Properties

Label 253.3.c.a.208.42
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(208,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.208");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.42
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.51900i q^{2} -4.54425 q^{3} -8.38333 q^{4} -6.03619 q^{5} -15.9912i q^{6} +3.84661i q^{7} -15.4249i q^{8} +11.6502 q^{9} -21.2413i q^{10} +(-9.75758 + 5.07834i) q^{11} +38.0960 q^{12} -10.2362i q^{13} -13.5362 q^{14} +27.4300 q^{15} +20.7469 q^{16} +14.5992i q^{17} +40.9971i q^{18} +25.7209i q^{19} +50.6034 q^{20} -17.4799i q^{21} +(-17.8707 - 34.3369i) q^{22} -4.79583 q^{23} +70.0947i q^{24} +11.4356 q^{25} +36.0213 q^{26} -12.0433 q^{27} -32.2474i q^{28} -3.68185i q^{29} +96.5259i q^{30} +47.7130 q^{31} +11.3086i q^{32} +(44.3409 - 23.0773i) q^{33} -51.3745 q^{34} -23.2188i q^{35} -97.6677 q^{36} -22.3475 q^{37} -90.5118 q^{38} +46.5160i q^{39} +93.1077i q^{40} -42.7410i q^{41} +61.5119 q^{42} -52.1839i q^{43} +(81.8010 - 42.5734i) q^{44} -70.3230 q^{45} -16.8765i q^{46} -4.97317 q^{47} -94.2792 q^{48} +34.2036 q^{49} +40.2417i q^{50} -66.3424i q^{51} +85.8137i q^{52} -50.4936 q^{53} -42.3804i q^{54} +(58.8986 - 30.6538i) q^{55} +59.3336 q^{56} -116.882i q^{57} +12.9564 q^{58} -98.9956 q^{59} -229.954 q^{60} -64.8384i q^{61} +167.902i q^{62} +44.8138i q^{63} +43.1928 q^{64} +61.7878i q^{65} +(81.2088 + 156.036i) q^{66} +68.1495 q^{67} -122.390i q^{68} +21.7935 q^{69} +81.7070 q^{70} +83.2800 q^{71} -179.704i q^{72} +128.060i q^{73} -78.6407i q^{74} -51.9661 q^{75} -215.627i q^{76} +(-19.5344 - 37.5336i) q^{77} -163.690 q^{78} -65.3432i q^{79} -125.232 q^{80} -50.1242 q^{81} +150.406 q^{82} +136.036i q^{83} +146.540i q^{84} -88.1235i q^{85} +183.635 q^{86} +16.7312i q^{87} +(78.3330 + 150.510i) q^{88} +40.2404 q^{89} -247.466i q^{90} +39.3747 q^{91} +40.2050 q^{92} -216.820 q^{93} -17.5006i q^{94} -155.256i q^{95} -51.3890i q^{96} -102.539 q^{97} +120.362i q^{98} +(-113.678 + 59.1639i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.51900i 1.75950i 0.475439 + 0.879749i \(0.342289\pi\)
−0.475439 + 0.879749i \(0.657711\pi\)
\(3\) −4.54425 −1.51475 −0.757375 0.652980i \(-0.773519\pi\)
−0.757375 + 0.652980i \(0.773519\pi\)
\(4\) −8.38333 −2.09583
\(5\) −6.03619 −1.20724 −0.603619 0.797273i \(-0.706275\pi\)
−0.603619 + 0.797273i \(0.706275\pi\)
\(6\) 15.9912i 2.66520i
\(7\) 3.84661i 0.549515i 0.961514 + 0.274758i \(0.0885976\pi\)
−0.961514 + 0.274758i \(0.911402\pi\)
\(8\) 15.4249i 1.92811i
\(9\) 11.6502 1.29447
\(10\) 21.2413i 2.12413i
\(11\) −9.75758 + 5.07834i −0.887053 + 0.461668i
\(12\) 38.0960 3.17466
\(13\) 10.2362i 0.787402i −0.919238 0.393701i \(-0.871194\pi\)
0.919238 0.393701i \(-0.128806\pi\)
\(14\) −13.5362 −0.966871
\(15\) 27.4300 1.82866
\(16\) 20.7469 1.29668
\(17\) 14.5992i 0.858776i 0.903120 + 0.429388i \(0.141271\pi\)
−0.903120 + 0.429388i \(0.858729\pi\)
\(18\) 40.9971i 2.27762i
\(19\) 25.7209i 1.35373i 0.736106 + 0.676866i \(0.236663\pi\)
−0.736106 + 0.676866i \(0.763337\pi\)
\(20\) 50.6034 2.53017
\(21\) 17.4799i 0.832379i
\(22\) −17.8707 34.3369i −0.812303 1.56077i
\(23\) −4.79583 −0.208514
\(24\) 70.0947i 2.92061i
\(25\) 11.4356 0.457423
\(26\) 36.0213 1.38543
\(27\) −12.0433 −0.446049
\(28\) 32.2474i 1.15169i
\(29\) 3.68185i 0.126960i −0.997983 0.0634801i \(-0.979780\pi\)
0.997983 0.0634801i \(-0.0202199\pi\)
\(30\) 96.5259i 3.21753i
\(31\) 47.7130 1.53913 0.769564 0.638570i \(-0.220474\pi\)
0.769564 + 0.638570i \(0.220474\pi\)
\(32\) 11.3086i 0.353393i
\(33\) 44.3409 23.0773i 1.34366 0.699311i
\(34\) −51.3745 −1.51101
\(35\) 23.2188i 0.663395i
\(36\) −97.6677 −2.71299
\(37\) −22.3475 −0.603986 −0.301993 0.953310i \(-0.597652\pi\)
−0.301993 + 0.953310i \(0.597652\pi\)
\(38\) −90.5118 −2.38189
\(39\) 46.5160i 1.19272i
\(40\) 93.1077i 2.32769i
\(41\) 42.7410i 1.04246i −0.853415 0.521232i \(-0.825473\pi\)
0.853415 0.521232i \(-0.174527\pi\)
\(42\) 61.5119 1.46457
\(43\) 52.1839i 1.21358i −0.794863 0.606789i \(-0.792457\pi\)
0.794863 0.606789i \(-0.207543\pi\)
\(44\) 81.8010 42.5734i 1.85911 0.967578i
\(45\) −70.3230 −1.56273
\(46\) 16.8765i 0.366881i
\(47\) −4.97317 −0.105812 −0.0529061 0.998599i \(-0.516848\pi\)
−0.0529061 + 0.998599i \(0.516848\pi\)
\(48\) −94.2792 −1.96415
\(49\) 34.2036 0.698033
\(50\) 40.2417i 0.804834i
\(51\) 66.3424i 1.30083i
\(52\) 85.8137i 1.65026i
\(53\) −50.4936 −0.952710 −0.476355 0.879253i \(-0.658042\pi\)
−0.476355 + 0.879253i \(0.658042\pi\)
\(54\) 42.3804i 0.784822i
\(55\) 58.8986 30.6538i 1.07088 0.557343i
\(56\) 59.3336 1.05953
\(57\) 116.882i 2.05057i
\(58\) 12.9564 0.223386
\(59\) −98.9956 −1.67789 −0.838946 0.544215i \(-0.816828\pi\)
−0.838946 + 0.544215i \(0.816828\pi\)
\(60\) −229.954 −3.83257
\(61\) 64.8384i 1.06293i −0.847082 0.531463i \(-0.821643\pi\)
0.847082 0.531463i \(-0.178357\pi\)
\(62\) 167.902i 2.70809i
\(63\) 44.8138i 0.711331i
\(64\) 43.1928 0.674887
\(65\) 61.7878i 0.950582i
\(66\) 81.2088 + 156.036i 1.23044 + 2.36417i
\(67\) 68.1495 1.01716 0.508579 0.861016i \(-0.330171\pi\)
0.508579 + 0.861016i \(0.330171\pi\)
\(68\) 122.390i 1.79985i
\(69\) 21.7935 0.315847
\(70\) 81.7070 1.16724
\(71\) 83.2800 1.17296 0.586479 0.809964i \(-0.300514\pi\)
0.586479 + 0.809964i \(0.300514\pi\)
\(72\) 179.704i 2.49589i
\(73\) 128.060i 1.75425i 0.480263 + 0.877124i \(0.340541\pi\)
