.956559i \(-0.594168\pi\)
−0.291540 + 0.956559i \(0.594168\pi\)
\(230\) 35.2433i 0.153232i
\(231\) 210.973 289.865i 0.913305 1.25483i
\(232\) −379.521 −1.63587
\(233\) 249.308i 1.06999i −0.844855 0.534995i \(-0.820314\pi\)
0.844855 0.534995i \(-0.179686\pi\)
\(234\) −127.677 −0.545626
\(235\) −74.1995 −0.315743
\(236\) 8.82030 0.0373742
\(237\) 198.019i 0.835525i
\(238\) 61.6507i 0.259037i
\(239\) 306.906i 1.28413i 0.766652 + 0.642063i \(0.221921\pi\)
−0.766652 + 0.642063i \(0.778079\pi\)
\(240\) 123.645 0.515188
\(241\) 78.8990i 0.327382i 0.986512 + 0.163691i \(0.0523400\pi\)
−0.986512 + 0.163691i \(0.947660\pi\)
\(242\) −208.735 + 67.4326i −0.862543 + 0.278647i
\(243\) −162.211 −0.667534
\(244\) 23.7859i 0.0974833i
\(245\) −540.449 −2.20591
\(246\) −155.475 −0.632014
\(247\) −420.327 −1.70173
\(248\) 503.463i 2.03009i
\(249\) 64.0385i 0.257183i
\(250\) 246.682i 0.986728i
\(251\) 209.252 0.833671 0.416836 0.908982i \(-0.363139\pi\)
0.416836 + 0.908982i \(0.363139\pi\)
\(252\) 30.5778i 0.121340i
\(253\) 42.6528 + 31.0441i 0.168588 + 0.122704i
\(254\) −1.64920 −0.00649290
\(255\) 24.6426i 0.0966375i
\(256\) −132.374 −0.517087
\(257\) 463.573 1.80379 0.901893 0.431960i \(-0.142178\pi\)
0.901893 + 0.431960i \(0.142178\pi\)
\(258\) −104.343 −0.404431
\(259\) 376.562i 1.45391i
\(260\) 64.1794i 0.246844i
\(261\) 140.966i 0.540101i
\(262\) −56.5817 −0.215961
\(263\) 167.850i 0.638214i −0.947719 0.319107i \(-0.896617\pi\)
0.947719 0.319107i \(-0.103383\pi\)
\(264\) −133.511 + 183.436i −0.505722 + 0.694832i
\(265\) −43.1909 −0.162984
\(266\) 463.683i 1.74317i
\(267\) −67.6475 −0.253361
\(268\) 69.7825 0.260383
\(269\) −341.773 −1.27053 −0.635265 0.772294i \(-0.719109\pi\)
−0.635265 + 0.772294i \(0.719109\pi\)
\(270\) 215.939i 0.799775i
\(271\) 96.2045i 0.354998i 0.984121 + 0.177499i \(0.0568007\pi\)
−0.984121 + 0.177499i \(0.943199\pi\)
\(272\) 31.8266i 0.117010i
\(273\) 723.214 2.64913
\(274\) 363.322i 1.32599i
\(275\) 76.2008 + 55.4615i 0.277094 + 0.201678i
\(276\) 8.25940 0.0299254
\(277\) 177.374i 0.640341i −0.947360 0.320170i \(-0.896260\pi\)
0.947360 0.320170i \(-0.103740\pi\)
\(278\) 211.151 0.759537
\(279\) −187.002 −0.670259
\(280\) 467.712 1.67040
\(281\) 160.955i 0.572795i 0.958111 + 0.286397i \(0.0924577\pi\)
−0.958111 + 0.286397i \(0.907542\pi\)
\(282\) 80.0962i 0.284029i
\(283\) 53.6629i 0.189622i 0.995495 + 0.0948108i \(0.0302246\pi\)
−0.995495 + 0.0948108i \(0.969775\pi\)
\(284\) −66.2363 −0.233226
\(285\) 185.340i 0.650316i
\(286\) −357.771 260.398i −1.25095 0.910482i
\(287\) −479.763 −1.67165
\(288\) 35.7720i 0.124208i
\(289\) 282.657 0.978052
\(290\) −326.392 −1.12549
\(291\) −130.574 −0.448709
\(292\) 42.1293i 0.144278i
\(293\) 308.858i 1.05412i 0.849827 + 0.527062i \(0.176706\pi\)
−0.849827 + 0.527062i \(0.823294\pi\)
\(294\) 583.398i 1.98435i
\(295\) 50.1112 0.169869
\(296\) 238.301i 0.805070i
\(297\) −261.338 190.211i −0.879925 0.640440i
\(298\) 396.903 1.33189
\(299\) 106.419i 0.355916i
\(300\) 14.7557 0.0491857
\(301\) −321.980 −1.06970
\(302\) −7.09361 −0.0234888
\(303\) 321.036i 1.05953i
\(304\) 239.372i 0.787409i
\(305\) 135.136i 0.443069i
\(306\) 14.4913 0.0473570
\(307\) 167.497i 0.545594i 0.962072 + 0.272797i \(0.0879488\pi\)
−0.962072 + 0.272797i \(0.912051\pi\)
\(308\) −62.3637 + 85.6840i −0.202480 + 0.278195i
\(309\) −191.866 −0.620926
\(310\) 432.982i 1.39672i
\(311\) −26.0234 −0.0836764 −0.0418382 0.999124i \(-0.513321\pi\)
−0.0418382 + 0.999124i \(0.513321\pi\)
\(312\) −457.673 −1.46690
\(313\) 290.728 0.928845 0.464422 0.885614i \(-0.346262\pi\)
0.464422 + 0.885614i \(0.346262\pi\)
\(314\) 25.8038i 0.0821777i
\(315\) 173.723i 0.551502i
\(316\) 58.5345i 0.185236i
\(317\) 390.940 1.23325 0.616625 0.787257i \(-0.288500\pi\)
0.616625 + 0.787257i \(0.288500\pi\)
\(318\) 46.6233i 0.146614i
\(319\) 287.503 395.011i 0.901262 1.23828i
\(320\) −287.729 −0.899152
