Properties

Label 253.3.c.a.208.7
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(208,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.208");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.7
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.38

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.88425i q^{2} +1.17107 q^{3} -4.31889 q^{4} +1.65709 q^{5} -3.37766i q^{6} -6.12044i q^{7} +0.919746i q^{8} -7.62859 q^{9} -4.77946i q^{10} +(10.8798 - 1.62150i) q^{11} -5.05772 q^{12} +3.05880i q^{13} -17.6529 q^{14} +1.94057 q^{15} -14.6228 q^{16} -25.1270i q^{17} +22.0028i q^{18} -4.90728i q^{19} -7.15678 q^{20} -7.16746i q^{21} +(-4.67681 - 31.3801i) q^{22} -4.79583 q^{23} +1.07709i q^{24} -22.2541 q^{25} +8.82234 q^{26} -19.4733 q^{27} +26.4335i q^{28} +4.85186i q^{29} -5.59708i q^{30} +31.3705 q^{31} +45.8547i q^{32} +(12.7410 - 1.89889i) q^{33} -72.4725 q^{34} -10.1421i q^{35} +32.9470 q^{36} +18.5273 q^{37} -14.1538 q^{38} +3.58207i q^{39} +1.52410i q^{40} +17.6289i q^{41} -20.6727 q^{42} +55.4511i q^{43} +(-46.9888 + 7.00308i) q^{44} -12.6413 q^{45} +13.8324i q^{46} +77.9523 q^{47} -17.1243 q^{48} +11.5402 q^{49} +64.1862i q^{50} -29.4255i q^{51} -13.2106i q^{52} +47.3539 q^{53} +56.1657i q^{54} +(18.0289 - 2.68697i) q^{55} +5.62925 q^{56} -5.74677i q^{57} +13.9940 q^{58} +25.3673 q^{59} -8.38109 q^{60} -72.9857i q^{61} -90.4804i q^{62} +46.6903i q^{63} +73.7652 q^{64} +5.06870i q^{65} +(-5.47687 - 36.7483i) q^{66} -18.1694 q^{67} +108.521i q^{68} -5.61625 q^{69} -29.2524 q^{70} -68.4310 q^{71} -7.01637i q^{72} -74.7380i q^{73} -53.4373i q^{74} -26.0611 q^{75} +21.1940i q^{76} +(-9.92429 - 66.5893i) q^{77} +10.3316 q^{78} -128.093i q^{79} -24.2312 q^{80} +45.8528 q^{81} +50.8461 q^{82} +33.0931i q^{83} +30.9554i q^{84} -41.6377i q^{85} +159.935 q^{86} +5.68186i q^{87} +(1.49137 + 10.0067i) q^{88} -76.4692 q^{89} +36.4605i q^{90} +18.7212 q^{91} +20.7126 q^{92} +36.7371 q^{93} -224.834i q^{94} -8.13181i q^{95} +53.6990i q^{96} +184.662 q^{97} -33.2849i q^{98} +(-82.9978 + 12.3698i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.88425i 1.44212i −0.692871 0.721062i \(-0.743654\pi\)
0.692871 0.721062i \(-0.256346\pi\)
\(3\) 1.17107 0.390357 0.195178 0.980768i \(-0.437471\pi\)
0.195178 + 0.980768i \(0.437471\pi\)
\(4\) −4.31889 −1.07972
\(5\) 1.65709 0.331418 0.165709 0.986175i \(-0.447009\pi\)
0.165709 + 0.986175i \(0.447009\pi\)
\(6\) 3.37766i 0.562943i
\(7\) 6.12044i 0.874348i −0.899377 0.437174i \(-0.855979\pi\)
0.899377 0.437174i \(-0.144021\pi\)
\(8\) 0.919746i 0.114968i
\(9\) −7.62859 −0.847622
\(10\) 4.77946i 0.477946i
\(11\) 10.8798 1.62150i 0.989076 0.147409i
\(12\) −5.05772 −0.421477
\(13\) 3.05880i 0.235292i 0.993056 + 0.117646i \(0.0375349\pi\)
−0.993056 + 0.117646i \(0.962465\pi\)
\(14\) −17.6529 −1.26092
\(15\) 1.94057 0.129371
\(16\) −14.6228 −0.913923
\(17\) 25.1270i 1.47806i −0.673674 0.739029i \(-0.735285\pi\)
0.673674 0.739029i \(-0.264715\pi\)
\(18\) 22.0028i 1.22238i
\(19\) 4.90728i 0.258278i −0.991626 0.129139i \(-0.958779\pi\)
0.991626 0.129139i \(-0.0412214\pi\)
\(20\) −7.15678 −0.357839
\(21\) 7.16746i 0.341308i
\(22\) −4.67681 31.3801i −0.212582 1.42637i
\(23\) −4.79583 −0.208514
\(24\) 1.07709i 0.0448786i
\(25\) −22.2541 −0.890162
\(26\) 8.82234 0.339321
\(27\) −19.4733 −0.721231
\(28\) 26.4335i 0.944053i
\(29\) 4.85186i 0.167305i 0.996495 + 0.0836527i \(0.0266586\pi\)
−0.996495 + 0.0836527i \(0.973341\pi\)
\(30\) 5.59708i 0.186569i
\(31\) 31.3705 1.01195 0.505976 0.862547i \(-0.331132\pi\)
0.505976 + 0.862547i \(0.331132\pi\)
\(32\) 45.8547i 1.43296i
\(33\) 12.7410 1.89889i 0.386092 0.0575421i
\(34\) −72.4725 −2.13154
\(35\) 10.1421i 0.289775i
\(36\) 32.9470 0.915195
\(37\) 18.5273 0.500737 0.250369 0.968151i \(-0.419448\pi\)
0.250369 + 0.968151i \(0.419448\pi\)
\(38\) −14.1538 −0.372469
\(39\) 3.58207i 0.0918479i
\(40\) 1.52410i 0.0381025i
\(41\) 17.6289i 0.429973i 0.976617 + 0.214987i \(0.0689708\pi\)
−0.976617 + 0.214987i \(0.931029\pi\)
\(42\) −20.6727 −0.492208
\(43\) 55.4511i 1.28956i 0.764368 + 0.644780i \(0.223051\pi\)
−0.764368 + 0.644780i \(0.776949\pi\)
\(44\) −46.9888 + 7.00308i −1.06793 + 0.159161i
\(45\) −12.6413 −0.280917
\(46\) 13.8324i 0.300704i
\(47\) 77.9523 1.65856 0.829280 0.558833i \(-0.188751\pi\)
0.829280 + 0.558833i \(0.188751\pi\)
\(48\) −17.1243 −0.356756
\(49\) 11.5402 0.235515
\(50\) 64.1862i 1.28372i
\(51\) 29.4255i 0.576970i
\(52\) 13.2106i 0.254050i
\(53\) 47.3539 0.893470 0.446735 0.894666i \(-0.352587\pi\)
0.446735 + 0.894666i \(0.352587\pi\)
\(54\) 56.1657i 1.04011i
\(55\) 18.0289 2.68697i 0.327797 0.0488540i
\(56\) 5.62925 0.100522
\(57\) 5.74677i 0.100821i
\(58\) 13.9940 0.241275
\(59\) 25.3673 0.429955 0.214978 0.976619i \(-0.431032\pi\)
0.214978 + 0.976619i \(0.431032\pi\)
\(60\) −8.38109 −0.139685
\(61\) 72.9857i 1.19649i −0.801314 0.598244i \(-0.795866\pi\)
0.801314 0.598244i \(-0.204134\pi\)
\(62\) 90.4804i 1.45936i
\(63\) 46.6903i 0.741116i
\(64\) 73.7652 1.15258
\(65\) 5.06870i 0.0779801i
\(66\) −5.47687 36.7483i −0.0829829 0.556793i