−0.480263 + 0.877124i \(0.659459\pi\)
\(74\) 78.6407i 1.06271i
\(75\) −51.9661 −0.692882
\(76\) 215.627i 2.83720i
\(77\) −19.5344 37.5336i −0.253693 0.487449i
\(78\) −163.690 −2.09859
\(79\) 65.3432i 0.827129i −0.910475 0.413565i \(-0.864284\pi\)
0.910475 0.413565i \(-0.135716\pi\)
\(80\) −125.232 −1.56540
\(81\) −50.1242 −0.618817
\(82\) 150.406 1.83421
\(83\) 136.036i 1.63899i 0.573086 + 0.819495i \(0.305746\pi\)
−0.573086 + 0.819495i \(0.694254\pi\)
\(84\) 146.540i 1.74453i
\(85\) 88.1235i 1.03675i
\(86\) 183.635 2.13529
\(87\) 16.7312i 0.192313i
\(88\) 78.3330 + 150.510i 0.890148 + 1.71034i
\(89\) 40.2404 0.452140 0.226070 0.974111i \(-0.427412\pi\)
0.226070 + 0.974111i \(0.427412\pi\)
\(90\) 247.466i 2.74963i
\(91\) 39.3747 0.432690
\(92\) 40.2050 0.437011
\(93\) −216.820 −2.33140
\(94\) 17.5006i 0.186176i
\(95\) 155.256i 1.63428i
\(96\) 51.3890i 0.535303i
\(97\) −102.539 −1.05710 −0.528551 0.848901i \(-0.677265\pi\)
−0.528551 + 0.848901i \(0.677265\pi\)
\(98\) 120.362i 1.22819i
\(99\) −113.678 + 59.1639i −1.14826 + 0.597615i
\(100\) −95.8682 −0.958682
\(101\) 12.0813i 0.119616i −0.998210 0.0598082i \(-0.980951\pi\)
0.998210 0.0598082i \(-0.0190489\pi\)
\(102\) 233.459 2.28881
\(103\) −83.9717 −0.815259 −0.407630 0.913147i \(-0.633645\pi\)
−0.407630 + 0.913147i \(0.633645\pi\)
\(104\) −157.893 −1.51820
\(105\) 105.512i 1.00488i
\(106\) 177.687i 1.67629i
\(107\) 80.2454i 0.749957i −0.927034 0.374978i \(-0.877650\pi\)
0.927034 0.374978i \(-0.122350\pi\)
\(108\) 100.963 0.934844
\(109\) 153.452i 1.40782i −0.710289 0.703910i \(-0.751436\pi\)
0.710289 0.703910i \(-0.248564\pi\)
\(110\) 107.871 + 207.264i 0.980643 + 1.88422i
\(111\) 101.553 0.914888
\(112\) 79.8052i 0.712546i
\(113\) −198.954 −1.76066 −0.880330 0.474363i \(-0.842679\pi\)
−0.880330 + 0.474363i \(0.842679\pi\)
\(114\) 411.309 3.60797
\(115\) 28.9485 0.251726
\(116\) 30.8661i 0.266087i
\(117\) 119.254i 1.01927i
\(118\) 348.365i 2.95225i
\(119\) −56.1574 −0.471911
\(120\) 423.105i 3.52587i
\(121\) 69.4209 99.1047i 0.573726 0.819047i
\(122\) 228.166 1.87021
\(123\) 194.226i 1.57907i
\(124\) −399.994 −3.22575
\(125\) 81.8775 0.655020
\(126\) −157.700 −1.25159
\(127\) 25.8605i 0.203626i 0.994804 + 0.101813i \(0.0324643\pi\)
−0.994804 + 0.101813i \(0.967536\pi\)
\(128\) 197.229i 1.54086i
\(129\) 237.137i 1.83827i
\(130\) −217.431 −1.67255
\(131\) 114.023i 0.870401i 0.900334 + 0.435201i \(0.143323\pi\)
−0.900334 + 0.435201i \(0.856677\pi\)
\(132\) −371.725 + 193.464i −2.81610 + 1.46564i
\(133\) −98.9383 −0.743897
\(134\) 239.818i 1.78969i
\(135\) 72.6958 0.538487
\(136\) 225.191 1.65582
\(137\) −50.9224 −0.371696 −0.185848 0.982578i \(-0.559503\pi\)
−0.185848 + 0.982578i \(0.559503\pi\)
\(138\) 76.6911i 0.555733i
\(139\) 64.3952i 0.463275i −0.972802 0.231637i \(-0.925592\pi\)
0.972802 0.231637i \(-0.0744083\pi\)
\(140\) 194.651i 1.39037i
\(141\) 22.5993 0.160279
\(142\) 293.062i 2.06382i
\(143\) 51.9831 + 99.8809i 0.363518 + 0.698468i
\(144\) 241.706 1.67852
\(145\) 22.2243i 0.153271i
\(146\) −450.643 −3.08660
\(147\) −155.430 −1.05735
\(148\) 187.346 1.26585
\(149\) 268.852i 1.80437i 0.431346 + 0.902187i \(0.358039\pi\)
−0.431346 + 0.902187i \(0.641961\pi\)
\(150\) 182.869i 1.21912i
\(151\) 159.152i 1.05399i −0.849869 0.526994i \(-0.823319\pi\)
0.849869 0.526994i \(-0.176681\pi\)
\(152\) 396.743 2.61015
\(153\) 170.084i 1.11166i
\(154\) 132.080 68.7414i 0.857666 0.446373i
\(155\) −288.004 −1.85809
\(156\) 389.959i 2.49974i
\(157\) −48.8691 −0.311268 −0.155634 0.987815i \(-0.549742\pi\)
−0.155634 + 0.987815i \(0.549742\pi\)
\(158\) 229.943 1.45533
\(159\) 229.456 1.44312
\(160\) 68.2607i 0.426630i
\(161\) 18.4477i 0.114582i
\(162\) 176.387i 1.08881i
\(163\) 191.044 1.17205 0.586025 0.810293i \(-0.300692\pi\)
0.586025 + 0.810293i \(0.300692\pi\)
\(164\) 358.312i 2.18483i
\(165\) −267.650 + 139.299i −1.62212 + 0.844235i
\(166\) −478.711 −2.88380
\(167\) 27.5575i 0.165015i −0.996590 0.0825074i \(-0.973707\pi\)
0.996590 0.0825074i \(-0.0262928\pi\)
\(168\) −269.627 −1.60492
\(169\) 64.2196 0.379998
\(170\) 310.106 1.82415
\(171\) 299.655i 1.75237i
\(172\) 437.475i 2.54346i
\(173\) 291.735i 1.68633i −0.537655 0.843165i \(-0.680690\pi\)
0.537655 0.843165i \(-0.319310\pi\)
\(174\) −58.8771 −0.338374
\(175\) 43.9881i 0.251361i
\(176\) −202.440 + 105.360i −1.15023 + 0.598636i
\(177\) 449.861 2.54159
\(178\) 141.606i 0.795539i
\(179\) 42.5320 0.237609 0.118804 0.992918i \(-0.462094\pi\)
0.118804 + 0.992918i \(0.462094\pi\)
\(180\) 589.541 3.27523
\(181\) −39.3354 −0.217323 −0.108661 0.994079i \(-0.534656\pi\)
−0.108661 + 0.994079i \(0.534656\pi\)
\(182\) 138.560i 0.761316i
\(183\) 294.642i 1.61007i
\(184\) 73.9753i 0.402040i
\(185\) 134.894 0.729154
\(186\) 762.988i 4.10208i
\(187\) −74.1397 142.453i −0.396469 0.761780i
\(188\) 41.6917 0.221765
\(189\) 46.3259i 0.245111i
\(190\) 546.346 2.87551
\(191\) 113.290 0.593140 0.296570 0.955011i \(-0.404157\pi\)
0.296570 + 0.955011i \(0.404157\pi\)
\(192\) −196.279 −1.02229
\(193\) 10.2043i 0.0528718i 0.999651 + 0.0264359i \(0.00841579\pi\)
−0.999651 + 0.0264359i \(0.991584\pi\)
\(194\) 360.834i 1.85997i
\(195\) 280.779i 1.43989i
\(196\) −286.740 −1.46296
\(197\) 275.324i 1.39758i −0.715326 0.698791i \(-0.753722\pi\)
0.715326 0.698791i \(-0.246278\pi\)
\(198\) −208.197 400.033i −1.05150 2.02037i