\(321\) 135.683i 0.422689i
\(322\) −117.396 −0.364583
\(323\) 47.7070 0.147700
\(324\) −30.2251 −0.0932873
\(325\) 190.121i 0.584988i
\(326\) 213.038i 0.653492i
\(327\) 206.729i 0.632198i
\(328\) 303.609 0.925638
\(329\) 247.159i 0.751244i
\(330\) −114.820 + 157.756i −0.347940 + 0.478049i
\(331\) 28.1447 0.0850292 0.0425146 0.999096i \(-0.486463\pi\)
0.0425146 + 0.999096i \(0.486463\pi\)
\(332\) 18.9298i 0.0570174i
\(333\) −88.5125 −0.265803
\(334\) 279.562 0.837012
\(335\) 396.459 1.18346
\(336\) 411.863i 1.22578i
\(337\) 92.6692i 0.274983i 0.990503 + 0.137491i \(0.0439039\pi\)
−0.990503 + 0.137491i \(0.956096\pi\)
\(338\) 586.265i 1.73451i
\(339\) −147.014 −0.433669
\(340\) 7.28434i 0.0214245i
\(341\) −524.011 381.393i −1.53669 1.11845i
\(342\) −108.991 −0.318686
\(343\) 1138.60i 3.31955i
\(344\) 203.759 0.592324
\(345\) 46.9245 0.136013
\(346\) 63.4123 0.183273
\(347\) 684.490i 1.97259i −0.164978 0.986297i \(-0.552755\pi\)
0.164978 0.986297i \(-0.447245\pi\)
\(348\) 76.4910i 0.219802i
\(349\) 423.915i 1.21466i 0.794451 + 0.607328i \(0.207759\pi\)
−0.794451 + 0.607328i \(0.792241\pi\)
\(350\) −209.732 −0.599234
\(351\) 652.039i 1.85766i
\(352\) 72.9575 100.239i 0.207266 0.284770i
\(353\) −408.890 −1.15833 −0.579164 0.815211i \(-0.696621\pi\)
−0.579164 + 0.815211i \(0.696621\pi\)
\(354\) 54.0936i 0.152807i
\(355\) −376.312 −1.06003
\(356\) 19.9966 0.0561702
\(357\) −82.0846 −0.229929
\(358\) 39.2725i 0.109700i
\(359\) 289.903i 0.807528i −0.914863 0.403764i \(-0.867702\pi\)
0.914863 0.403764i \(-0.132298\pi\)
\(360\) 109.938i 0.305382i
\(361\) 2.18893 0.00606353
\(362\) 335.544i 0.926916i
\(363\) −89.7828 277.920i −0.247336 0.765619i
\(364\) −213.782 −0.587313
\(365\) 239.351i 0.655757i
\(366\) 145.875 0.398567
\(367\) 492.366 1.34160 0.670799 0.741639i \(-0.265951\pi\)
0.670799 + 0.741639i \(0.265951\pi\)
\(368\) 60.6045 0.164686
\(369\) 112.770i 0.305610i
\(370\) 204.941i 0.553893i
\(371\) 143.869i 0.387788i
\(372\) −101.471 −0.272771
\(373\) 453.359i 1.21544i 0.794151 + 0.607721i \(0.207916\pi\)
−0.794151 + 0.607721i \(0.792084\pi\)
\(374\) 40.6069 + 29.5551i 0.108575 + 0.0790243i
\(375\) 328.444 0.875849
\(376\) 156.410i 0.415985i
\(377\) 985.555 2.61420
\(378\) 719.296 1.90290
\(379\) −296.860 −0.783272 −0.391636 0.920120i \(-0.628091\pi\)
−0.391636 + 0.920120i \(0.628091\pi\)
\(380\) 54.7865i 0.144175i
\(381\) 2.19582i 0.00576330i
\(382\) 89.4667i 0.234206i
\(383\) −225.597 −0.589025 −0.294513 0.955648i \(-0.595157\pi\)
−0.294513 + 0.955648i \(0.595157\pi\)
\(384\) 201.775i 0.525457i
\(385\) −354.310 + 486.801i −0.920287 + 1.26442i
\(386\) −606.024 −1.57001
\(387\) 75.6828i 0.195563i
\(388\) 38.5978 0.0994789
\(389\) 758.261 1.94926 0.974629 0.223826i \(-0.0718547\pi\)
0.974629 + 0.223826i \(0.0718547\pi\)
\(390\) −393.602 −1.00924
\(391\) 12.0785i 0.0308913i
\(392\) 1139.25i 2.90625i
\(393\) 75.3354i 0.191693i
\(394\) −171.351 −0.434901
\(395\) 332.555i 0.841912i
\(396\) 20.1404 + 14.6588i 0.0508595 + 0.0370173i
\(397\) 742.992 1.87152 0.935758 0.352642i \(-0.114717\pi\)
0.935758 + 0.352642i \(0.114717\pi\)
\(398\) 421.860i 1.05995i
\(399\) 617.369 1.54729
\(400\) 108.272 0.270680
\(401\) −156.339 −0.389873 −0.194937 0.980816i \(-0.562450\pi\)
−0.194937 + 0.980816i \(0.562450\pi\)
\(402\) 427.966i 1.06459i
\(403\) 1307.41i 3.24419i
\(404\) 94.8984i 0.234897i
\(405\) −171.719 −0.423998
\(406\) 1087.21i 2.67786i
\(407\) −248.027 180.522i −0.609402 0.443544i
\(408\) 51.9457 0.127318
\(409\) 51.2499i 0.125305i −0.998035 0.0626527i \(-0.980044\pi\)
0.998035 0.0626527i \(-0.0199560\pi\)
\(410\) 261.107 0.636845
\(411\) −483.743 −1.17699
\(412\) 56.7156 0.137659
\(413\) 166.921i 0.404167i
\(414\) 27.5944i 0.0666530i
\(415\) 107.547i 0.259149i
\(416\) 250.097 0.601195
\(417\) 281.136i 0.674188i
\(418\) −305.410 222.288i −0.730646 0.531789i
\(419\) −363.522 −0.867595 −0.433797 0.901010i \(-0.642827\pi\)