\(67\) −18.1694 −0.271185 −0.135593 0.990765i \(-0.543294\pi\)
−0.135593 + 0.990765i \(0.543294\pi\)
\(68\) 108.521i 1.59589i
\(69\) −5.61625 −0.0813950
\(70\) −29.2524 −0.417891
\(71\) −68.4310 −0.963816 −0.481908 0.876222i \(-0.660056\pi\)
−0.481908 + 0.876222i \(0.660056\pi\)
\(72\) 7.01637i 0.0974496i
\(73\) 74.7380i 1.02381i −0.859043 0.511904i \(-0.828940\pi\)
0.859043 0.511904i \(-0.171060\pi\)
\(74\) 53.4373i 0.722125i
\(75\) −26.0611 −0.347481
\(76\) 21.1940i 0.278868i
\(77\) −9.92429 66.5893i −0.128887 0.864796i
\(78\) 10.3316 0.132456
\(79\) 128.093i 1.62144i −0.585437 0.810718i \(-0.699077\pi\)
0.585437 0.810718i \(-0.300923\pi\)
\(80\) −24.2312 −0.302890
\(81\) 45.8528 0.566084
\(82\) 50.8461 0.620074
\(83\) 33.0931i 0.398712i 0.979927 + 0.199356i \(0.0638850\pi\)
−0.979927 + 0.199356i \(0.936115\pi\)
\(84\) 30.9554i 0.368517i
\(85\) 41.6377i 0.489855i
\(86\) 159.935 1.85970
\(87\) 5.68186i 0.0653088i
\(88\) 1.49137 + 10.0067i 0.0169474 + 0.113712i
\(89\) −76.4692 −0.859205 −0.429603 0.903018i \(-0.641346\pi\)
−0.429603 + 0.903018i \(0.641346\pi\)
\(90\) 36.4605i 0.405117i
\(91\) 18.7212 0.205727
\(92\) 20.7126 0.225137
\(93\) 36.7371 0.395022
\(94\) 224.834i 2.39185i
\(95\) 8.13181i 0.0855980i
\(96\) 53.6990i 0.559365i
\(97\) 184.662 1.90373 0.951866 0.306515i \(-0.0991630\pi\)
0.951866 + 0.306515i \(0.0991630\pi\)
\(98\) 33.2849i 0.339642i
\(99\) −82.9978 + 12.3698i −0.838362 + 0.124947i
\(100\) 96.1127 0.961127
\(101\) 189.829i 1.87949i 0.341874 + 0.939746i \(0.388938\pi\)
−0.341874 + 0.939746i \(0.611062\pi\)
\(102\) −84.8703 −0.832062
\(103\) 142.657 1.38502 0.692510 0.721408i \(-0.256505\pi\)
0.692510 + 0.721408i \(0.256505\pi\)
\(104\) −2.81332 −0.0270511
\(105\) 11.8771i 0.113115i
\(106\) 136.580i 1.28849i
\(107\) 184.160i 1.72112i 0.509348 + 0.860560i \(0.329886\pi\)
−0.509348 + 0.860560i \(0.670114\pi\)
\(108\) 84.1027 0.778729
\(109\) 132.961i 1.21983i 0.792468 + 0.609914i \(0.208796\pi\)
−0.792468 + 0.609914i \(0.791204\pi\)
\(110\) −7.74989 51.9997i −0.0704536 0.472724i
\(111\) 21.6967 0.195466
\(112\) 89.4977i 0.799087i
\(113\) 146.598 1.29733 0.648666 0.761074i \(-0.275327\pi\)
0.648666 + 0.761074i \(0.275327\pi\)
\(114\) −16.5751 −0.145396
\(115\) −7.94712 −0.0691054
\(116\) 20.9546i 0.180643i
\(117\) 23.3343i 0.199439i
\(118\) 73.1657i 0.620048i
\(119\) −153.788 −1.29234
\(120\) 1.78483i 0.0148736i
\(121\) 115.741 35.2833i 0.956541 0.291598i
\(122\) −210.509 −1.72548
\(123\) 20.6447i 0.167843i
\(124\) −135.486 −1.09263
\(125\) −78.3042 −0.626434
\(126\) 134.667 1.06878
\(127\) 160.042i 1.26017i −0.776524 0.630087i \(-0.783019\pi\)
0.776524 0.630087i \(-0.216981\pi\)
\(128\) 29.3383i 0.229206i
\(129\) 64.9371i 0.503388i
\(130\) 14.6194 0.112457
\(131\) 68.7645i 0.524919i −0.964943 0.262460i \(-0.915466\pi\)
0.964943 0.262460i \(-0.0845337\pi\)
\(132\) −55.0271 + 8.20109i −0.416872 + 0.0621295i
\(133\) −30.0347 −0.225825
\(134\) 52.4051i 0.391083i
\(135\) −32.2689 −0.239029
\(136\) 23.1104 0.169930
\(137\) −36.0747 −0.263319 −0.131659 0.991295i \(-0.542031\pi\)
−0.131659 + 0.991295i \(0.542031\pi\)
\(138\) 16.1987i 0.117382i
\(139\) 51.1973i 0.368326i −0.982896 0.184163i \(-0.941043\pi\)
0.982896 0.184163i \(-0.0589574\pi\)
\(140\) 43.8026i 0.312876i
\(141\) 91.2876 0.647430
\(142\) 197.372i 1.38994i
\(143\) 4.95984 + 33.2792i 0.0346842 + 0.232722i
\(144\) 111.551 0.774661
\(145\) 8.03996i 0.0554480i
\(146\) −215.563 −1.47646
\(147\) 13.5144 0.0919350
\(148\) −80.0172 −0.540657
\(149\) 62.5029i 0.419482i 0.977757 + 0.209741i \(0.0672622\pi\)
−0.977757 + 0.209741i \(0.932738\pi\)
\(150\) 75.1666i 0.501110i
\(151\) 69.5586i 0.460653i 0.973113 + 0.230326i \(0.0739794\pi\)
−0.973113 + 0.230326i \(0.926021\pi\)
\(152\) 4.51346 0.0296938
\(153\) 191.684i 1.25283i
\(154\) −192.060 + 28.6241i −1.24714 + 0.185871i
\(155\) 51.9838 0.335379
\(156\) 15.4705i 0.0991702i
\(157\) −154.166 −0.981951 −0.490975 0.871174i \(-0.663359\pi\)
−0.490975 + 0.871174i \(0.663359\pi\)
\(158\) −369.453 −2.33831
\(159\) 55.4547 0.348772
\(160\) 75.9853i 0.474908i
\(161\) 29.3526i 0.182314i
\(162\) 132.251i 0.816363i
\(163\) −169.087 −1.03734 −0.518672 0.854973i \(-0.673574\pi\)
−0.518672 + 0.854973i \(0.673574\pi\)
\(164\) 76.1372i 0.464251i
\(165\) 21.1131 3.14663i 0.127958 0.0190705i
\(166\) 95.4486 0.574992
\(167\) 78.1926i 0.468219i 0.972210 + 0.234110i \(0.0752175\pi\)
−0.972210 + 0.234110i \(0.924783\pi\)
\(168\) 6.59224 0.0392395
\(169\) 159.644 0.944638
\(170\) −120.093 −0.706431
\(171\) 37.4357i 0.218922i
\(172\) 239.487i 1.39237i
\(173\) 13.0030i 0.0751618i −0.999294 0.0375809i \(-0.988035\pi\)
0.999294 0.0375809i \(-0.0119652\pi\)
\(174\) 16.3879 0.0941833
\(175\) 136.205i 0.778312i
\(176\) −159.093 + 23.7108i −0.903939 + 0.134721i
\(177\) 29.7069 0.167836
\(178\) 220.556i 1.23908i
\(179\) −246.728 −1.37837 −0.689184 0.724586i \(-0.742031\pi\)
−0.689184 + 0.724586i \(0.742031\pi\)
\(180\) 54.5962 0.303312
\(181\) −74.5087 −0.411650 −0.205825 0.978589i \(-0.565988\pi\)
−0.205825 + 0.978589i \(0.565988\pi\)
\(182\) 53.9966i 0.296684i
\(183\) 85.4714i 0.467057i