\(199\) 217.171 1.09131 0.545656 0.838009i \(-0.316280\pi\)
0.545656 + 0.838009i \(0.316280\pi\)
\(200\) 176.393i 0.881964i
\(201\) −309.689 −1.54074
\(202\) 42.5139 0.210465
\(203\) 14.1626 0.0697665
\(204\) 556.171i 2.72633i
\(205\) 257.993i 1.25850i
\(206\) 295.496i 1.43445i
\(207\) −55.8725 −0.269916
\(208\) 212.370i 1.02101i
\(209\) −130.620 250.974i −0.624975 1.20083i
\(210\) −371.297 −1.76808
\(211\) 155.342i 0.736218i −0.929783 0.368109i \(-0.880005\pi\)
0.929783 0.368109i \(-0.119995\pi\)
\(212\) 423.305 1.99672
\(213\) −378.446 −1.77674
\(214\) 282.383 1.31955
\(215\) 314.992i 1.46508i
\(216\) 185.767i 0.860034i
\(217\) 183.533i 0.845774i
\(218\) 539.999 2.47706
\(219\) 581.938i 2.65725i
\(220\) −493.766 + 256.981i −2.24439 + 1.16810i
\(221\) 149.441 0.676202
\(222\) 357.363i 1.60974i
\(223\) −2.33090 −0.0104525 −0.00522623 0.999986i \(-0.501664\pi\)
−0.00522623 + 0.999986i \(0.501664\pi\)
\(224\) −43.4997 −0.194195
\(225\) 133.227 0.592120
\(226\) 700.120i 3.09788i
\(227\) 432.665i 1.90601i 0.302950 + 0.953006i \(0.402028\pi\)
−0.302950 + 0.953006i \(0.597972\pi\)
\(228\) 979.863i 4.29765i
\(229\) −274.772 −1.19988 −0.599938 0.800047i \(-0.704808\pi\)
−0.599938 + 0.800047i \(0.704808\pi\)
\(230\) 101.870i 0.442912i
\(231\) 88.7692 + 170.562i 0.384282 + 0.738364i
\(232\) −56.7922 −0.244794
\(233\) 251.514i 1.07946i −0.841838 0.539730i \(-0.818526\pi\)
0.841838 0.539730i \(-0.181474\pi\)
\(234\) 419.656 1.79340
\(235\) 30.0190 0.127740
\(236\) 829.913 3.51658
\(237\) 296.936i 1.25289i
\(238\) 197.617i 0.830326i
\(239\) 150.972i 0.631680i −0.948812 0.315840i \(-0.897714\pi\)
0.948812 0.315840i \(-0.102286\pi\)
\(240\) 569.087 2.37119
\(241\) 229.369i 0.951738i −0.879516 0.475869i \(-0.842134\pi\)
0.879516 0.475869i \(-0.157866\pi\)
\(242\) 348.749 + 244.292i 1.44111 + 1.00947i
\(243\) 336.167 1.38340
\(244\) 543.562i 2.22771i
\(245\) −206.460 −0.842692
\(246\) −683.481 −2.77838
\(247\) 263.285 1.06593
\(248\) 735.969i 2.96762i
\(249\) 618.183i 2.48266i
\(250\) 288.126i 1.15251i
\(251\) 145.913 0.581328 0.290664 0.956825i \(-0.406124\pi\)
0.290664 + 0.956825i \(0.406124\pi\)
\(252\) 375.689i 1.49083i
\(253\) 46.7957 24.3549i 0.184963 0.0962643i
\(254\) −91.0028 −0.358279
\(255\) 400.455i 1.57041i
\(256\) −521.279 −2.03624
\(257\) −145.701 −0.566931 −0.283465 0.958982i \(-0.591484\pi\)
−0.283465 + 0.958982i \(0.591484\pi\)
\(258\) −834.483 −3.23443
\(259\) 85.9619i 0.331899i
\(260\) 517.988i 1.99226i
\(261\) 42.8943i 0.164346i
\(262\) −401.245 −1.53147
\(263\) 175.157i 0.665998i 0.942927 + 0.332999i \(0.108061\pi\)
−0.942927 + 0.332999i \(0.891939\pi\)
\(264\) −355.965 683.955i −1.34835 2.59074i
\(265\) 304.789 1.15015
\(266\) 348.163i 1.30888i
\(267\) −182.863 −0.684879
\(268\) −571.320 −2.13179
\(269\) −231.022 −0.858818 −0.429409 0.903110i \(-0.641278\pi\)
−0.429409 + 0.903110i \(0.641278\pi\)
\(270\) 255.816i 0.947467i
\(271\) 299.480i 1.10509i 0.833482 + 0.552546i \(0.186344\pi\)
−0.833482 + 0.552546i \(0.813656\pi\)
\(272\) 302.888i 1.11356i
\(273\) −178.929 −0.655417
\(274\) 179.196i 0.653999i
\(275\) −111.584 + 58.0737i −0.405758 + 0.211177i
\(276\) −182.702 −0.661963
\(277\) 32.1710i 0.116141i −0.998312 0.0580704i \(-0.981505\pi\)
0.998312 0.0580704i \(-0.0184948\pi\)
\(278\) 226.606 0.815131
\(279\) 555.867 1.99236
\(280\) −358.149 −1.27910
\(281\) 126.109i 0.448787i −0.974499 0.224394i \(-0.927960\pi\)
0.974499 0.224394i \(-0.0720401\pi\)
\(282\) 79.5270i 0.282011i
\(283\) 337.808i 1.19367i −0.802364 0.596834i \(-0.796425\pi\)
0.802364 0.596834i \(-0.203575\pi\)
\(284\) −698.164 −2.45832
\(285\) 705.524i 2.47552i
\(286\) −351.480 + 182.928i −1.22895 + 0.639609i
\(287\) 164.408 0.572850
\(288\) 131.748i 0.457457i
\(289\) 75.8635 0.262503
\(290\) −78.2072 −0.269680
\(291\) 465.963 1.60125
\(292\) 1073.57i 3.67661i
\(293\) 272.615i 0.930427i −0.885198 0.465214i \(-0.845977\pi\)
0.885198 0.465214i \(-0.154023\pi\)
\(294\) 546.957i 1.86040i
\(295\) 597.556 2.02561
\(296\) 344.708i 1.16455i
\(297\) 117.514 61.1601i 0.395669 0.205926i
\(298\) −946.088 −3.17479
\(299\) 49.0912i 0.164185i
\(300\) 435.649 1.45216
\(301\) 200.731 0.666880
\(302\) 560.056 1.85449
\(303\) 54.9003i 0.181189i
\(304\) 533.629i 1.75536i
\(305\) 391.377i 1.28320i
\(306\) −598.525 −1.95596
\(307\) 360.807i 1.17527i 0.809127 + 0.587634i \(0.199941\pi\)
−0.809127 + 0.587634i \(0.800059\pi\)
\(308\) 163.763 + 314.656i 0.531699 + 1.02161i
\(309\) 381.589 1.23491
\(310\) 1013.49i 3.26931i
\(311\) 578.159 1.85903 0.929515 0.368783i \(-0.120226\pi\)
0.929515 + 0.368783i \(0.120226\pi\)
\(312\) 717.506 2.29970
\(313\) −366.449 −1.17076 −0.585382 0.810758i \(-0.699055\pi\)
−0.585382 + 0.810758i \(0.699055\pi\)
\(314\) 171.970i 0.547676i
\(315\) 270.505i 0.858746i
\(316\) 547.794i 1.73352i
\(317\) −545.515 −1.72087 −0.860434 0.509562i \(-0.829807\pi\)
−0.860434 + 0.509562i \(0.829807\pi\)
\(318\) 807.454i 2.53916i
\(319\) 18.6977 + 35.9259i 0.0586134 + 0.112620i
\(320\) −260.720 −0.814749
\(321\) 364.655i 1.13600i
\(322\) 64.9173 0.201606
\(323\) −375.505 −1.16255
\(324\) 420.208 1.29694
\(325\) 117.057i 0.360176i
\(326\) 672.283i 2.06222i
\(327\) 697.327i 2.13250i
\(328\) −659.277 −2.00999
\(329\) 19.1298i 0.0581454i
\(330\) −490.192 941.860i −1.48543 2.85412i
\(331\) −346.822 −1.04780 −0.523900 0.851780i \(-0.675524\pi\)