−0.433797 + 0.901010i \(0.642827\pi\)
\(420\) 94.2654i 0.224442i
\(421\) −742.486 −1.76363 −0.881813 0.471600i \(-0.843677\pi\)
−0.881813 + 0.471600i \(0.843677\pi\)
\(422\) −45.0334 −0.106714
\(423\) 58.0958 0.137342
\(424\) 91.0450i 0.214729i
\(425\) 21.5787i 0.0507734i
\(426\) 406.217i 0.953562i
\(427\) 450.140 1.05419
\(428\) 40.1080i 0.0937102i
\(429\) 346.705 476.352i 0.808171 1.11038i
\(430\) 175.235 0.407523
\(431\) 302.522i 0.701908i −0.936393 0.350954i \(-0.885857\pi\)
0.936393 0.350954i \(-0.114143\pi\)
\(432\) −371.330 −0.859560
\(433\) 103.173 0.238275 0.119137 0.992878i \(-0.461987\pi\)
0.119137 + 0.992878i \(0.461987\pi\)
\(434\) 1442.27 3.32320
\(435\) 434.572i 0.999017i
\(436\) 61.1090i 0.140158i
\(437\) 90.8441i 0.207881i
\(438\) 258.373 0.589892
\(439\) 779.429i 1.77546i −0.460360 0.887732i \(-0.652280\pi\)
0.460360 0.887732i \(-0.347720\pi\)
\(440\) 224.219 308.063i 0.509589 0.700144i
\(441\) 423.153 0.959531
\(442\) 101.314i 0.229218i
\(443\) −561.689 −1.26792 −0.633960 0.773366i \(-0.718572\pi\)
−0.633960 + 0.773366i \(0.718572\pi\)
\(444\) −48.0285 −0.108172
\(445\) 113.608 0.255298
\(446\) 83.3058i 0.186784i
\(447\) 528.454i 1.18222i
\(448\) 958.426i 2.13934i
\(449\) −104.903 −0.233637 −0.116818 0.993153i \(-0.537270\pi\)
−0.116818 + 0.993153i \(0.537270\pi\)
\(450\) 49.2983i 0.109552i
\(451\) −229.996 + 316.001i −0.509969 + 0.700667i
\(452\) 43.4573 0.0961444
\(453\) 9.44476i 0.0208494i
\(454\) 56.7769 0.125059
\(455\) −1214.57 −2.66939
\(456\) −390.691 −0.856778
\(457\) 366.064i 0.801015i −0.916294 0.400507i \(-0.868834\pi\)
0.916294 0.400507i \(-0.131166\pi\)
\(458\) 242.064i 0.528524i
\(459\) 74.0062i 0.161234i
\(460\) −13.8709 −0.0301541
\(461\) 189.513i 0.411092i 0.978647 + 0.205546i \(0.0658970\pi\)
−0.978647 + 0.205546i \(0.934103\pi\)
\(462\) 525.487 + 382.467i 1.13742 + 0.827852i
\(463\) 574.273 1.24033 0.620165 0.784471i \(-0.287066\pi\)
0.620165 + 0.784471i \(0.287066\pi\)
\(464\) 561.264i 1.20962i
\(465\) −576.492 −1.23977
\(466\) 451.962 0.969877
\(467\) −756.087 −1.61903 −0.809515 0.587099i \(-0.800270\pi\)
−0.809515 + 0.587099i \(0.800270\pi\)
\(468\) 50.2503i 0.107372i
\(469\) 1320.61i 2.81580i
\(470\) 134.514i 0.286200i
\(471\) 34.3563 0.0729434
\(472\) 105.633i 0.223799i
\(473\) −154.356 + 212.076i −0.326334 + 0.448363i
\(474\) −358.983 −0.757349
\(475\) 162.296i 0.341676i
\(476\) 24.2642 0.0509752
\(477\) 33.8170 0.0708952
\(478\) −556.381 −1.16398
\(479\) 492.353i 1.02788i 0.857827 + 0.513939i \(0.171814\pi\)
−0.857827 + 0.513939i \(0.828186\pi\)
\(480\) 110.278i 0.229746i
\(481\) 618.828i 1.28654i
\(482\) −143.034 −0.296750
\(483\) 156.306i 0.323615i
\(484\) 26.5398 + 82.1531i 0.0548343 + 0.169738i
\(485\) 219.288 0.452140
\(486\) 294.067i 0.605077i
\(487\) 564.566 1.15927 0.579636 0.814875i \(-0.303195\pi\)
0.579636 + 0.814875i \(0.303195\pi\)
\(488\) −284.863 −0.583735
\(489\) −283.649 −0.580059
\(490\) 979.763i 1.99952i
\(491\) 207.819i 0.423257i 0.977350 + 0.211628i \(0.0678767\pi\)
−0.977350 + 0.211628i \(0.932123\pi\)
\(492\) 61.1912i 0.124372i
\(493\) −111.860 −0.226897
\(494\) 761.999i 1.54251i
\(495\) 114.425 + 83.2821i 0.231161 + 0.168247i
\(496\) −744.557 −1.50112
\(497\) 1253.50i 2.52213i
\(498\) 116.094 0.233119
\(499\) 595.088 1.19256 0.596281 0.802776i \(-0.296644\pi\)
0.596281 + 0.802776i \(0.296644\pi\)
\(500\) −97.0879 −0.194176
\(501\) 372.221i 0.742957i
\(502\) 379.346i 0.755669i
\(503\) 53.6203i 0.106601i 0.998579 + 0.0533005i \(0.0169741\pi\)
−0.998579 + 0.0533005i \(0.983026\pi\)
\(504\) −366.203 −0.726593
\(505\) 539.151i 1.06763i
\(506\) −56.2790 + 77.3240i −0.111223 + 0.152814i
\(507\) 780.580 1.53960
\(508\) 0.649083i 0.00127772i
\(509\) −411.867 −0.809168 −0.404584 0.914501i \(-0.632584\pi\)
−0.404584 + 0.914501i \(0.632584\pi\)
\(510\) 44.6738 0.0875956
\(511\) 797.281 1.56024
\(512\) 574.356i 1.12179i