\(184\) 4.41095i 0.0239725i
\(185\) 30.7014 0.165953
\(186\) 105.959i 0.569671i
\(187\) −40.7434 273.377i −0.217879 1.46191i
\(188\) −336.667 −1.79078
\(189\) 119.185i 0.630607i
\(190\) −23.4542 −0.123443
\(191\) 15.5185 0.0812487 0.0406244 0.999174i \(-0.487065\pi\)
0.0406244 + 0.999174i \(0.487065\pi\)
\(192\) 86.3842 0.449918
\(193\) 265.577i 1.37605i 0.725688 + 0.688024i \(0.241521\pi\)
−0.725688 + 0.688024i \(0.758479\pi\)
\(194\) 532.611i 2.74542i
\(195\) 5.93581i 0.0304400i
\(196\) −49.8410 −0.254291
\(197\) 84.8175i 0.430546i 0.976554 + 0.215273i \(0.0690641\pi\)
−0.976554 + 0.215273i \(0.930936\pi\)
\(198\) 35.6775 + 239.386i 0.180189 + 1.20902i
\(199\) −150.874 −0.758159 −0.379079 0.925364i \(-0.623759\pi\)
−0.379079 + 0.925364i \(0.623759\pi\)
\(200\) 20.4681i 0.102340i
\(201\) −21.2776 −0.105859
\(202\) 547.513 2.71046
\(203\) 29.6955 0.146283
\(204\) 127.085i 0.622967i
\(205\) 29.2127i 0.142501i
\(206\) 411.459i 1.99737i
\(207\) 36.5855 0.176741
\(208\) 44.7281i 0.215039i
\(209\) −7.95716 53.3904i −0.0380726 0.255457i
\(210\) −34.2566 −0.163127
\(211\) 181.466i 0.860028i −0.902822 0.430014i \(-0.858509\pi\)
0.902822 0.430014i \(-0.141491\pi\)
\(212\) −204.516 −0.964698
\(213\) −80.1374 −0.376232
\(214\) 531.163 2.48207
\(215\) 91.8874i 0.427383i
\(216\) 17.9104i 0.0829187i
\(217\) 192.001i 0.884799i
\(218\) 383.493 1.75914
\(219\) 87.5234i 0.399650i
\(220\) −77.8646 + 11.6047i −0.353930 + 0.0527487i
\(221\) 76.8584 0.347776
\(222\) 62.5788i 0.281886i
\(223\) −88.9586 −0.398918 −0.199459 0.979906i \(-0.563918\pi\)
−0.199459 + 0.979906i \(0.563918\pi\)
\(224\) 280.651 1.25290
\(225\) 169.767 0.754521
\(226\) 422.826i 1.87091i
\(227\) 346.885i 1.52813i 0.645140 + 0.764064i \(0.276799\pi\)
−0.645140 + 0.764064i \(0.723201\pi\)
\(228\) 24.8197i 0.108858i
\(229\) −50.4113 −0.220137 −0.110068 0.993924i \(-0.535107\pi\)
−0.110068 + 0.993924i \(0.535107\pi\)
\(230\) 22.9215i 0.0996586i
\(231\) −11.6220 77.9808i −0.0503119 0.337579i
\(232\) −4.46247 −0.0192348
\(233\) 335.414i 1.43955i −0.694209 0.719773i \(-0.744246\pi\)
0.694209 0.719773i \(-0.255754\pi\)
\(234\) −67.3020 −0.287615
\(235\) 129.174 0.549676
\(236\) −109.559 −0.464232
\(237\) 150.006i 0.632938i
\(238\) 443.563i 1.86371i
\(239\) 3.34310i 0.0139879i −0.999976 0.00699393i \(-0.997774\pi\)
0.999976 0.00699393i \(-0.00222625\pi\)
\(240\) −28.3765 −0.118235
\(241\) 62.8963i 0.260980i 0.991450 + 0.130490i \(0.0416551\pi\)
−0.991450 + 0.130490i \(0.958345\pi\)
\(242\) −101.766 333.827i −0.420520 1.37945i
\(243\) 228.956 0.942206
\(244\) 315.217i 1.29187i
\(245\) 19.1232 0.0780540
\(246\) 59.5444 0.242050
\(247\) 15.0104 0.0607708
\(248\) 28.8529i 0.116342i
\(249\) 38.7543i 0.155640i
\(250\) 225.849i 0.903395i
\(251\) −74.2813 −0.295941 −0.147971 0.988992i \(-0.547274\pi\)
−0.147971 + 0.988992i \(0.547274\pi\)
\(252\) 201.650i 0.800199i
\(253\) −52.1778 + 7.77644i −0.206237 + 0.0307369i
\(254\) −461.601 −1.81733
\(255\) 48.7606i 0.191218i
\(256\) 210.442 0.822038
\(257\) −16.6453 −0.0647677 −0.0323839 0.999476i \(-0.510310\pi\)
−0.0323839 + 0.999476i \(0.510310\pi\)
\(258\) 187.295 0.725948
\(259\) 113.395i 0.437819i
\(260\) 21.8912i 0.0841967i
\(261\) 37.0128i 0.141812i
\(262\) −198.334 −0.756999
\(263\) 250.180i 0.951254i 0.879647 + 0.475627i \(0.157779\pi\)
−0.879647 + 0.475627i \(0.842221\pi\)
\(264\) 1.74650 + 11.7185i 0.00661552 + 0.0443884i
\(265\) 78.4696 0.296112
\(266\) 86.6276i 0.325668i
\(267\) −89.5509 −0.335396
\(268\) 78.4716 0.292804
\(269\) −114.723 −0.426481 −0.213240 0.977000i \(-0.568402\pi\)
−0.213240 + 0.977000i \(0.568402\pi\)
\(270\) 93.0715i 0.344709i
\(271\) 316.028i 1.16616i −0.812416 0.583078i \(-0.801848\pi\)
0.812416 0.583078i \(-0.198152\pi\)
\(272\) 367.426i 1.35083i
\(273\) 21.9238 0.0803071
\(274\) 104.048i 0.379738i
\(275\) −242.120 + 36.0850i −0.880438 + 0.131218i
\(276\) 24.2560 0.0878839
\(277\) 41.2805i 0.149027i −0.997220 0.0745135i \(-0.976260\pi\)
0.997220 0.0745135i \(-0.0237404\pi\)
\(278\) −147.666 −0.531172
\(279\) −239.313 −0.857753
\(280\) 9.32817 0.0333149
\(281\) 477.815i 1.70041i −0.526453 0.850204i \(-0.676478\pi\)
0.526453 0.850204i \(-0.323522\pi\)
\(282\) 263.296i 0.933674i
\(283\) 132.022i 0.466510i 0.972416 + 0.233255i \(0.0749377\pi\)
−0.972416 + 0.233255i \(0.925062\pi\)
\(284\) 295.545 1.04065
\(285\) 9.52292i 0.0334137i
\(286\) 95.9855 14.3054i 0.335614 0.0500190i
\(287\) 107.897 0.375946
\(288\) 349.807i 1.21461i
\(289\) −342.365 −1.18466
\(290\) 23.1892 0.0799629
\(291\) 216.252 0.743134
\(292\) 322.785i 1.10543i
\(293\) 467.296i 1.59487i 0.603406 + 0.797434i \(0.293810\pi\)
−0.603406 + 0.797434i \(0.706190\pi\)
\(294\) 38.9790i 0.132582i
\(295\) 42.0360 0.142495
\(296\) 17.0404i 0.0575689i
\(297\) −211.866 + 31.5759i −0.713352 + 0.106316i
\(298\) 180.274 0.604946
\(299\) 14.6695i 0.0490618i
\(300\) 112.555 0.375182
\(301\) 339.385 1.12752
\(302\) 200.624 0.664319
\(303\) 222.303i 0.733672i
\(304\) 71.7581i 0.236046i
\(305\) 120.944i 0.396537i
\(306\) 552.863 1.80674
\(307\) 85.4545i 0.278353i 0.990268 + 0.139177i \(0.0444456\pi\)