−0.523900 + 0.851780i \(0.675524\pi\)
\(332\) 1140.44i 3.43505i
\(333\) −260.353 −0.781842
\(334\) 96.9747 0.290343
\(335\) −411.363 −1.22795
\(336\) 362.655i 1.07933i
\(337\) 330.456i 0.980582i −0.871559 0.490291i \(-0.836891\pi\)
0.871559 0.490291i \(-0.163109\pi\)
\(338\) 225.988i 0.668605i
\(339\) 904.099 2.66696
\(340\) 738.768i 2.17285i
\(341\) −465.563 + 242.303i −1.36529 + 0.710565i
\(342\) −1054.48 −3.08329
\(343\) 320.052i 0.933095i
\(344\) −804.932 −2.33992
\(345\) −131.549 −0.381303
\(346\) 1026.61 2.96709
\(347\) 303.213i 0.873812i −0.899507 0.436906i \(-0.856074\pi\)
0.899507 0.436906i \(-0.143926\pi\)
\(348\) 140.263i 0.403056i
\(349\) 389.099i 1.11490i −0.830211 0.557449i \(-0.811780\pi\)
0.830211 0.557449i \(-0.188220\pi\)
\(350\) −154.794 −0.442269
\(351\) 123.278i 0.351220i
\(352\) −57.4289 110.344i −0.163150 0.313478i
\(353\) 511.608 1.44932 0.724658 0.689109i \(-0.241998\pi\)
0.724658 + 0.689109i \(0.241998\pi\)
\(354\) 1583.06i 4.47192i
\(355\) −502.694 −1.41604
\(356\) −337.349 −0.947609
\(357\) 255.193 0.714827
\(358\) 149.670i 0.418072i
\(359\) 16.2891i 0.0453735i −0.999743 0.0226868i \(-0.992778\pi\)
0.999743 0.0226868i \(-0.00722204\pi\)
\(360\) 1084.73i 3.01313i
\(361\) −300.566 −0.832592
\(362\) 138.421i 0.382379i
\(363\) −315.466 + 450.357i −0.869052 + 1.24065i
\(364\) −330.091 −0.906845
\(365\) 772.995i 2.11780i
\(366\) −1036.84 −2.83291
\(367\) 165.576 0.451161 0.225581 0.974225i \(-0.427572\pi\)
0.225581 + 0.974225i \(0.427572\pi\)
\(368\) −99.4986 −0.270377
\(369\) 497.943i 1.34944i
\(370\) 474.690i 1.28295i
\(371\) 194.229i 0.523528i
\(372\) 1817.67 4.88621
\(373\) 90.6069i 0.242914i 0.992597 + 0.121457i \(0.0387566\pi\)
−0.992597 + 0.121457i \(0.961243\pi\)
\(374\) 501.291 260.897i 1.34035 0.697587i
\(375\) −372.072 −0.992192
\(376\) 76.7108i 0.204018i
\(377\) −37.6882 −0.0999687
\(378\) 163.021 0.431272
\(379\) −220.619 −0.582109 −0.291055 0.956706i \(-0.594006\pi\)
−0.291055 + 0.956706i \(0.594006\pi\)
\(380\) 1301.57i 3.42517i
\(381\) 117.516i 0.308442i
\(382\) 398.666i 1.04363i
\(383\) −377.307 −0.985136 −0.492568 0.870274i \(-0.663942\pi\)
−0.492568 + 0.870274i \(0.663942\pi\)
\(384\) 896.260i 2.33401i
\(385\) 117.913 + 226.560i 0.306268 + 0.588467i
\(386\) −35.9088 −0.0930279
\(387\) 607.954i 1.57094i
\(388\) 859.618 2.21551
\(389\) 182.321 0.468691 0.234346 0.972153i \(-0.424705\pi\)
0.234346 + 0.972153i \(0.424705\pi\)
\(390\) 988.062 2.53349
\(391\) 70.0153i 0.179067i
\(392\) 527.588i 1.34589i
\(393\) 518.147i 1.31844i
\(394\) 968.863 2.45904
\(395\) 394.424i 0.998542i
\(396\) 953.001 495.990i 2.40657 1.25250i
\(397\) 264.719 0.666797 0.333399 0.942786i \(-0.391805\pi\)
0.333399 + 0.942786i \(0.391805\pi\)
\(398\) 764.225i 1.92016i
\(399\) 449.600 1.12682
\(400\) 237.253 0.593132
\(401\) 173.087 0.431637 0.215819 0.976433i \(-0.430758\pi\)
0.215819 + 0.976433i \(0.430758\pi\)
\(402\) 1089.79i 2.71093i
\(403\) 488.401i 1.21191i
\(404\) 101.281i 0.250696i
\(405\) 302.559 0.747059
\(406\) 49.8382i 0.122754i
\(407\) 218.057 113.488i 0.535767 0.278841i
\(408\) −1023.33 −2.50815
\(409\) 13.8640i 0.0338972i 0.999856 + 0.0169486i \(0.00539517\pi\)
−0.999856 + 0.0169486i \(0.994605\pi\)
\(410\) −907.876 −2.21433
\(411\) 231.404 0.563027
\(412\) 703.963 1.70865
\(413\) 380.797i 0.922027i
\(414\) 196.615i 0.474916i
\(415\) 821.140i 1.97865i
\(416\) 115.757 0.278263
\(417\) 292.628i 0.701746i
\(418\) 883.177 459.650i 2.11286 1.09964i
\(419\) 213.432 0.509383 0.254692 0.967022i \(-0.418026\pi\)
0.254692 + 0.967022i \(0.418026\pi\)
\(420\) 884.544i 2.10606i
\(421\) 280.888 0.667192 0.333596 0.942716i \(-0.391738\pi\)
0.333596 + 0.942716i \(0.391738\pi\)
\(422\) 546.648 1.29537
\(423\) −57.9386 −0.136971
\(424\) 778.860i 1.83693i
\(425\) 166.950i 0.392824i
\(426\) 1331.75i 3.12617i
\(427\) 249.408 0.584094
\(428\) 672.724i 1.57178i
\(429\) −236.224 453.884i −0.550639 1.05800i
\(430\) −1108.45 −2.57780
\(431\) 100.549i 0.233292i −0.993174 0.116646i \(-0.962786\pi\)
0.993174 0.116646i \(-0.0372143\pi\)
\(432\) −249.862 −0.578383
\(433\) 576.821 1.33215 0.666075 0.745884i \(-0.267973\pi\)
0.666075 + 0.745884i \(0.267973\pi\)
\(434\) −645.852 −1.48814
\(435\) 100.993i 0.232168i
\(436\) 1286.44i 2.95056i
\(437\) 123.353i 0.282273i
\(438\) 2047.84 4.67543
\(439\) 403.246i 0.918556i −0.888293 0.459278i \(-0.848108\pi\)
0.888293 0.459278i \(-0.151892\pi\)
\(440\) −472.833 908.506i −1.07462 2.06479i
\(441\) 398.480 0.903583
\(442\) 525.881i 1.18978i
\(443\) 115.561 0.260860 0.130430 0.991458i \(-0.458364\pi\)
0.130430 + 0.991458i \(0.458364\pi\)
\(444\) −851.349 −1.91745
\(445\) −242.899 −0.545840
\(446\) 8.20242i 0.0183911i
\(447\) 1221.73i 2.73318i
\(448\) 166.146i 0.370861i
\(449\) −189.439 −0.421914 −0.210957 0.977495i \(-0.567658\pi\)
−0.210957 + 0.977495i \(0.567658\pi\)
\(450\) 468.825i 1.04183i
\(451\) 217.054 + 417.049i 0.481272 + 0.924721i
\(452\) 1667.90 3.69005
\(453\) 723.227i 1.59653i
\(454\) −1522.55 −3.35363
\(455\) −237.673 −0.522359
\(456\) −1802.90 −3.95373
\(457\) 406.406i 0.889291i 0.895707 + 0.444645i \(0.146670\pi\)
−0.895707 + 0.444645i \(0.853330\pi\)
\(458\) 966.920i 2.11118i
\(459\) 175.823i 0.383056i
\(460\) −242.685 −0.527576
\(461\) 791.137i 1.71613i 0.513539 + 0.858066i \(0.328334\pi\)
−0.513539 + 0.858066i \(0.671666\pi\)