\(513\) 556.611i 1.08501i
\(514\) 840.397i 1.63501i
\(515\) 322.221 0.625672
\(516\) 41.0669i 0.0795870i
\(517\) 162.794 + 118.487i 0.314882 + 0.229182i
\(518\) 682.659 1.31787
\(519\) 84.4300i 0.162678i
\(520\) 768.619 1.47811
\(521\) 448.231 0.860328 0.430164 0.902751i \(-0.358456\pi\)
0.430164 + 0.902751i \(0.358456\pi\)
\(522\) 255.554 0.489567
\(523\) 733.316i 1.40213i 0.713096 + 0.701067i \(0.247293\pi\)
−0.713096 + 0.701067i \(0.752707\pi\)
\(524\) 22.2691i 0.0424983i
\(525\) 279.246i 0.531898i
\(526\) 304.291 0.578500
\(527\) 148.391i 0.281576i
\(528\) −271.278 197.445i −0.513784 0.373949i
\(529\) 23.0000 0.0434783
\(530\) 78.2995i 0.147735i
\(531\) −39.2354 −0.0738897
\(532\) −182.494 −0.343034
\(533\) −788.424 −1.47922
\(534\) 122.636i 0.229656i
\(535\) 227.867i 0.425921i
\(536\) 835.724i 1.55919i
\(537\) −52.2891 −0.0973727
\(538\) 619.590i 1.15165i
\(539\) 1185.75 + 863.026i 2.19990 + 1.60116i
\(540\) 84.9883 0.157386
\(541\) 565.900i 1.04603i 0.852325 + 0.523013i \(0.175192\pi\)
−0.852325 + 0.523013i \(0.824808\pi\)
\(542\) −174.406 −0.321783
\(543\) 446.758 0.822758
\(544\) −28.3860 −0.0521801
\(545\) 347.182i 0.637031i
\(546\) 1311.09i 2.40127i
\(547\) 500.147i 0.914345i −0.889378 0.457173i \(-0.848862\pi\)
0.889378 0.457173i \(-0.151138\pi\)
\(548\) 142.995 0.260939
\(549\) 105.807i 0.192727i
\(550\) −100.544 + 138.142i −0.182808 + 0.251167i
\(551\) 841.316 1.52689
\(552\) 98.9155i 0.179195i
\(553\) −1107.74 −2.00315
\(554\) 321.557 0.580427
\(555\) −272.867 −0.491652
\(556\) 83.1039i 0.149468i
\(557\) 651.935i 1.17044i 0.810874 + 0.585220i \(0.198992\pi\)
−0.810874 + 0.585220i \(0.801008\pi\)
\(558\) 339.011i 0.607546i
\(559\) −529.130 −0.946565
\(560\) 691.686i 1.23515i
\(561\) −39.3510 + 54.0659i −0.0701443 + 0.0963741i
\(562\) −291.791 −0.519201
\(563\) 190.474i 0.338320i 0.985589 + 0.169160i \(0.0541054\pi\)
−0.985589 + 0.169160i \(0.945895\pi\)
\(564\) 31.5239 0.0558934
\(565\) 246.896 0.436984
\(566\) −97.2839 −0.171880
\(567\) 571.999i 1.00882i
\(568\) 793.253i 1.39657i
\(569\) 609.233i 1.07071i −0.844627 0.535354i \(-0.820178\pi\)
0.844627 0.535354i \(-0.179822\pi\)
\(570\) −335.997 −0.589469
\(571\) 317.980i 0.556883i −0.960453 0.278442i \(-0.910182\pi\)
0.960453 0.278442i \(-0.0898179\pi\)
\(572\) −102.486 + 140.810i −0.179172 + 0.246171i
\(573\) −119.120 −0.207888
\(574\) 869.748i 1.51524i
\(575\) 41.0903 0.0714614
\(576\) 225.282 0.391114
\(577\) 1030.26 1.78554 0.892771 0.450511i \(-0.148758\pi\)
0.892771 + 0.450511i \(0.148758\pi\)
\(578\) 512.420i 0.886540i
\(579\) 806.888i 1.39359i
\(580\) 128.460i 0.221482i
\(581\) 358.239 0.616591
\(582\) 236.714i 0.406726i
\(583\) 94.7610 + 68.9702i 0.162540 + 0.118302i
\(584\) −504.545 −0.863947
\(585\) 285.490i 0.488017i
\(586\) −559.920 −0.955494
\(587\) 11.5022 0.0195949 0.00979747 0.999952i \(-0.496881\pi\)
0.00979747 + 0.999952i \(0.496881\pi\)
\(588\) 229.611 0.390495
\(589\) 1116.07i 1.89485i
\(590\) 90.8452i 0.153975i
\(591\) 228.144i 0.386031i
\(592\) −352.416 −0.595298
\(593\) 110.209i 0.185851i 0.995673 + 0.0929254i \(0.0296218\pi\)
−0.995673 + 0.0929254i \(0.970378\pi\)
\(594\) 344.827 473.772i 0.580517 0.797595i
\(595\) 137.853 0.231686
\(596\) 156.211i 0.262099i
\(597\) −561.683 −0.940843
\(598\) −192.924 −0.322615
\(599\) 318.539 0.531784 0.265892 0.964003i \(-0.414334\pi\)
0.265892 + 0.964003i \(0.414334\pi\)
\(600\) 176.716i 0.294527i
\(601\) 106.752i 0.177623i 0.996048 + 0.0888117i \(0.0283069\pi\)
−0.996048 + 0.0888117i \(0.971693\pi\)
\(602\) 583.708i 0.969615i
\(603\) −310.414 −0.514783
\(604\) 2.79187i 0.00462230i
\(605\) 150.782 + 466.741i 0.249226 + 0.771472i
\(606\) −581.997 −0.960392
\(607\) 224.285i 0.369498i −0.982786 0.184749i \(-0.940853\pi\)
0.982786 0.184749i \(-0.0591471\pi\)
\(608\) 213.495 0.351142
\(609\) −1447.56 −2.37695
\(610\) −244.984 −0.401614
\(611\) 406.172i 0.664766i