−0.990268 + 0.139177i \(0.955554\pi\)
\(308\) 42.8619 + 287.592i 0.139162 + 0.933739i
\(309\) 167.061 0.540652
\(310\) 149.934i 0.483658i
\(311\) −233.259 −0.750030 −0.375015 0.927019i \(-0.622362\pi\)
−0.375015 + 0.927019i \(0.622362\pi\)
\(312\) −3.29459 −0.0105596
\(313\) −156.269 −0.499263 −0.249631 0.968341i \(-0.580309\pi\)
−0.249631 + 0.968341i \(0.580309\pi\)
\(314\) 444.654i 1.41609i
\(315\) 77.3701i 0.245619i
\(316\) 553.221i 1.75070i
\(317\) 146.873 0.463320 0.231660 0.972797i \(-0.425584\pi\)
0.231660 + 0.972797i \(0.425584\pi\)
\(318\) 159.945i 0.502972i
\(319\) 7.86729 + 52.7874i 0.0246623 + 0.165478i
\(320\) 122.235 0.381986
\(321\) 215.664i 0.671851i
\(322\) 84.6601 0.262920
\(323\) −123.305 −0.381750
\(324\) −198.033 −0.611213
\(325\) 68.0707i 0.209448i
\(326\) 487.689i 1.49598i
\(327\) 155.707i 0.476168i
\(328\) −16.2141 −0.0494333
\(329\) 477.102i 1.45016i
\(330\) −9.07567 60.8953i −0.0275020 0.184531i
\(331\) −183.093 −0.553152 −0.276576 0.960992i \(-0.589200\pi\)
−0.276576 + 0.960992i \(0.589200\pi\)
\(332\) 142.925i 0.430498i
\(333\) −141.337 −0.424436
\(334\) 225.527 0.675230
\(335\) −30.1083 −0.0898756
\(336\) 104.808i 0.311929i
\(337\) 411.849i 1.22210i 0.791591 + 0.611051i \(0.209253\pi\)
−0.791591 + 0.611051i \(0.790747\pi\)
\(338\) 460.452i 1.36228i
\(339\) 171.677 0.506422
\(340\) 179.828i 0.528907i
\(341\) 341.306 50.8673i 1.00090 0.149171i
\(342\) 107.974 0.315713
\(343\) 370.533i 1.08027i
\(344\) −51.0009 −0.148258
\(345\) −9.30664 −0.0269758
\(346\) −37.5038 −0.108393
\(347\) 558.900i 1.61066i −0.592824 0.805332i \(-0.701987\pi\)
0.592824 0.805332i \(-0.298013\pi\)
\(348\) 24.5393i 0.0705153i
\(349\) 283.165i 0.811362i 0.914015 + 0.405681i \(0.132966\pi\)
−0.914015 + 0.405681i \(0.867034\pi\)
\(350\) 392.848 1.12242
\(351\) 59.5648i 0.169700i
\(352\) 74.3534 + 498.891i 0.211231 + 1.41730i
\(353\) 487.578 1.38124 0.690621 0.723217i \(-0.257337\pi\)
0.690621 + 0.723217i \(0.257337\pi\)
\(354\) 85.6822i 0.242040i
\(355\) −113.396 −0.319426
\(356\) 330.262 0.927702
\(357\) −180.097 −0.504473
\(358\) 711.625i 1.98778i
\(359\) 226.972i 0.632234i 0.948720 + 0.316117i \(0.102379\pi\)
−0.948720 + 0.316117i \(0.897621\pi\)
\(360\) 11.6268i 0.0322965i
\(361\) 336.919 0.933292
\(362\) 214.902i 0.593651i
\(363\) 135.541 41.3192i 0.373392 0.113827i
\(364\) −80.8547 −0.222128
\(365\) 123.848i 0.339308i
\(366\) −246.521 −0.673554
\(367\) −376.527 −1.02596 −0.512980 0.858401i \(-0.671458\pi\)
−0.512980 + 0.858401i \(0.671458\pi\)
\(368\) 70.1283 0.190566
\(369\) 134.484i 0.364454i
\(370\) 88.5503i 0.239325i
\(371\) 289.827i 0.781204i
\(372\) −158.663 −0.426514
\(373\) 292.782i 0.784938i −0.919765 0.392469i \(-0.871621\pi\)
0.919765 0.392469i \(-0.128379\pi\)
\(374\) −788.488 + 117.514i −2.10826 + 0.314209i
\(375\) −91.6997 −0.244533
\(376\) 71.6964i 0.190682i
\(377\) −14.8409 −0.0393657
\(378\) 343.759 0.909414
\(379\) −190.332 −0.502196 −0.251098 0.967962i \(-0.580792\pi\)
−0.251098 + 0.967962i \(0.580792\pi\)
\(380\) 35.1204i 0.0924220i
\(381\) 187.421i 0.491917i
\(382\) 44.7592i 0.117171i
\(383\) −393.375 −1.02709 −0.513544 0.858063i \(-0.671668\pi\)
−0.513544 + 0.858063i \(0.671668\pi\)
\(384\) 34.3573i 0.0894720i
\(385\) −16.4454 110.344i −0.0427154 0.286609i
\(386\) 765.990 1.98443
\(387\) 423.014i 1.09306i
\(388\) −797.534 −2.05550
\(389\) 265.182 0.681703 0.340851 0.940117i \(-0.389285\pi\)
0.340851 + 0.940117i \(0.389285\pi\)
\(390\) 17.1203 0.0438983
\(391\) 120.505i 0.308196i
\(392\) 10.6141i 0.0270768i
\(393\) 80.5280i 0.204906i
\(394\) 244.635 0.620900
\(395\) 212.262i 0.537373i
\(396\) 358.458 53.4236i 0.905197 0.134908i
\(397\) −701.775 −1.76770 −0.883848 0.467774i \(-0.845056\pi\)
−0.883848 + 0.467774i \(0.845056\pi\)
\(398\) 435.157i 1.09336i
\(399\) −35.1728 −0.0881523
\(400\) 325.416 0.813540
\(401\) 249.118 0.621241 0.310621 0.950534i \(-0.399463\pi\)
0.310621 + 0.950534i \(0.399463\pi\)
\(402\) 61.3700i 0.152662i
\(403\) 95.9562i 0.238105i
\(404\) 819.848i 2.02933i
\(405\) 75.9822 0.187610
\(406\) 85.6491i 0.210958i
\(407\) 201.574 30.0420i 0.495267 0.0738133i
\(408\) 27.0640 0.0663332
\(409\) 390.758i 0.955399i −0.878523 0.477700i \(-0.841471\pi\)
0.878523 0.477700i \(-0.158529\pi\)
\(410\) 84.2565 0.205504
\(411\) −42.2460 −0.102788
\(412\) −616.120 −1.49544
\(413\) 155.259i 0.375930i
\(414\) 105.522i 0.254883i
\(415\) 54.8382i 0.132140i
\(416\) −140.260 −0.337164
\(417\) 59.9557i 0.143779i
\(418\) −153.991 + 22.9504i −0.368400 + 0.0549053i
\(419\) −557.913 −1.33153 −0.665767 0.746160i \(-0.731895\pi\)
−0.665767 + 0.746160i \(0.731895\pi\)
\(420\) 51.2959i 0.122133i
\(421\) 415.723 0.987465 0.493732 0.869614i \(-0.335632\pi\)
0.493732 + 0.869614i \(0.335632\pi\)
\(422\) −523.392 −1.24027
\(423\) −594.667 −1.40583
\(424\) 43.5536i 0.102721i
\(425\) 559.177i 1.31571i
\(426\) 231.136i 0.542573i
\(427\) −446.704 −1.04615
\(428\) 795.366i 1.85833i
\(429\) 5.80833 + 38.9723i 0.0135392 + 0.0908445i
\(430\) 265.026 0.616339
\(431\) 81.5222i 0.189147i −0.995518 0.0945733i \(-0.969851\pi\)
0.995518 0.0945733i \(-0.0301487\pi\)