\(462\) −600.207 + 312.378i −1.29915 + 0.676144i
\(463\) −906.642 −1.95819 −0.979095 0.203403i \(-0.934800\pi\)
−0.979095 + 0.203403i \(0.934800\pi\)
\(464\) 76.3869i 0.164627i
\(465\) 1308.76 2.81455
\(466\) 885.078 1.89931
\(467\) −735.795 −1.57558 −0.787789 0.615946i \(-0.788774\pi\)
−0.787789 + 0.615946i \(0.788774\pi\)
\(468\) 999.749i 2.13622i
\(469\) 262.144i 0.558943i
\(470\) 105.637i 0.224759i
\(471\) 222.074 0.471494
\(472\) 1527.00i 3.23517i
\(473\) 265.008 + 509.189i 0.560270 + 1.07651i
\(474\) −1044.92 −2.20447
\(475\) 294.133i 0.619228i
\(476\) 470.786 0.989045
\(477\) −588.262 −1.23325
\(478\) 531.268 1.11144
\(479\) 631.339i 1.31804i −0.752127 0.659018i \(-0.770972\pi\)
0.752127 0.659018i \(-0.229028\pi\)
\(480\) 310.194i 0.646237i
\(481\) 228.754i 0.475580i
\(482\) 807.148 1.67458
\(483\) 83.8309i 0.173563i
\(484\) −581.978 + 830.828i −1.20243 + 1.71659i
\(485\) 618.944 1.27617
\(486\) 1182.97i 2.43409i
\(487\) −598.624 −1.22921 −0.614604 0.788836i \(-0.710684\pi\)
−0.614604 + 0.788836i \(0.710684\pi\)
\(488\) −1000.13 −2.04944
\(489\) −868.153 −1.77536
\(490\) 726.530i 1.48271i
\(491\) 861.107i 1.75378i −0.480690 0.876891i \(-0.659614\pi\)
0.480690 0.876891i \(-0.340386\pi\)
\(492\) 1628.26i 3.30948i
\(493\) 53.7520 0.109030
\(494\) 926.500i 1.87551i
\(495\) 686.182 357.124i 1.38623 0.721463i
\(496\) 989.896 1.99576
\(497\) 320.345i 0.644558i
\(498\) 2175.38 4.36824
\(499\) −648.476 −1.29955 −0.649776 0.760126i \(-0.725137\pi\)
−0.649776 + 0.760126i \(0.725137\pi\)
\(500\) −686.406 −1.37281
\(501\) 125.228i 0.249956i
\(502\) 513.468i 1.02284i
\(503\) 362.946i 0.721563i 0.932650 + 0.360782i \(0.117490\pi\)
−0.932650 + 0.360782i \(0.882510\pi\)
\(504\) 691.250 1.37153
\(505\) 72.9248i 0.144406i
\(506\) 85.7047 + 164.674i 0.169377 + 0.325443i
\(507\) −291.830 −0.575602
\(508\) 216.797i 0.426765i
\(509\) 568.354 1.11661 0.558305 0.829636i \(-0.311452\pi\)
0.558305 + 0.829636i \(0.311452\pi\)
\(510\) −1409.20 −2.76314
\(511\) −492.597 −0.963986
\(512\) 1045.46i 2.04191i
\(513\) 309.765i 0.603831i
\(514\) 512.722i 0.997514i
\(515\) 506.869 0.984212
\(516\) 1988.00i 3.85271i
\(517\) 48.5261 25.2555i 0.0938610 0.0488500i
\(518\) 302.500 0.583976
\(519\) 1325.72i 2.55437i
\(520\) 953.072 1.83283
\(521\) −685.533 −1.31580 −0.657901 0.753104i \(-0.728556\pi\)
−0.657901 + 0.753104i \(0.728556\pi\)
\(522\) 150.945 0.289167
\(523\) 385.804i 0.737674i 0.929494 + 0.368837i \(0.120244\pi\)
−0.929494 + 0.368837i \(0.879756\pi\)
\(524\) 955.889i 1.82422i
\(525\) 199.893i 0.380749i
\(526\) −616.378 −1.17182
\(527\) 696.571i 1.32177i
\(528\) 919.937 478.782i 1.74230 0.906784i
\(529\) 23.0000 0.0434783
\(530\) 1072.55i 2.02368i
\(531\) −1153.32 −2.17198
\(532\) 829.432 1.55908
\(533\) −437.507 −0.820839
\(534\) 643.493i 1.20504i
\(535\) 484.376i 0.905376i
\(536\) 1051.20i 1.96120i
\(537\) −193.276 −0.359918
\(538\) 812.966i 1.51109i
\(539\) −333.745 + 173.698i −0.619192 + 0.322259i
\(540\) −609.433 −1.12858
\(541\) 45.1903i 0.0835311i 0.999127 + 0.0417656i \(0.0132983\pi\)
−0.999127 + 0.0417656i \(0.986702\pi\)
\(542\) −1053.87 −1.94441
\(543\) 178.750 0.329190
\(544\) −165.096 −0.303486
\(545\) 926.268i 1.69957i
\(546\) 629.650i 1.15320i
\(547\) 142.344i 0.260226i −0.991499 0.130113i \(-0.958466\pi\)
0.991499 0.130113i \(-0.0415341\pi\)
\(548\) 426.899 0.779013
\(549\) 755.383i 1.37593i
\(550\) −204.361 392.662i −0.371566 0.713931i
\(551\) 94.7005 0.171870
\(552\) 336.163i 0.608990i
\(553\) 251.350 0.454520
\(554\) 113.210 0.204350
\(555\) −612.990 −1.10449
\(556\) 539.846i 0.970946i
\(557\) 681.844i 1.22414i −0.790805 0.612068i \(-0.790338\pi\)
0.790805 0.612068i \(-0.209662\pi\)
\(558\) 1956.09i 3.50554i
\(559\) −534.166 −0.955575
\(560\) 481.719i 0.860212i
\(561\) 336.910 + 647.342i 0.600552 + 1.15391i
\(562\) 443.778 0.789640
\(563\) 661.817i 1.17552i 0.809036 + 0.587759i \(0.199990\pi\)
−0.809036 + 0.587759i \(0.800010\pi\)
\(564\) −189.458 −0.335918
\(565\) 1200.93 2.12553
\(566\) 1188.75 2.10026
\(567\) 192.808i 0.340049i
\(568\) 1284.59i 2.26160i
\(569\) 202.274i 0.355490i −0.984077 0.177745i \(-0.943120\pi\)
0.984077 0.177745i \(-0.0568803\pi\)
\(570\) −2482.74 −4.35568
\(571\) 75.3621i 0.131983i 0.997820 + 0.0659913i \(0.0210210\pi\)
−0.997820 + 0.0659913i \(0.978979\pi\)
\(572\) −435.791 837.334i −0.761873 1.46387i
\(573\) −514.817 −0.898459
\(574\) 578.551i 1.00793i
\(575\) −54.8431 −0.0953792
\(576\) 503.206 0.873621
\(577\) 362.063 0.627493 0.313746 0.949507i \(-0.398416\pi\)
0.313746 + 0.949507i \(0.398416\pi\)
\(578\) 266.963i 0.461874i
\(579\) 46.3707i 0.0800876i
\(580\) 186.314i 0.321231i
\(581\) −523.278 −0.900650
\(582\) 1639.72i 2.81739i
\(583\) 492.696 256.424i 0.845104 0.439835i
\(584\) 1975.32 3.38239
\(585\) 719.842i 1.23050i
\(586\) 959.332 1.63709
\(587\) −617.263 −1.05156 −0.525778 0.850622i \(-0.676226\pi\)
−0.525778 + 0.850622i \(0.676226\pi\)
\(588\) 1303.02 2.21602
\(589\) 1227.22i 2.08357i
\(590\) 2102.80i 3.56406i
\(591\) 1251.14i 2.11699i
\(592\) −463.641 −0.783177
\(593\) 767.497i 1.29426i −0.762379 0.647131i \(-0.775969\pi\)
0.762379 0.647131i \(-0.224031\pi\)
\(594\) 215.222 + 413.530i 0.362327 + 0.696179i
\(595\) 338.976 0.569708
\(596\) 2253.87i 3.78166i
\(597\) −986.881 −1.65307
\(598\) −172.752 −0.288883
\(599\) −885.062 −1.47757 −0.738783 0.673943i \(-0.764599\pi\)