\(612\) 5.70340i 0.00931928i
\(613\) 581.363i 0.948390i −0.880420 0.474195i \(-0.842739\pi\)
0.880420 0.474195i \(-0.157261\pi\)
\(614\) −303.651 −0.494546
\(615\) 347.649i 0.565283i
\(616\) −1026.16 746.875i −1.66585 1.21246i
\(617\) 128.671 0.208543 0.104272 0.994549i \(-0.466749\pi\)
0.104272 + 0.994549i \(0.466749\pi\)
\(618\) 347.828i 0.562829i
\(619\) 566.715 0.915533 0.457767 0.889072i \(-0.348650\pi\)
0.457767 + 0.889072i \(0.348650\pi\)
\(620\) 170.411 0.274856
\(621\) −140.923 −0.226930
\(622\) 47.1770i 0.0758473i
\(623\) 378.428i 0.607429i
\(624\) 676.840i 1.08468i
\(625\) −337.392 −0.539828
\(626\) 527.053i 0.841938i
\(627\) 295.964 406.637i 0.472032 0.648543i
\(628\) −10.1557 −0.0161715
\(629\) 70.2368i 0.111664i
\(630\) −314.937 −0.499901
\(631\) −625.667 −0.991548 −0.495774 0.868452i \(-0.665116\pi\)
−0.495774 + 0.868452i \(0.665116\pi\)
\(632\) 701.016 1.10920
\(633\) 59.9594i 0.0947227i
\(634\) 708.724i 1.11786i
\(635\) 3.68767i 0.00580736i
\(636\) 18.3498 0.0288518
\(637\) 2958.44i 4.64434i
\(638\) 716.104 + 521.205i 1.12242 + 0.816936i
\(639\) 294.640 0.461095
\(640\) 338.863i 0.529474i
\(641\) 172.633 0.269318 0.134659 0.990892i \(-0.457006\pi\)
0.134659 + 0.990892i \(0.457006\pi\)
\(642\) 245.976 0.383140
\(643\) −413.921 −0.643735 −0.321867 0.946785i \(-0.604311\pi\)
−0.321867 + 0.946785i \(0.604311\pi\)
\(644\) 46.2041i 0.0717454i
\(645\) 233.315i 0.361729i
\(646\) 86.4867i 0.133880i
\(647\) −119.849 −0.185237 −0.0926187 0.995702i \(-0.529524\pi\)
−0.0926187 + 0.995702i \(0.529524\pi\)
\(648\) 361.979i 0.558610i
\(649\) −109.944 80.0212i −0.169406 0.123299i
\(650\) −344.665 −0.530254
\(651\) 1920.30i 2.94977i
\(652\) 83.8466 0.128599
\(653\) −785.724 −1.20325 −0.601626 0.798778i \(-0.705480\pi\)
−0.601626 + 0.798778i \(0.705480\pi\)
\(654\) 374.772 0.573046
\(655\) 126.519i 0.193158i
\(656\) 448.999i 0.684450i
\(657\) 187.404i 0.285242i
\(658\) −448.068 −0.680954
\(659\) 1034.86i 1.57035i 0.619275 + 0.785174i \(0.287427\pi\)
−0.619275 + 0.785174i \(0.712573\pi\)
\(660\) 62.0889 + 45.1904i 0.0940741 + 0.0684703i
\(661\) −519.935 −0.786589 −0.393294 0.919413i \(-0.628665\pi\)
−0.393294 + 0.919413i \(0.628665\pi\)
\(662\) 51.0226i 0.0770734i
\(663\) −134.895 −0.203461
\(664\) −226.705 −0.341424
\(665\) −1036.81 −1.55912
\(666\) 160.462i 0.240933i
\(667\) 213.005i 0.319348i
\(668\) 110.029i 0.164714i
\(669\) −110.917 −0.165795
\(670\) 718.729i 1.07273i
\(671\) 215.795 296.489i 0.321602 0.441862i
\(672\) −367.338 −0.546634
\(673\) 478.298i 0.710696i 0.934734 + 0.355348i \(0.115638\pi\)
−0.934734 + 0.355348i \(0.884362\pi\)
\(674\) −167.997 −0.249254
\(675\) −251.764 −0.372984
\(676\) −230.739 −0.341330
\(677\) 837.879i 1.23764i 0.785535 + 0.618818i \(0.212388\pi\)
−0.785535 + 0.618818i \(0.787612\pi\)
\(678\) 266.517i 0.393093i
\(679\) 730.449i 1.07577i
\(680\) −87.2381 −0.128291
\(681\) 75.5953i 0.111006i
\(682\) 691.416 949.964i 1.01381 1.39291i
\(683\) −442.274 −0.647546 −0.323773 0.946135i \(-0.604951\pi\)
−0.323773 + 0.946135i \(0.604951\pi\)
\(684\) 42.8960i 0.0627135i
\(685\) 812.402 1.18599
\(686\) −2064.14 −3.00895
\(687\) 322.295 0.469134
\(688\) 301.334i 0.437986i
\(689\) 236.429i 0.343148i
\(690\) 85.0681i 0.123287i
\(691\) −492.175 −0.712265 −0.356133 0.934435i \(-0.615905\pi\)
−0.356133 + 0.934435i \(0.615905\pi\)
\(692\) 24.9575i 0.0360658i
\(693\) 277.413 381.149i 0.400308 0.549999i
\(694\) 1240.89 1.78803
\(695\) 472.143i 0.679342i
\(696\) 916.065 1.31619
\(697\) 89.4858 0.128387
\(698\) −768.503 −1.10101
\(699\) 601.763i 0.860891i
\(700\) 82.5452i 0.117922i
\(701\) 915.854i 1.30650i 0.757144 + 0.653248i \(0.226594\pi\)
−0.757144 + 0.653248i \(0.773406\pi\)
\(702\) 1182.06 1.68385
\(703\) 528.260i 0.751437i
\(704\) 631.277 + 459.465i 0.896701 + 0.652649i
\(705\) 179.098 0.254040
\(706\) 741.265i 1.04995i
\(707\) −1795.92 −2.54019