\(432\) 284.753 0.659150
\(433\) −43.8177 −0.101196 −0.0505978 0.998719i \(-0.516113\pi\)
−0.0505978 + 0.998719i \(0.516113\pi\)
\(434\) −553.780 −1.27599
\(435\) 9.41535i 0.0216445i
\(436\) 574.244i 1.31707i
\(437\) 23.5345i 0.0538547i
\(438\) −252.439 −0.576345
\(439\) 525.875i 1.19789i −0.800789 0.598946i \(-0.795586\pi\)
0.800789 0.598946i \(-0.204414\pi\)
\(440\) 2.47133 + 16.5820i 0.00561666 + 0.0376863i
\(441\) −88.0359 −0.199628
\(442\) 221.679i 0.501536i
\(443\) −289.124 −0.652650 −0.326325 0.945258i \(-0.605810\pi\)
−0.326325 + 0.945258i \(0.605810\pi\)
\(444\) −93.7058 −0.211049
\(445\) −126.716 −0.284756
\(446\) 256.579i 0.575289i
\(447\) 73.1953i 0.163748i
\(448\) 451.475i 1.00776i
\(449\) 362.591 0.807552 0.403776 0.914858i \(-0.367697\pi\)
0.403776 + 0.914858i \(0.367697\pi\)
\(450\) 489.651i 1.08811i
\(451\) 28.5853 + 191.799i 0.0633820 + 0.425276i
\(452\) −633.142 −1.40076
\(453\) 81.4580i 0.179819i
\(454\) 1000.50 2.20375
\(455\) 31.0227 0.0681817
\(456\) 5.28557 0.0115912
\(457\) 261.369i 0.571923i −0.958241 0.285962i \(-0.907687\pi\)
0.958241 0.285962i \(-0.0923130\pi\)
\(458\) 145.399i 0.317464i
\(459\) 489.304i 1.06602i
\(460\) 34.3227 0.0746146
\(461\) 441.681i 0.958093i −0.877790 0.479046i \(-0.840983\pi\)
0.877790 0.479046i \(-0.159017\pi\)
\(462\) −224.916 + 33.5209i −0.486831 + 0.0725560i
\(463\) −466.499 −1.00756 −0.503779 0.863833i \(-0.668057\pi\)
−0.503779 + 0.863833i \(0.668057\pi\)
\(464\) 70.9476i 0.152904i
\(465\) 60.8766 0.130918
\(466\) −967.418 −2.07600
\(467\) 130.596 0.279648 0.139824 0.990176i \(-0.455346\pi\)
0.139824 + 0.990176i \(0.455346\pi\)
\(468\) 100.778i 0.215338i
\(469\) 111.205i 0.237110i
\(470\) 372.570i 0.792702i
\(471\) −180.539 −0.383311
\(472\) 23.3315i 0.0494312i
\(473\) 89.9139 + 603.298i 0.190093 + 1.27547i
\(474\) −432.656 −0.912775
\(475\) 109.207i 0.229909i
\(476\) 664.193 1.39536
\(477\) −361.244 −0.757324
\(478\) −9.64232 −0.0201722
\(479\) 398.256i 0.831432i 0.909494 + 0.415716i \(0.136469\pi\)
−0.909494 + 0.415716i \(0.863531\pi\)
\(480\) 88.9841i 0.185384i
\(481\) 56.6712i 0.117820i
\(482\) 181.408 0.376366
\(483\) 34.3739i 0.0711676i
\(484\) −499.874 + 152.385i −1.03280 + 0.314844i
\(485\) 306.001 0.630931
\(486\) 660.366i 1.35878i
\(487\) −190.761 −0.391706 −0.195853 0.980633i \(-0.562748\pi\)
−0.195853 + 0.980633i \(0.562748\pi\)
\(488\) 67.1283 0.137558
\(489\) −198.013 −0.404934
\(490\) 55.1561i 0.112563i
\(491\) 48.1180i 0.0980000i −0.998799 0.0490000i \(-0.984397\pi\)
0.998799 0.0490000i \(-0.0156034\pi\)
\(492\) 89.1620i 0.181224i
\(493\) 121.912 0.247287
\(494\) 43.2937i 0.0876391i
\(495\) −137.535 + 20.4978i −0.277848 + 0.0414097i
\(496\) −458.724 −0.924847
\(497\) 418.827i 0.842711i
\(498\) 111.777 0.224452
\(499\) 904.074 1.81177 0.905886 0.423523i \(-0.139207\pi\)
0.905886 + 0.423523i \(0.139207\pi\)
\(500\) 338.187 0.676374
\(501\) 91.5690i 0.182772i
\(502\) 214.246i 0.426784i
\(503\) 129.317i 0.257092i 0.991704 + 0.128546i \(0.0410310\pi\)
−0.991704 + 0.128546i \(0.958969\pi\)
\(504\) −42.9433 −0.0852049
\(505\) 314.563i 0.622897i
\(506\) 22.4292 + 150.494i 0.0443265 + 0.297419i
\(507\) 186.954 0.368746
\(508\) 691.204i 1.36064i
\(509\) 687.922 1.35152 0.675759 0.737123i \(-0.263816\pi\)
0.675759 + 0.737123i \(0.263816\pi\)
\(510\) −140.638 −0.275760
\(511\) −457.429 −0.895165
\(512\) 724.319i 1.41469i
\(513\) 95.5608i 0.186278i
\(514\) 48.0092i 0.0934031i
\(515\) 236.396 0.459021
\(516\) 280.456i 0.543519i
\(517\) 848.108 126.400i 1.64044 0.244487i
\(518\) −327.060 −0.631389
\(519\) 15.2274i 0.0293399i
\(520\) −4.66192 −0.00896523
\(521\) 518.046 0.994330 0.497165 0.867656i \(-0.334374\pi\)
0.497165 + 0.867656i \(0.334374\pi\)
\(522\) −106.754 −0.204510
\(523\) 574.943i 1.09932i −0.835390 0.549658i \(-0.814758\pi\)
0.835390 0.549658i \(-0.185242\pi\)
\(524\) 296.986i 0.566767i
\(525\) 159.505i 0.303819i
\(526\) 721.581 1.37183
\(527\) 788.247i 1.49572i
\(528\) −186.309 + 27.7670i −0.352859 + 0.0525891i
\(529\) 23.0000 0.0434783
\(530\) 226.326i 0.427030i
\(531\) −193.517 −0.364439
\(532\) 129.717 0.243828
\(533\) −53.9233 −0.101169
\(534\) 258.287i 0.483683i
\(535\) 305.169i 0.570410i
\(536\) 16.7112i 0.0311777i
\(537\) −288.936 −0.538056
\(538\) 330.890i 0.615038i
\(539\) 125.556 18.7125i 0.232942 0.0347171i
\(540\) 139.366 0.258085
\(541\) 45.3505i 0.0838271i 0.999121 + 0.0419136i \(0.0133454\pi\)
−0.999121 + 0.0419136i \(0.986655\pi\)
\(542\) −911.505 −1.68174
\(543\) −87.2549 −0.160690
\(544\) 1152.19 2.11800
\(545\) 220.329i 0.404273i
\(546\) 63.2337i 0.115813i
\(547\) 859.116i 1.57060i 0.619118 + 0.785298i \(0.287490\pi\)
−0.619118 + 0.785298i \(0.712510\pi\)
\(548\) 155.802 0.284311
\(549\) 556.778i 1.01417i
\(550\) 104.078 + 698.335i 0.189233 + 1.26970i
\(551\) 23.8094 0.0432113
\(552\) 5.16553i 0.00935784i
\(553\) −783.988 −1.41770
\(554\) −119.063 −0.214915
\(555\) 35.9534 0.0647810
\(556\) 221.115i 0.397690i
\(557\) 351.075i 0.630297i 0.949042 + 0.315148i \(0.102054\pi\)
−0.949042 + 0.315148i \(0.897946\pi\)
\(558\) 690.238i 1.23699i