−0.738783 + 0.673943i \(0.764599\pi\)
\(600\) 801.573i 1.33596i
\(601\) 297.619i 0.495206i 0.968862 + 0.247603i \(0.0796429\pi\)
−0.968862 + 0.247603i \(0.920357\pi\)
\(602\) 706.371i 1.17337i
\(603\) 793.958 1.31668
\(604\) 1334.22i 2.20898i
\(605\) −419.037 + 598.215i −0.692624 + 0.988785i
\(606\) −193.194 −0.318802
\(607\) 581.248i 0.957575i 0.877931 + 0.478787i \(0.158924\pi\)
−0.877931 + 0.478787i \(0.841076\pi\)
\(608\) −290.867 −0.478400
\(609\) −64.3585 −0.105679
\(610\) −1377.25 −2.25779
\(611\) 50.9065i 0.0833167i
\(612\) 1425.87i 2.32985i
\(613\) 121.527i 0.198249i −0.995075 0.0991245i \(-0.968396\pi\)
0.995075 0.0991245i \(-0.0316042\pi\)
\(614\) −1269.68 −2.06788
\(615\) 1172.39i 1.90632i
\(616\) −578.952 + 301.316i −0.939858 + 0.489150i
\(617\) −428.754 −0.694901 −0.347450 0.937698i \(-0.612953\pi\)
−0.347450 + 0.937698i \(0.612953\pi\)
\(618\) 1342.81i 2.17283i
\(619\) 487.783 0.788017 0.394009 0.919107i \(-0.371088\pi\)
0.394009 + 0.919107i \(0.371088\pi\)
\(620\) 2414.44 3.89425
\(621\) 57.7577 0.0930076
\(622\) 2034.54i 3.27096i
\(623\) 154.789i 0.248458i
\(624\) 965.063i 1.54658i
\(625\) −780.117 −1.24819
\(626\) 1289.53i 2.05996i
\(627\) 593.569 + 1140.49i 0.946681 + 1.81896i
\(628\) 409.686 0.652366
\(629\) 326.255i 0.518689i
\(630\) 951.905 1.51096
\(631\) −150.320 −0.238224 −0.119112 0.992881i \(-0.538005\pi\)
−0.119112 + 0.992881i \(0.538005\pi\)
\(632\) −1007.91 −1.59480
\(633\) 705.913i 1.11519i
\(634\) 1919.66i 3.02786i
\(635\) 156.099i 0.245825i
\(636\) −1923.60 −3.02453
\(637\) 350.116i 0.549633i
\(638\) −126.423 + 65.7970i −0.198155 + 0.103130i
\(639\) 970.232 1.51836
\(640\) 1190.51i 1.86018i
\(641\) −54.9906 −0.0857887 −0.0428944 0.999080i \(-0.513658\pi\)
−0.0428944 + 0.999080i \(0.513658\pi\)
\(642\) −1283.22 −1.99879
\(643\) −55.8584 −0.0868716 −0.0434358 0.999056i \(-0.513830\pi\)
−0.0434358 + 0.999056i \(0.513830\pi\)
\(644\) 154.653i 0.240144i
\(645\) 1431.40i 2.21923i
\(646\) 1321.40i 2.04551i
\(647\) 313.952 0.485243 0.242621 0.970121i \(-0.421993\pi\)
0.242621 + 0.970121i \(0.421993\pi\)
\(648\) 773.162i 1.19315i
\(649\) 965.958 502.734i 1.48838 0.774628i
\(650\) 411.924 0.633728
\(651\) 834.020i 1.28114i
\(652\) −1601.59 −2.45642
\(653\) 84.3835 0.129224 0.0646122 0.997910i \(-0.479419\pi\)
0.0646122 + 0.997910i \(0.479419\pi\)
\(654\) −2453.89 −3.75212
\(655\) 688.262i 1.05078i
\(656\) 886.744i 1.35174i
\(657\) 1491.93i 2.27082i
\(658\) 67.3178 0.102307
\(659\) 1080.54i 1.63966i −0.572606 0.819831i \(-0.694068\pi\)
0.572606 0.819831i \(-0.305932\pi\)
\(660\) 2243.80 1167.79i 3.39970 1.76938i
\(661\) 178.384 0.269870 0.134935 0.990854i \(-0.456917\pi\)
0.134935 + 0.990854i \(0.456917\pi\)
\(662\) 1220.46i 1.84360i
\(663\) −679.096 −1.02428
\(664\) 2098.35 3.16016
\(665\) 597.210 0.898060
\(666\) 916.182i 1.37565i
\(667\) 17.6575i 0.0264730i
\(668\) 231.024i 0.345844i
\(669\) 10.5922 0.0158329
\(670\) 1447.59i 2.16058i
\(671\) 329.272 + 632.667i 0.490718 + 0.942871i
\(672\) 197.673 0.294157
\(673\) 1119.98i 1.66416i −0.554652 0.832082i \(-0.687149\pi\)
0.554652 0.832082i \(-0.312851\pi\)
\(674\) 1162.87 1.72533
\(675\) −137.722 −0.204033
\(676\) −538.374 −0.796411
\(677\) 453.505i 0.669874i 0.942240 + 0.334937i \(0.108715\pi\)
−0.942240 + 0.334937i \(0.891285\pi\)
\(678\) 3181.52i 4.69251i
\(679\) 394.427i 0.580894i
\(680\) −1359.30 −1.99897
\(681\) 1966.14i 2.88713i
\(682\) −852.663 1638.31i −1.25024 2.40222i
\(683\) 60.1606 0.0880828 0.0440414 0.999030i \(-0.485977\pi\)
0.0440414 + 0.999030i \(0.485977\pi\)
\(684\) 2512.10i 3.67267i
\(685\) 307.377 0.448726
\(686\) −1126.26 −1.64178
\(687\) 1248.63 1.81751
\(688\) 1082.65i 1.57363i
\(689\) 516.864i 0.750166i
\(690\) 462.922i 0.670902i
\(691\) −1001.51 −1.44936 −0.724682 0.689083i \(-0.758013\pi\)
−0.724682 + 0.689083i \(0.758013\pi\)
\(692\) 2445.71i 3.53427i
\(693\) −227.580 437.275i −0.328398 0.630988i
\(694\) 1067.00 1.53747
\(695\) 388.701i 0.559283i
\(696\) 258.078 0.370802
\(697\) 623.985 0.895244
\(698\) 1369.24 1.96166
\(699\) 1142.94i 1.63511i
\(700\) 368.767i 0.526810i
\(701\) 265.925i 0.379350i 0.981847 + 0.189675i \(0.0607435\pi\)
−0.981847 + 0.189675i \(0.939257\pi\)
\(702\) −433.816 −0.617971
\(703\) 574.798i 0.817635i
\(704\) −421.457 + 219.348i −0.598660 + 0.311573i
\(705\) −136.414 −0.193495
\(706\) 1800.35i 2.55007i
\(707\) 46.4719 0.0657311
\(708\) −3771.33 −5.32674
\(709\) −42.2360 −0.0595712 −0.0297856 0.999556i \(-0.509482\pi\)
−0.0297856 + 0.999556i \(0.509482\pi\)
\(710\) 1768.98i 2.49152i
\(711\) 761.264i 1.07069i
\(712\) 620.706i 0.871778i
\(713\) −228.823 −0.320930
\(714\) 898.024i 1.25774i
\(715\) −313.780 602.900i −0.438853 0.843216i
\(716\) −356.560 −0.497988
\(717\) 686.053i 0.956838i
\(718\) 57.3212 0.0798346
\(719\) 97.0504 0.134980 0.0674898 0.997720i \(-0.478501\pi\)
0.0674898 + 0.997720i \(0.478501\pi\)
\(720\) −1458.98 −2.02637
\(721\) 323.006i 0.447997i
\(722\) 1057.69i 1.46494i
\(723\) 1042.31i 1.44165i
\(724\) 329.762 0.455472
\(725\) 42.1040i 0.0580745i
\(726\) −1584.80 1110.12i −2.18293 1.52910i
\(727\) 104.621 0.143907 0.0719537 0.997408i \(-0.477077\pi\)
0.0719537 + 0.997408i \(0.477077\pi\)
\(728\) 607.352i 0.834275i
\(729\) −1076.51 −1.47669
\(730\) 2720.17 3.72626
\(731\) 761.843 1.04219
\(732\) 2470.08i 3.37443i