\(708\) −21.2899 −0.0300705
\(709\) −310.817 −0.438389 −0.219194 0.975681i \(-0.570343\pi\)
−0.219194 + 0.975681i \(0.570343\pi\)
\(710\) 682.204i 0.960851i
\(711\) 260.380i 0.366216i
\(712\) 239.481i 0.336350i
\(713\) −282.567 −0.396307
\(714\) 148.809i 0.208415i
\(715\) −582.260 + 799.990i −0.814349 + 1.11887i
\(716\) 15.4567 0.0215875
\(717\) 740.791i 1.03318i
\(718\) 525.556 0.731972
\(719\) −974.552 −1.35543 −0.677713 0.735326i \(-0.737029\pi\)
−0.677713 + 0.735326i \(0.737029\pi\)
\(720\) 162.584 0.225811
\(721\) 1073.32i 1.48866i
\(722\) 3.96825i 0.00549620i
\(723\) 190.441i 0.263404i
\(724\) −132.062 −0.182406
\(725\) 380.541i 0.524884i
\(726\) 503.832 162.765i 0.693984 0.224194i
\(727\) −32.3511 −0.0444995 −0.0222498 0.999752i \(-0.507083\pi\)
−0.0222498 + 0.999752i \(0.507083\pi\)
\(728\) 2560.28i 3.51686i
\(729\) 772.789 1.06007
\(730\) −433.913 −0.594401
\(731\) 60.0561 0.0821561
\(732\) 57.4129i 0.0784330i
\(733\) 174.275i 0.237756i 0.992909 + 0.118878i \(0.0379298\pi\)
−0.992909 + 0.118878i \(0.962070\pi\)
\(734\) 892.597i 1.21607i
\(735\) 1304.50 1.77483
\(736\) 54.0528i 0.0734412i
\(737\) −869.833 633.094i −1.18023 0.859015i
\(738\) −204.438 −0.277016
\(739\) 839.164i 1.13554i −0.823187 0.567770i \(-0.807806\pi\)
0.823187 0.567770i \(-0.192194\pi\)
\(740\) 80.6595 0.108999
\(741\) 1014.56 1.36918
\(742\) −260.816 −0.351504
\(743\) 928.544i 1.24972i −0.780736 0.624861i \(-0.785156\pi\)
0.780736 0.624861i \(-0.214844\pi\)
\(744\) 1215.23i 1.63337i
\(745\) 887.490i 1.19126i
\(746\) −821.882 −1.10172
\(747\) 84.2056i 0.112725i
\(748\) 11.6321 15.9819i 0.0155510 0.0213661i
\(749\) 759.028 1.01339
\(750\) 595.426i 0.793901i
\(751\) −632.961 −0.842825 −0.421412 0.906869i \(-0.638465\pi\)
−0.421412 + 0.906869i \(0.638465\pi\)
\(752\) 231.311 0.307594
\(753\) −505.078 −0.670755
\(754\) 1786.68i 2.36961i
\(755\) 15.8616i 0.0210087i
\(756\) 283.097i 0.374467i
\(757\) −721.693 −0.953360 −0.476680 0.879077i \(-0.658160\pi\)
−0.476680 + 0.879077i \(0.658160\pi\)
\(758\) 538.169i 0.709986i
\(759\) −102.953 74.9324i −0.135642 0.0987252i
\(760\) 656.129 0.863328
\(761\) 696.480i 0.915217i −0.889154 0.457608i \(-0.848706\pi\)
0.889154 0.457608i \(-0.151294\pi\)
\(762\) 3.98073 0.00522405
\(763\) 1156.47 1.51568
\(764\) 35.2119 0.0460889
\(765\) 32.4030i 0.0423569i
\(766\) 408.978i 0.533913i
\(767\) 274.311i 0.357642i
\(768\) 319.517 0.416037
\(769\) 1108.76i 1.44183i −0.693026 0.720913i \(-0.743723\pi\)
0.693026 0.720913i \(-0.256277\pi\)
\(770\) −882.507 642.319i −1.14611 0.834180i
\(771\) −1118.94 −1.45129
\(772\) 238.516i 0.308959i
\(773\) −217.553 −0.281439 −0.140720 0.990049i \(-0.544942\pi\)
−0.140720 + 0.990049i \(0.544942\pi\)
\(774\) −137.203 −0.177265
\(775\) −504.816 −0.651375
\(776\) 462.252i 0.595685i
\(777\) 908.922i 1.16978i
\(778\) 1374.63i 1.76688i
\(779\) −673.035 −0.863973
\(780\) 154.912i 0.198605i
\(781\) 825.629 + 600.921i 1.05714 + 0.769425i
\(782\) 21.8968 0.0280010
\(783\) 1305.10i 1.66680i
\(784\) 1684.80 2.14898
\(785\) −57.6983 −0.0735010
\(786\) 136.573 0.173757
\(787\) 11.2866i 0.0143413i −0.999974 0.00717066i \(-0.997717\pi\)
0.999974 0.00717066i \(-0.00228251\pi\)
\(788\) 67.4394i 0.0855830i
\(789\) 405.147i 0.513494i
\(790\) 602.880 0.763139
\(791\) 822.413i 1.03971i
\(792\) −175.556 + 241.203i −0.221662 + 0.304550i
\(793\) 739.742 0.932840
\(794\) 1346.95i 1.69641i
\(795\) 104.251 0.131134
\(796\) 166.034 0.208585
\(797\) −90.7566 −0.113873 −0.0569364 0.998378i \(-0.518133\pi\)
−0.0569364 + 0.998378i \(0.518133\pi\)
\(798\) 1119.21i 1.40252i
\(799\) 46.1004i 0.0576976i
\(800\) 96.5672i 0.120709i
\(801\) −88.9511 −0.111050
\(802\) 283.423i 0.353395i
\(803\) 382.213 525.138i 0.475981 0.653970i
\(804\) −168.437 −0.209498
\(805\) 262.502i 0.326089i
\(806\) 2370.17 2.94065
\(807\) 824.950 1.02224
\(808\) 1136.51 1.40658
\(809\) 236.018i 0.291741i 0.989304 + 0.145870i \(0.0465982\pi\)