\(559\) −169.614 −0.303423
\(560\) 148.306i 0.264832i
\(561\) −47.7134 320.144i −0.0850506 0.570667i
\(562\) −1378.14 −2.45220
\(563\) 747.611i 1.32791i 0.747774 + 0.663953i \(0.231123\pi\)
−0.747774 + 0.663953i \(0.768877\pi\)
\(564\) −394.261 −0.699044
\(565\) 242.927 0.429959
\(566\) 380.785 0.672765
\(567\) 280.639i 0.494955i
\(568\) 62.9391i 0.110808i
\(569\) 385.647i 0.677763i −0.940829 0.338882i \(-0.889951\pi\)
0.940829 0.338882i \(-0.110049\pi\)
\(570\) −27.4665 −0.0481868
\(571\) 152.707i 0.267438i −0.991019 0.133719i \(-0.957308\pi\)
0.991019 0.133719i \(-0.0426919\pi\)
\(572\) −21.4210 143.729i −0.0374493 0.251275i
\(573\) 18.1733 0.0317160
\(574\) 311.200i 0.542161i
\(575\) 106.727 0.185612
\(576\) −562.725 −0.976952
\(577\) 728.808 1.26310 0.631549 0.775336i \(-0.282419\pi\)
0.631549 + 0.775336i \(0.282419\pi\)
\(578\) 987.467i 1.70842i
\(579\) 311.009i 0.537149i
\(580\) 34.7237i 0.0598684i
\(581\) 202.544 0.348613
\(582\) 623.725i 1.07169i
\(583\) 515.202 76.7844i 0.883709 0.131706i
\(584\) 68.7400 0.117705
\(585\) 38.6671i 0.0660976i
\(586\) 1347.80 2.30000
\(587\) −461.419 −0.786064 −0.393032 0.919525i \(-0.628574\pi\)
−0.393032 + 0.919525i \(0.628574\pi\)
\(588\) −58.3673 −0.0992641
\(589\) 153.944i 0.261365i
\(590\) 121.242i 0.205495i
\(591\) 99.3272i 0.168066i
\(592\) −270.920 −0.457635
\(593\) 126.494i 0.213312i 0.994296 + 0.106656i \(0.0340143\pi\)
−0.994296 + 0.106656i \(0.965986\pi\)
\(594\) 91.0727 + 611.073i 0.153321 + 1.02874i
\(595\) −254.841 −0.428304
\(596\) 269.943i 0.452924i
\(597\) −176.684 −0.295952
\(598\) −42.3104 −0.0707532
\(599\) −756.383 −1.26274 −0.631371 0.775481i \(-0.717508\pi\)
−0.631371 + 0.775481i \(0.717508\pi\)
\(600\) 23.9696i 0.0399493i
\(601\) 831.429i 1.38341i 0.722181 + 0.691704i \(0.243140\pi\)
−0.722181 + 0.691704i \(0.756860\pi\)
\(602\) 978.870i 1.62603i
\(603\) 138.607 0.229862
\(604\) 300.416i 0.497377i
\(605\) 191.794 58.4676i 0.317015 0.0966406i
\(606\) 641.176 1.05805
\(607\) 626.145i 1.03154i 0.856727 + 0.515770i \(0.172494\pi\)
−0.856727 + 0.515770i \(0.827506\pi\)
\(608\) 225.022 0.370102
\(609\) 34.7755 0.0571026
\(610\) −348.832 −0.571856
\(611\) 238.441i 0.390246i
\(612\) 827.860i 1.35271i
\(613\) 801.151i 1.30693i −0.756955 0.653467i \(-0.773314\pi\)
0.756955 0.653467i \(-0.226686\pi\)
\(614\) 246.472 0.401420
\(615\) 34.2101i 0.0556261i
\(616\) 61.2453 9.12783i 0.0994241 0.0148179i
\(617\) 707.635 1.14690 0.573448 0.819242i \(-0.305605\pi\)
0.573448 + 0.819242i \(0.305605\pi\)
\(618\) 481.847i 0.779687i
\(619\) −436.085 −0.704499 −0.352250 0.935906i \(-0.614583\pi\)
−0.352250 + 0.935906i \(0.614583\pi\)
\(620\) −224.512 −0.362116
\(621\) 93.3904 0.150387
\(622\) 672.777i 1.08164i
\(623\) 468.025i 0.751244i
\(624\) 52.3798i 0.0839419i
\(625\) 426.594 0.682551
\(626\) 450.719i 0.719999i
\(627\) −9.31840 62.5239i −0.0148619 0.0997192i
\(628\) 665.826 1.06023
\(629\) 465.535i 0.740119i
\(630\) 223.154 0.354213
\(631\) −134.767 −0.213577 −0.106788 0.994282i \(-0.534057\pi\)
−0.106788 + 0.994282i \(0.534057\pi\)
\(632\) 117.813 0.186414
\(633\) 212.509i 0.335718i
\(634\) 423.617i 0.668165i
\(635\) 265.204i 0.417644i
\(636\) −239.503 −0.376577
\(637\) 35.2993i 0.0554149i
\(638\) 152.252 22.6912i 0.238639 0.0355661i
\(639\) 522.032 0.816952
\(640\) 48.6163i 0.0759629i
\(641\) −385.943 −0.602096 −0.301048 0.953609i \(-0.597336\pi\)
−0.301048 + 0.953609i \(0.597336\pi\)
\(642\) 622.029 0.968892
\(643\) 946.698 1.47231 0.736157 0.676811i \(-0.236639\pi\)
0.736157 + 0.676811i \(0.236639\pi\)
\(644\) 126.770i 0.196849i
\(645\) 107.607i 0.166832i
\(646\) 355.643i 0.550531i
\(647\) −860.117 −1.32939 −0.664697 0.747113i \(-0.731439\pi\)
−0.664697 + 0.747113i \(0.731439\pi\)
\(648\) 42.1729i 0.0650817i
\(649\) 275.992 41.1332i 0.425258 0.0633793i
\(650\) −196.333 −0.302050
\(651\) 224.847i 0.345387i
\(652\) 730.268 1.12004
\(653\) −402.737 −0.616749 −0.308374 0.951265i \(-0.599785\pi\)
−0.308374 + 0.951265i \(0.599785\pi\)
\(654\) 449.097 0.686693
\(655\) 113.949i 0.173968i
\(656\) 257.783i 0.392962i
\(657\) 570.146i 0.867802i
\(658\) −1376.08 −2.09131
\(659\) 543.997i 0.825489i 0.910847 + 0.412744i \(0.135430\pi\)
−0.910847 + 0.412744i \(0.864570\pi\)
\(660\) −91.1849 + 13.5899i −0.138159 + 0.0205908i
\(661\) 305.677 0.462446 0.231223 0.972901i \(-0.425727\pi\)
0.231223 + 0.972901i \(0.425727\pi\)
\(662\) 528.086i 0.797713i
\(663\) 90.0066 0.135757
\(664\) −30.4372 −0.0458392
\(665\) −49.7702 −0.0748424
\(666\) 407.651i 0.612089i
\(667\) 23.2687i 0.0348856i
\(668\) 337.705i 0.505546i
\(669\) −104.177 −0.155720
\(670\) 86.8399i 0.129612i
\(671\) −118.346 794.072i −0.176373 1.18342i
\(672\) 328.662 0.489080
\(673\) 1014.28i 1.50711i −0.657387 0.753553i \(-0.728339\pi\)
0.657387 0.753553i \(-0.271661\pi\)
\(674\) 1187.87 1.76242
\(675\) 433.359 0.642013
\(676\) −689.483 −1.01995
\(677\) 611.117i 0.902683i 0.892351 + 0.451342i \(0.149054\pi\)
−0.892351 + 0.451342i \(0.850946\pi\)
\(678\) 495.159i 0.730323i
\(679\) 1130.21i 1.66452i
\(680\) 38.2961 0.0563178
\(681\) 406.227i 0.596515i