\(733\) 1114.36i 1.52028i −0.649760 0.760140i \(-0.725130\pi\)
0.649760 0.760140i \(-0.274870\pi\)
\(734\) 582.662i 0.793817i
\(735\) 938.204 1.27647
\(736\) 54.2341i 0.0736876i
\(737\) −664.975 + 346.087i −0.902272 + 0.469589i
\(738\) 1752.26 2.37434
\(739\) 570.688i 0.772244i −0.922448 0.386122i \(-0.873814\pi\)
0.922448 0.386122i \(-0.126186\pi\)
\(740\) −1130.86 −1.52819
\(741\) −1196.43 −1.61462
\(742\) 683.491 0.921147
\(743\) 721.901i 0.971603i −0.874069 0.485802i \(-0.838528\pi\)
0.874069 0.485802i \(-0.161472\pi\)
\(744\) 3344.43i 4.49520i
\(745\) 1622.84i 2.17831i
\(746\) −318.845 −0.427406
\(747\) 1584.85i 2.12162i
\(748\) 621.538 + 1194.23i 0.830933 + 1.59656i
\(749\) 308.672 0.412113
\(750\) 1309.32i 1.74576i
\(751\) −800.941 −1.06650 −0.533250 0.845958i \(-0.679029\pi\)
−0.533250 + 0.845958i \(0.679029\pi\)
\(752\) −103.178 −0.137205
\(753\) −663.067 −0.880567
\(754\) 132.625i 0.175895i
\(755\) 960.672i 1.27241i
\(756\) 388.365i 0.513711i
\(757\) 306.780 0.405258 0.202629 0.979256i \(-0.435051\pi\)
0.202629 + 0.979256i \(0.435051\pi\)
\(758\) 776.359i 1.02422i
\(759\) −212.652 + 110.675i −0.280173 + 0.145817i
\(760\) −2394.82 −3.15107
\(761\) 1280.14i 1.68218i 0.540896 + 0.841089i \(0.318085\pi\)
−0.540896 + 0.841089i \(0.681915\pi\)
\(762\) 413.540 0.542703
\(763\) 590.271 0.773619
\(764\) −949.745 −1.24312
\(765\) 1026.66i 1.34204i
\(766\) 1327.74i 1.73334i
\(767\) 1013.34i 1.32118i
\(768\) 2368.82 3.08440
\(769\) 414.515i 0.539031i 0.962996 + 0.269515i \(0.0868635\pi\)
−0.962996 + 0.269515i \(0.913137\pi\)
\(770\) −797.263 + 414.936i −1.03541 + 0.538878i
\(771\) 662.103 0.858759
\(772\) 85.5457i 0.110810i
\(773\) −956.266 −1.23708 −0.618542 0.785752i \(-0.712276\pi\)
−0.618542 + 0.785752i \(0.712276\pi\)
\(774\) 2139.39 2.76407
\(775\) 545.625 0.704032
\(776\) 1581.66i 2.03822i
\(777\) 390.633i 0.502745i
\(778\) 641.586i 0.824661i
\(779\) 1099.34 1.41122
\(780\) 2353.87i 3.01778i
\(781\) −812.612 + 422.925i −1.04048 + 0.541517i
\(782\) 246.383 0.315068
\(783\) 44.3416i 0.0566305i
\(784\) 709.619 0.905127
\(785\) 294.983 0.375775
\(786\) 1823.36 2.31979
\(787\) 486.888i 0.618664i −0.950954 0.309332i \(-0.899895\pi\)
0.950954 0.309332i \(-0.100105\pi\)
\(788\) 2308.13i 2.92910i
\(789\) 795.960i 1.00882i
\(790\) −1387.98 −1.75693
\(791\) 765.299i 0.967509i
\(792\) 912.598 + 1753.48i 1.15227 + 2.21398i
\(793\) −663.701 −0.836950
\(794\) 931.543i 1.17323i
\(795\) −1385.04 −1.74219
\(796\) −1820.62 −2.28721
\(797\) −513.113 −0.643806 −0.321903 0.946773i \(-0.604323\pi\)
−0.321903 + 0.946773i \(0.604323\pi\)
\(798\) 1582.14i 1.98263i
\(799\) 72.6043i 0.0908690i
\(800\) 129.320i 0.161650i
\(801\) 468.811 0.585282
\(802\) 609.091i 0.759465i
\(803\) −650.334 1249.56i −0.809880 1.55611i
\(804\) 2596.22 3.22913
\(805\) 111.354i 0.138327i
\(806\) 1718.68 2.13236
\(807\) 1049.82 1.30090
\(808\) −186.353 −0.230634
\(809\) 1334.98i 1.65016i −0.565015 0.825080i \(-0.691130\pi\)
0.565015 0.825080i \(-0.308870\pi\)
\(810\) 1064.70i 1.31445i
\(811\) 1023.77i 1.26236i −0.775638 0.631178i \(-0.782572\pi\)
0.775638 0.631178i \(-0.217428\pi\)
\(812\) −118.730 −0.146219
\(813\) 1360.91i 1.67394i
\(814\) 399.364 + 767.343i 0.490620 + 0.942682i
\(815\) −1153.18 −1.41494
\(816\) 1376.40i 1.68676i
\(817\) 1342.22 1.64286
\(818\) −48.7872 −0.0596421
\(819\) 458.725 0.560104
\(820\) 2162.84i 2.63761i
\(821\) 1043.61i 1.27114i 0.772043 + 0.635570i \(0.219235\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(822\) 814.310i 0.990645i
\(823\) 172.394 0.209471 0.104735 0.994500i \(-0.466600\pi\)
0.104735 + 0.994500i \(0.466600\pi\)
\(824\) 1295.26i 1.57191i
\(825\) 507.064 263.902i 0.614623 0.319881i
\(826\) 1340.02 1.62230
\(827\) 111.451i 0.134765i 0.997727 + 0.0673825i \(0.0214648\pi\)
−0.997727 + 0.0673825i \(0.978535\pi\)
\(828\) 468.398 0.565698
\(829\) −69.3115 −0.0836086 −0.0418043 0.999126i \(-0.513311\pi\)
−0.0418043 + 0.999126i \(0.513311\pi\)
\(830\) 2889.59 3.48143
\(831\) 146.193i 0.175924i
\(832\) 442.131i 0.531408i
\(833\) 499.345i 0.599454i
\(834\) −1029.76 −1.23472
\(835\) 166.342i 0.199212i
\(836\) 1095.03 + 2104.00i 1.30984 + 2.51674i
\(837\) −574.623 −0.686526
\(838\) 751.065i 0.896259i
\(839\) −659.164 −0.785654 −0.392827 0.919612i \(-0.628503\pi\)
−0.392827 + 0.919612i \(0.628503\pi\)
\(840\) 1627.52 1.93752
\(841\) 827.444 0.983881
\(842\) 988.444i 1.17392i
\(843\) 573.072i 0.679801i
\(844\) 1302.28i 1.54299i
\(845\) −387.641 −0.458747
\(846\) 203.886i 0.241000i
\(847\) 381.217 + 267.035i 0.450079 + 0.315271i
\(848\) −1047.59 −1.23536
\(849\) 1535.09i 1.80811i
\(850\) −587.497 −0.691173
\(851\) 107.175 0.125940
\(852\) 3172.63 3.72375
\(853\) 151.287i 0.177358i −0.996060 0.0886792i \(-0.971735\pi\)
0.996060 0.0886792i \(-0.0282646\pi\)
\(854\) 877.666i 1.02771i
\(855\) 1808.77i 2.11552i
\(856\) −1237.78 −1.44600
\(857\) 331.113i 0.386363i −0.981163 0.193182i \(-0.938119\pi\)
0.981163 0.193182i \(-0.0618807\pi\)
\(858\) 1597.22 831.272i 1.86156 0.968849i
\(859\) −207.832 −0.241946 −0.120973 0.992656i \(-0.538602\pi\)
−0.120973 + 0.992656i \(0.538602\pi\)
\(860\) 2640.68i 3.07056i
\(861\) −747.111 −0.867725
\(862\) 353.831 0.410477
\(863\) −355.725 −0.412195 −0.206098 0.978531i \(-0.566076\pi\)
−0.206098 + 0.978531i \(0.566076\pi\)
\(864\) 136.193i 0.157631i
\(865\) 1760.97i 2.03580i