−0.989304 + 0.145870i \(0.953402\pi\)
\(810\) 311.305i 0.384327i
\(811\) 1251.91i 1.54367i 0.635826 + 0.771833i \(0.280660\pi\)
−0.635826 + 0.771833i \(0.719340\pi\)
\(812\) 427.900 0.526970
\(813\) 232.212i 0.285624i
\(814\) 327.263 449.640i 0.402044 0.552384i
\(815\) 476.362 0.584493
\(816\) 76.8211i 0.0941435i
\(817\) −451.690 −0.552864
\(818\) 92.9095 0.113581
\(819\) 950.969 1.16113
\(820\) 102.765i 0.125323i
\(821\) 739.921i 0.901244i 0.892715 + 0.450622i \(0.148798\pi\)
−0.892715 + 0.450622i \(0.851202\pi\)
\(822\) 876.964i 1.06687i
\(823\) −1316.90 −1.60012 −0.800062 0.599917i \(-0.795200\pi\)
−0.800062 + 0.599917i \(0.795200\pi\)
\(824\) 679.232i 0.824311i
\(825\) −183.929 133.869i −0.222944 0.162266i
\(826\) 302.606 0.366351
\(827\) 612.865i 0.741071i −0.928818 0.370535i \(-0.879174\pi\)
0.928818 0.370535i \(-0.120826\pi\)
\(828\) 10.8605 0.0131165
\(829\) 213.437 0.257464 0.128732 0.991679i \(-0.458909\pi\)
0.128732 + 0.991679i \(0.458909\pi\)
\(830\) −194.968 −0.234902
\(831\) 428.135i 0.515205i
\(832\) 1575.04i 1.89308i
\(833\) 335.782i 0.403100i
\(834\) −509.664 −0.611108
\(835\) 625.112i 0.748637i
\(836\) −87.4869 + 120.202i −0.104649 + 0.143782i
\(837\) 1731.31 2.06848
\(838\) 659.019i 0.786418i
\(839\) −234.972 −0.280062 −0.140031 0.990147i \(-0.544720\pi\)
−0.140031 + 0.990147i \(0.544720\pi\)
\(840\) −1128.93 −1.34397
\(841\) −1131.66 −1.34561
\(842\) 1346.03i 1.59861i
\(843\) 388.504i 0.460859i
\(844\) 17.7240i 0.0210000i
\(845\) −1310.91 −1.55137
\(846\) 105.320i 0.124492i
\(847\) 1554.72 502.256i 1.83556 0.592982i
\(848\) 134.644 0.158778
\(849\) 129.528i 0.152566i
\(850\) 39.1194 0.0460228
\(851\) −133.745 −0.157163
\(852\) 159.877 0.187649
\(853\) 989.590i 1.16013i −0.814570 0.580065i \(-0.803027\pi\)
0.814570 0.580065i \(-0.196973\pi\)
\(854\) 816.045i 0.955556i
\(855\) 243.707i 0.285038i
\(856\) −480.338 −0.561142
\(857\) 407.343i 0.475312i −0.971349 0.237656i \(-0.923621\pi\)
0.971349 0.237656i \(-0.0763791\pi\)
\(858\) 863.565 + 628.532i 1.00649 + 0.732555i
\(859\) 651.382 0.758303 0.379151 0.925335i \(-0.376216\pi\)
0.379151 + 0.925335i \(0.376216\pi\)
\(860\) 68.9681i 0.0801954i
\(861\) 1158.02 1.34497
\(862\) 548.433 0.636234
\(863\) 1257.43 1.45704 0.728520 0.685025i \(-0.240209\pi\)
0.728520 + 0.685025i \(0.240209\pi\)
\(864\) 331.187i 0.383318i
\(865\) 141.792i 0.163922i
\(866\) 187.039i 0.215981i
\(867\) −682.260 −0.786920
\(868\) 567.640i 0.653964i
\(869\) −531.048 + 729.627i −0.611102 + 0.839617i
\(870\) 787.824 0.905544
\(871\) 2170.24i 2.49166i
\(872\) −731.848 −0.839276
\(873\) −171.695 −0.196672
\(874\) −164.689 −0.188431
\(875\) 1837.35i 2.09983i
\(876\) 101.689i 0.116083i
\(877\) 245.688i 0.280146i −0.990141 0.140073i \(-0.955266\pi\)
0.990141 0.140073i \(-0.0447338\pi\)
\(878\) 1413.00 1.60934
\(879\) 745.502i 0.848125i
\(880\) 455.586 + 331.591i 0.517712 + 0.376808i
\(881\) 270.265 0.306771 0.153385 0.988166i \(-0.450982\pi\)
0.153385 + 0.988166i \(0.450982\pi\)
\(882\) 767.122i 0.869753i
\(883\) −622.208 −0.704652 −0.352326 0.935877i \(-0.614609\pi\)
−0.352326 + 0.935877i \(0.614609\pi\)
\(884\) 39.8748 0.0451073
\(885\) −120.955 −0.136673
\(886\) 1018.27i 1.14929i
\(887\) 583.315i 0.657627i −0.944395 0.328813i \(-0.893351\pi\)
0.944395 0.328813i \(-0.106649\pi\)
\(888\) 575.195i 0.647742i
\(889\) 12.2837 0.0138174
\(890\) 205.956i 0.231411i
\(891\) 376.753 + 274.214i 0.422843 + 0.307759i
\(892\) 32.7871 0.0367568
\(893\) 346.727i 0.388272i
\(894\) −958.019 −1.07161
\(895\) 87.8148 0.0981171
\(896\) −1128.76 −1.25977
\(897\) 256.867i 0.286363i
\(898\) 190.175i 0.211776i
\(899\) 2616.88i 2.91087i
\(900\) 19.4026 0.0215584
\(901\) 26.8346i 0.0297832i
\(902\) −572.869 416.953i −0.635109 0.462254i
\(903\) 777.176 0.860660
\(904\) 520.449i 0.575718i
\(905\) −750.289 −0.829048
\(906\) 17.1221 0.0188986