\(682\) −146.714 984.411i −0.215123 1.44342i
\(683\) 660.065 0.966420 0.483210 0.875504i \(-0.339471\pi\)
0.483210 + 0.875504i \(0.339471\pi\)
\(684\) 161.680i 0.236375i
\(685\) −59.7789 −0.0872685
\(686\) −1068.71 −1.55788
\(687\) −59.0351 −0.0859318
\(688\) 810.848i 1.17856i
\(689\) 144.846i 0.210227i
\(690\) 26.8426i 0.0389024i
\(691\) 541.449 0.783573 0.391786 0.920056i \(-0.371857\pi\)
0.391786 + 0.920056i \(0.371857\pi\)
\(692\) 56.1584i 0.0811538i
\(693\) 75.7084 + 507.983i 0.109247 + 0.733020i
\(694\) −1612.01 −2.32278
\(695\) 84.8385i 0.122070i
\(696\) −5.22587 −0.00750843
\(697\) 442.961 0.635525
\(698\) 816.719 1.17008
\(699\) 392.794i 0.561937i
\(700\) 588.252i 0.840360i
\(701\) 717.893i 1.02410i 0.858956 + 0.512049i \(0.171114\pi\)
−0.858956 + 0.512049i \(0.828886\pi\)
\(702\) −171.800 −0.244729
\(703\) 90.9186i 0.129330i
\(704\) 802.553 119.610i 1.13999 0.169901i
\(705\) 151.272 0.214570
\(706\) 1406.30i 1.99192i
\(707\) 1161.83 1.64333
\(708\) −128.301 −0.181216
\(709\) −1035.02 −1.45983 −0.729915 0.683538i \(-0.760440\pi\)
−0.729915 + 0.683538i \(0.760440\pi\)
\(710\) 327.063i 0.460652i
\(711\) 977.173i 1.37436i
\(712\) 70.3323i 0.0987813i
\(713\) −150.448 −0.211007
\(714\) 519.444i 0.727512i
\(715\) 8.21891 + 55.1466i 0.0114950 + 0.0771282i
\(716\) 1065.59 1.48825
\(717\) 3.91500i 0.00546025i
\(718\) 654.643 0.911760
\(719\) 648.422 0.901839 0.450919 0.892565i \(-0.351096\pi\)
0.450919 + 0.892565i \(0.351096\pi\)
\(720\) 184.850 0.256736
\(721\) 873.124i 1.21099i
\(722\) 971.757i 1.34592i
\(723\) 73.6560i 0.101875i
\(724\) 321.795 0.444468
\(725\) 107.973i 0.148929i
\(726\) −119.175 390.935i −0.164153 0.538478i
\(727\) 708.930 0.975144 0.487572 0.873083i \(-0.337883\pi\)
0.487572 + 0.873083i \(0.337883\pi\)
\(728\) 17.2187i 0.0236521i
\(729\) −144.552 −0.198288
\(730\) −357.207 −0.489325
\(731\) 1393.32 1.90604
\(732\) 369.141i 0.504291i
\(733\) 1341.94i 1.83075i −0.402600 0.915376i \(-0.631893\pi\)
0.402600 0.915376i \(-0.368107\pi\)
\(734\) 1086.00i 1.47956i
\(735\) 22.3946 0.0304689
\(736\) 219.911i 0.298793i
\(737\) −197.680 + 29.4617i −0.268223 + 0.0399752i
\(738\) −387.884 −0.525589
\(739\) 235.678i 0.318914i −0.987205 0.159457i \(-0.949026\pi\)
0.987205 0.159457i \(-0.0509744\pi\)
\(740\) −132.596 −0.179183
\(741\) 17.5782 0.0237223
\(742\) −835.932 −1.12659
\(743\) 399.726i 0.537989i 0.963142 + 0.268995i \(0.0866914\pi\)
−0.963142 + 0.268995i \(0.913309\pi\)
\(744\) 33.7888i 0.0454150i
\(745\) 103.573i 0.139024i
\(746\) −844.456 −1.13198
\(747\) 252.454i 0.337957i
\(748\) 175.966 + 1180.69i 0.235249 + 1.57846i
\(749\) 1127.14 1.50486
\(750\) 264.485i 0.352646i
\(751\) −700.840 −0.933209 −0.466605 0.884466i \(-0.654523\pi\)
−0.466605 + 0.884466i \(0.654523\pi\)
\(752\) −1139.88 −1.51580
\(753\) −86.9886 −0.115523
\(754\) 42.8047i 0.0567702i
\(755\) 115.265i 0.152669i
\(756\) 514.746i 0.680880i
\(757\) −1340.58 −1.77091 −0.885456 0.464724i \(-0.846154\pi\)
−0.885456 + 0.464724i \(0.846154\pi\)
\(758\) 548.966i 0.724229i
\(759\) −61.1039 + 9.10676i −0.0805058 + 0.0119984i
\(760\) 7.47920 0.00984105
\(761\) 1027.25i 1.34987i 0.737878 + 0.674934i \(0.235828\pi\)
−0.737878 + 0.674934i \(0.764172\pi\)
\(762\) −540.567 −0.709406
\(763\) 813.781 1.06655
\(764\) −67.0227 −0.0877260
\(765\) 317.637i 0.415212i
\(766\) 1134.59i 1.48119i
\(767\) 77.5936i 0.101165i
\(768\) 246.442 0.320888
\(769\) 1352.09i 1.75824i 0.476601 + 0.879120i \(0.341869\pi\)
−0.476601 + 0.879120i \(0.658131\pi\)
\(770\) −318.261 + 47.4327i −0.413326 + 0.0616009i
\(771\) −19.4928 −0.0252825
\(772\) 1147.00i 1.48575i
\(773\) −156.235 −0.202116 −0.101058 0.994881i \(-0.532223\pi\)
−0.101058 + 0.994881i \(0.532223\pi\)
\(774\) −1220.08 −1.57633
\(775\) −698.121 −0.900802
\(776\) 169.842i 0.218869i
\(777\) 132.794i 0.170906i
\(778\) 764.852i 0.983100i
\(779\) 86.5100 0.111053
\(780\) 25.6361i 0.0328668i
\(781\) −744.517 + 110.961i −0.953287 + 0.142075i
\(782\) 347.566 0.444457
\(783\) 94.4814i 0.120666i
\(784\) −168.750 −0.215243
\(785\) −255.467 −0.325436
\(786\) −232.263 −0.295500
\(787\) 940.332i 1.19483i 0.801932 + 0.597415i \(0.203806\pi\)
−0.801932 + 0.597415i \(0.796194\pi\)
\(788\) 366.317i 0.464869i
\(789\) 292.978i 0.371329i
\(790\) −612.217 −0.774958
\(791\) 897.246i 1.13432i
\(792\) −11.3770 76.3369i −0.0143650 0.0963850i
\(793\) 223.249 0.281524
\(794\) 2024.09i 2.54924i
\(795\) 91.8934 0.115589
\(796\) 651.606 0.818600
\(797\) 372.320 0.467151 0.233576 0.972339i \(-0.424957\pi\)
0.233576 + 0.972339i \(0.424957\pi\)
\(798\) 101.447i 0.127127i
\(799\) 1958.71i 2.45145i
\(800\) 1020.45i 1.27557i
\(801\) 583.353 0.728281
\(802\) 718.517i 0.895907i
\(803\) −121.188 813.137i −0.150919 1.01262i
\(804\) 91.8957 0.114298
\(805\) 48.6399i 0.0604222i
\(806\) 276.761 0.343376
\(807\) −134.349 −0.166480
\(808\) −174.594 −0.216082
\(809\) 1092.39i 1.35030i −0.737680 0.675150i \(-0.764079\pi\)
0.737680 0.675150i \(-0.235921\pi\)
\(810\) 219.152i 0.270557i
\(811\) 971.750i 1.19821i 0.800670 + 0.599106i \(0.204477\pi\)
−0.800670 + 0.599106i \(0.795523\pi\)
\(812\) −128.251 −0.157945