\(866\) 2029.83i 2.34392i
\(867\) −344.743 −0.397627
\(868\) 1538.62i 1.77260i
\(869\) 331.835 + 637.592i 0.381859 + 0.733708i
\(870\) 355.393 0.408498
\(871\) 697.594i 0.800912i
\(872\) −2366.99 −2.71444
\(873\) −1194.60 −1.36839
\(874\) 434.079 0.496658
\(875\) 314.950i 0.359943i
\(876\) 4878.58i 5.56915i
\(877\) 1147.95i 1.30895i 0.756083 + 0.654475i \(0.227110\pi\)
−0.756083 + 0.654475i \(0.772890\pi\)
\(878\) 1419.02 1.61620
\(879\) 1238.83i 1.40937i
\(880\) 1221.96 635.972i 1.38860 0.722696i
\(881\) 856.484 0.972173 0.486086 0.873911i \(-0.338424\pi\)
0.486086 + 0.873911i \(0.338424\pi\)
\(882\) 1402.25i 1.58985i
\(883\) −444.279 −0.503148 −0.251574 0.967838i \(-0.580948\pi\)
−0.251574 + 0.967838i \(0.580948\pi\)
\(884\) −1252.81 −1.41721
\(885\) −2715.45 −3.06830
\(886\) 406.658i 0.458982i
\(887\) 1153.66i 1.30063i −0.759663 0.650317i \(-0.774636\pi\)
0.759663 0.650317i \(-0.225364\pi\)
\(888\) 1566.44i 1.76401i
\(889\) −99.4750 −0.111895
\(890\) 854.760i 0.960405i
\(891\) 489.091 254.548i 0.548924 0.285688i
\(892\) 19.5407 0.0219066
\(893\) 127.915i 0.143241i
\(894\) 4299.26 4.80902
\(895\) −256.731 −0.286850
\(896\) −758.664 −0.846723
\(897\) 223.083i 0.248699i
\(898\) 666.636i 0.742356i
\(899\) 175.672i 0.195408i
\(900\) −1116.89 −1.24098
\(901\) 737.166i 0.818164i
\(902\) −1467.59 + 763.811i −1.62705 + 0.846797i
\(903\) −912.172 −1.01016
\(904\) 3068.86i 3.39475i
\(905\) 237.436 0.262360
\(906\) −2545.03 −2.80909
\(907\) 638.739 0.704232 0.352116 0.935956i \(-0.385462\pi\)
0.352116 + 0.935956i \(0.385462\pi\)
\(908\) 3627.17i 3.99468i
\(909\) 140.750i 0.154840i
\(910\) 836.372i 0.919090i
\(911\) 917.274 1.00689 0.503444 0.864028i \(-0.332066\pi\)
0.503444 + 0.864028i \(0.332066\pi\)
\(912\) 2424.95i 2.65893i
\(913\) −690.838 1327.38i −0.756669 1.45387i
\(914\) −1430.14 −1.56471
\(915\) 1778.52i 1.94373i
\(916\) 2303.50 2.51474
\(917\) −438.600 −0.478299
\(918\) 618.720 0.673987
\(919\) 1455.34i 1.58361i 0.610774 + 0.791805i \(0.290859\pi\)
−0.610774 + 0.791805i \(0.709141\pi\)
\(920\) 446.529i 0.485358i
\(921\) 1639.60i 1.78024i
\(922\) −2784.01 −3.01953
\(923\) 852.474i 0.923590i
\(924\) −744.181 1429.88i −0.805391 1.54749i
\(925\) −255.556 −0.276277
\(926\) 3190.47i 3.44543i
\(927\) −978.290 −1.05533
\(928\) 41.6364 0.0448669
\(929\) −708.446 −0.762590 −0.381295 0.924453i \(-0.624522\pi\)
−0.381295 + 0.924453i \(0.624522\pi\)
\(930\) 4605.54i 4.95219i
\(931\) 879.749i 0.944950i
\(932\) 2108.53i 2.26237i
\(933\) −2627.30 −2.81597
\(934\) 2589.26i 2.77223i
\(935\) 447.521 + 859.872i 0.478632 + 0.919650i
\(936\) −1839.49 −1.96527
\(937\) 526.093i 0.561465i 0.959786 + 0.280733i \(0.0905774\pi\)
−0.959786 + 0.280733i \(0.909423\pi\)
\(938\) −922.485 −0.983459
\(939\) 1665.24 1.77342
\(940\) −251.659 −0.267723
\(941\) 911.336i 0.968477i −0.874936 0.484238i \(-0.839097\pi\)
0.874936 0.484238i \(-0.160903\pi\)
\(942\) 781.476i 0.829593i
\(943\) 204.979i 0.217369i
\(944\) −2053.85 −2.17569
\(945\) 279.632i 0.295907i
\(946\) −1791.83 + 932.561i −1.89411 + 0.985794i
\(947\) 50.6201 0.0534532 0.0267266 0.999643i \(-0.491492\pi\)
0.0267266 + 0.999643i \(0.491492\pi\)
\(948\) 2489.31i 2.62586i
\(949\) 1310.85 1.38130
\(950\) −1035.05 −1.08953
\(951\) 2478.96 2.60669
\(952\) 866.223i 0.909898i
\(953\) 1229.09i 1.28971i −0.764305 0.644855i \(-0.776918\pi\)
0.764305 0.644855i \(-0.223082\pi\)
\(954\) 2070.09i 2.16991i
\(955\) −683.838 −0.716061
\(956\) 1265.64i 1.32390i
\(957\) −84.9670 163.256i −0.0887847 0.170592i
\(958\) 2221.68 2.31908
\(959\) 195.878i 0.204253i
\(960\) 1184.78 1.23414
\(961\) 1315.53 1.36891
\(962\) −804.984 −0.836782
\(963\) 934.877i 0.970797i
\(964\) 1922.88i 1.99468i
\(965\) 61.5948i 0.0638289i
\(966\) −295.001 −0.305384
\(967\) 977.279i 1.01063i 0.862935 + 0.505315i \(0.168624\pi\)
−0.862935 + 0.505315i \(0.831376\pi\)
\(968\) −1528.68 1070.81i −1.57922 1.10621i
\(969\) 1706.39 1.76098
\(970\) 2178.06i 2.24543i
\(971\) 0.106966 0.000110161 5.50805e−5 1.00000i \(-0.499982\pi\)
5.50805e−5 1.00000i \(0.499982\pi\)
\(972\) −2818.20 −2.89938
\(973\) 247.703 0.254576
\(974\) 2106.56i 2.16279i
\(975\) 531.937i 0.545577i
\(976\) 1345.20i 1.37828i
\(977\) −948.278 −0.970602 −0.485301 0.874347i \(-0.661290\pi\)
−0.485301 + 0.874347i \(0.661290\pi\)
\(978\) 3055.03i 3.12375i
\(979\) −392.650 + 204.355i −0.401072 + 0.208738i
\(980\) 1730.82 1.76614
\(981\) 1787.76i 1.82238i
\(982\) 3030.23 3.08578
\(983\) 247.226 0.251502 0.125751 0.992062i \(-0.459866\pi\)
0.125751 + 0.992062i \(0.459866\pi\)
\(984\) 2995.92 3.04464
\(985\) 1661.91i 1.68721i
\(986\) 189.153i 0.191839i
\(987\) 86.9308i 0.0880758i
\(988\) −2207.21 −2.23402
\(989\) 250.265i 0.253049i
\(990\) 1256.72 + 2414.67i 1.26941 + 2.43906i
\(991\) −1442.49 −1.45559 −0.727795 0.685795i \(-0.759455\pi\)
−0.727795 + 0.685795i \(0.759455\pi\)
\(992\) 539.566i 0.543917i
\(993\) 1576.05 1.58716
\(994\) −1127.29 −1.13410
\(995\) −1310.89 −1.31747
\(996\) 5182.43i 5.20324i
\(997\) 815.435i 0.817889i −0.912559 0.408944i \(-0.865897\pi\)
0.912559 0.408944i \(-0.134103\pi\)
\(998\) 2281.98i 2.28656i
\(999\) 269.138 0.269407
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.42 yes 44
11.10 odd 2 inner 253.3.c.a.208.3 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.3 44 11.10 odd 2 inner
253.3.c.a.208.42 yes 44 1.1 even 1 trivial