\(907\) 464.554 0.512187 0.256094 0.966652i \(-0.417564\pi\)
0.256094 + 0.966652i \(0.417564\pi\)
\(908\) 22.3460i 0.0246101i
\(909\) 422.137i 0.464398i
\(910\) 2201.86i 2.41963i
\(911\) −1766.64 −1.93923 −0.969615 0.244637i \(-0.921331\pi\)
−0.969615 + 0.244637i \(0.921331\pi\)
\(912\) 577.782i 0.633533i
\(913\) 171.738 235.958i 0.188103 0.258443i
\(914\) 663.626 0.726068
\(915\) 326.183i 0.356484i
\(916\) −95.2705 −0.104007
\(917\) 421.435 0.459580
\(918\) −134.164 −0.146148
\(919\) 1381.68i 1.50346i 0.659468 + 0.751732i \(0.270782\pi\)
−0.659468 + 0.751732i \(0.729218\pi\)
\(920\) 166.119i 0.180565i
\(921\) 404.295i 0.438974i
\(922\) −343.563 −0.372628
\(923\) 2059.95i 2.23180i
\(924\) 150.530 206.819i 0.162911 0.223830i
\(925\) −238.941 −0.258315
\(926\) 1041.08i 1.12428i
\(927\) −252.289 −0.272156
\(928\) −500.587 −0.539426
\(929\) 394.410 0.424553 0.212276 0.977210i \(-0.431912\pi\)
0.212276 + 0.977210i \(0.431912\pi\)
\(930\) 1045.11i 1.12377i
\(931\) 2525.46i 2.71264i
\(932\) 177.881i 0.190860i
\(933\) 62.8136 0.0673243
\(934\) 1370.69i 1.46755i
\(935\) 66.0863 90.7986i 0.0706806 0.0971108i
\(936\) −601.804 −0.642952
\(937\) 729.277i 0.778310i −0.921172 0.389155i \(-0.872767\pi\)
0.921172 0.389155i \(-0.127233\pi\)
\(938\) 2394.09 2.55234
\(939\) −701.742 −0.747329
\(940\) −52.9414 −0.0563207
\(941\) 1359.29i 1.44452i −0.691621 0.722261i \(-0.743103\pi\)
0.691621 0.722261i \(-0.256897\pi\)
\(942\) 62.2836i 0.0661184i
\(943\) 170.400i 0.180700i
\(944\) −156.218 −0.165485
\(945\) 1608.37i 1.70198i
\(946\) −384.466 279.827i −0.406412 0.295800i
\(947\) −1686.32 −1.78070 −0.890351 0.455275i \(-0.849541\pi\)
−0.890351 + 0.455275i \(0.849541\pi\)
\(948\) 141.287i 0.149037i
\(949\) 1310.22 1.38063
\(950\) −294.222 −0.309708
\(951\) −943.627 −0.992247
\(952\) 290.591i 0.305242i
\(953\) 586.820i 0.615761i −0.951425 0.307880i \(-0.900380\pi\)
0.951425 0.307880i \(-0.0996196\pi\)
\(954\) 61.3059i 0.0642619i
\(955\) 200.051 0.209478
\(956\) 218.978i 0.229056i
\(957\) −693.956 + 953.454i −0.725137 + 0.996294i
\(958\) −892.573 −0.931704
\(959\) 2706.12i 2.82181i
\(960\) 694.501 0.723439
\(961\) 2510.47 2.61236
\(962\) 1121.85 1.16617
\(963\) 178.413i 0.185268i
\(964\) 56.2945i 0.0583968i
\(965\) 1355.09i 1.40424i
\(966\) 283.363 0.293336
\(967\) 1811.88i 1.87371i −0.349717 0.936855i \(-0.613722\pi\)
0.349717 0.936855i \(-0.386278\pi\)
\(968\) −983.875 + 317.844i −1.01640 + 0.328351i
\(969\) −115.152 −0.118836
\(970\) 397.540i 0.409835i
\(971\) 192.734 0.198490 0.0992452 0.995063i \(-0.468357\pi\)
0.0992452 + 0.995063i \(0.468357\pi\)
\(972\) −115.738 −0.119072
\(973\) −1572.71 −1.61635
\(974\) 1023.48i 1.05081i
\(975\) 458.903i 0.470669i
\(976\) 421.276i 0.431635i
\(977\) 857.182 0.877361 0.438681 0.898643i \(-0.355446\pi\)
0.438681 + 0.898643i \(0.355446\pi\)
\(978\) 514.219i 0.525786i
\(979\) −249.256 181.417i −0.254602 0.185308i
\(980\) −385.610 −0.393480
\(981\) 271.832i 0.277097i
\(982\) −376.749 −0.383655
\(983\) −432.837 −0.440323 −0.220161 0.975463i \(-0.570658\pi\)
−0.220161 + 0.975463i \(0.570658\pi\)
\(984\) −732.833 −0.744749
\(985\) 383.147i 0.388982i
\(986\) 202.788i 0.205667i
\(987\) 596.577i 0.604435i
\(988\) −299.904 −0.303547
\(989\) 114.359i 0.115631i
\(990\) −150.980 + 207.437i −0.152505 + 0.209532i
\(991\) 173.645 0.175222 0.0876110 0.996155i \(-0.472077\pi\)
0.0876110 + 0.996155i \(0.472077\pi\)
\(992\) 664.065i 0.669421i
\(993\) −67.9338 −0.0684127
\(994\) −2272.43 −2.28615
\(995\) 943.295 0.948035
\(996\) 45.6915i 0.0458750i
\(997\) 1200.96i 1.20458i 0.798279 + 0.602288i \(0.205744\pi\)
−0.798279 + 0.602288i \(0.794256\pi\)
\(998\) 1078.82i 1.08098i
\(999\) 819.471 0.820291
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.31 yes 44
11.10 odd 2 inner 253.3.c.a.208.14 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.14 44 11.10 odd 2 inner
253.3.c.a.208.31 yes 44 1.1 even 1 trivial