\(813\) 370.092i 0.455217i
\(814\) −86.6486 581.389i −0.106448 0.714237i
\(815\) −280.193 −0.343795
\(816\) 430.282i 0.527306i
\(817\) 272.114 0.333065
\(818\) −1127.04 −1.37780
\(819\) −142.816 −0.174379
\(820\) 126.166i 0.153861i
\(821\) 1040.33i 1.26715i 0.773683 + 0.633573i \(0.218412\pi\)
−0.773683 + 0.633573i \(0.781588\pi\)
\(822\) 121.848i 0.148233i
\(823\) −1485.96 −1.80554 −0.902771 0.430121i \(-0.858471\pi\)
−0.902771 + 0.430121i \(0.858471\pi\)
\(824\) 131.208i 0.159233i
\(825\) −283.540 + 42.2580i −0.343685 + 0.0512218i
\(826\) −447.806 −0.542138
\(827\) 807.164i 0.976014i 0.872840 + 0.488007i \(0.162276\pi\)
−0.872840 + 0.488007i \(0.837724\pi\)
\(828\) −158.008 −0.190831
\(829\) 14.3542 0.0173150 0.00865751 0.999963i \(-0.497244\pi\)
0.00865751 + 0.999963i \(0.497244\pi\)
\(830\) 158.167 0.190563
\(831\) 48.3423i 0.0581737i
\(832\) 225.633i 0.271193i
\(833\) 289.972i 0.348105i
\(834\) −172.927 −0.207346
\(835\) 129.572i 0.155176i
\(836\) 34.3661 + 230.587i 0.0411078 + 0.275822i
\(837\) −610.886 −0.729852
\(838\) 1609.16i 1.92024i
\(839\) −199.429 −0.237698 −0.118849 0.992912i \(-0.537920\pi\)
−0.118849 + 0.992912i \(0.537920\pi\)
\(840\) 10.9239 0.0130047
\(841\) 817.460 0.972009
\(842\) 1199.05i 1.42405i
\(843\) 559.555i 0.663766i
\(844\) 783.730i 0.928590i
\(845\) 264.544 0.313070
\(846\) 1715.17i 2.02738i
\(847\) −215.949 708.388i −0.254958 0.836350i
\(848\) −692.445 −0.816563
\(849\) 154.607i 0.182105i
\(850\) 1612.81 1.89742
\(851\) −88.8537 −0.104411
\(852\) 346.104 0.406226
\(853\) 618.754i 0.725386i −0.931909 0.362693i \(-0.881857\pi\)
0.931909 0.362693i \(-0.118143\pi\)
\(854\) 1288.41i 1.50867i
\(855\) 62.0343i 0.0725547i
\(856\) −169.380 −0.197874
\(857\) 1278.14i 1.49141i 0.666274 + 0.745707i \(0.267888\pi\)
−0.666274 + 0.745707i \(0.732112\pi\)
\(858\) 112.406 16.7527i 0.131009 0.0195252i
\(859\) 1110.98 1.29334 0.646668 0.762772i \(-0.276162\pi\)
0.646668 + 0.762772i \(0.276162\pi\)
\(860\) 396.851i 0.461455i
\(861\) 126.354 0.146753
\(862\) −235.130 −0.272773
\(863\) 1138.04 1.31870 0.659351 0.751835i \(-0.270831\pi\)
0.659351 + 0.751835i \(0.270831\pi\)
\(864\) 892.940i 1.03349i
\(865\) 21.5471i 0.0249100i
\(866\) 126.381i 0.145937i
\(867\) −400.934 −0.462438
\(868\) 829.232i 0.955336i
\(869\) −207.704 1393.63i −0.239014 1.60372i
\(870\) 27.1562 0.0312140
\(871\) 55.5766i 0.0638078i
\(872\) −122.291 −0.140241
\(873\) −1408.71 −1.61364
\(874\) 67.8794 0.0776652
\(875\) 479.256i 0.547721i
\(876\) 378.004i 0.431511i
\(877\) 757.268i 0.863475i 0.901999 + 0.431738i \(0.142099\pi\)
−0.901999 + 0.431738i \(0.857901\pi\)
\(878\) −1516.75 −1.72751
\(879\) 547.237i 0.622567i
\(880\) −263.632 + 39.2910i −0.299582 + 0.0446488i
\(881\) −607.629 −0.689703 −0.344852 0.938657i \(-0.612071\pi\)
−0.344852 + 0.938657i \(0.612071\pi\)
\(882\) 253.917i 0.287888i
\(883\) 774.611 0.877249 0.438624 0.898671i \(-0.355466\pi\)
0.438624 + 0.898671i \(0.355466\pi\)
\(884\) −331.943 −0.375501
\(885\) 49.2271 0.0556238
\(886\) 833.906i 0.941203i
\(887\) 1609.17i 1.81417i 0.420948 + 0.907085i \(0.361697\pi\)
−0.420948 + 0.907085i \(0.638303\pi\)
\(888\) 19.9555i 0.0224724i
\(889\) −979.528 −1.10183
\(890\) 365.481i 0.410653i
\(891\) 498.871 74.3504i 0.559900 0.0834460i
\(892\) 384.202 0.430720
\(893\) 382.534i 0.428370i
\(894\) 211.113 0.236145
\(895\) −408.850 −0.456816
\(896\) −179.564 −0.200406
\(897\) 17.1790i 0.0191516i
\(898\) 1045.80i 1.16459i
\(899\) 152.205i 0.169305i
\(900\) −733.205 −0.814672
\(901\) 1189.86i 1.32060i
\(902\) 553.197 82.4470i 0.613301 0.0914046i
\(903\) 397.443 0.440137
\(904\) 134.833i 0.149152i
\(905\) −123.468 −0.136428
\(906\) 234.945 0.259321
\(907\) −1777.40 −1.95965 −0.979823 0.199868i \(-0.935949\pi\)
−0.979823 + 0.199868i \(0.935949\pi\)
\(908\) 1498.16i 1.64995i
\(909\) 1448.13i 1.59310i
\(910\) 89.4771i 0.0983265i
\(911\) 93.9112 0.103086 0.0515429 0.998671i \(-0.483586\pi\)
0.0515429 + 0.998671i \(0.483586\pi\)
\(912\) 84.0337i 0.0921423i
\(913\) 53.6604 + 360.047i 0.0587738 + 0.394356i
\(914\) −753.853 −0.824784
\(915\) 141.634i 0.154791i
\(916\) 217.721 0.237686
\(917\) −420.869 −0.458962
\(918\) 1411.27 1.53734
\(919\) 609.231i 0.662928i −0.943468 0.331464i \(-0.892458\pi\)
0.943468 0.331464i \(-0.107542\pi\)
\(920\) 7.30933i 0.00794493i
\(921\) 100.073i 0.108657i
\(922\) −1273.92 −1.38169
\(923\) 209.317i 0.226778i
\(924\) 50.1943 + 336.790i 0.0543228 + 0.364491i
\(925\) −412.307 −0.445738
\(926\) 1345.50i 1.45302i
\(927\) −1088.27 −1.17397
\(928\) −222.480 −0.239742
\(929\) −430.888 −0.463820 −0.231910 0.972737i \(-0.574497\pi\)
−0.231910 + 0.972737i \(0.574497\pi\)
\(930\) 175.583i 0.188799i
\(931\) 56.6313i 0.0608284i
\(932\) 1448.62i 1.55431i
\(933\) −273.163 −0.292779
\(934\) 376.671i 0.403288i
\(935\) −67.5155 453.011i −0.0722091 0.484503i
\(936\) 21.4617 0.0229291
\(937\) 256.899i 0.274171i −0.990559 0.137086i \(-0.956226\pi\)
0.990559 0.137086i \(-0.0437736\pi\)
\(938\) 320.742 0.341942
\(939\) −183.002 −0.194891
\(940\) −557.888 −0.593498
\(941\) 217.737i 0.231389i −0.993285 0.115695i \(-0.963091\pi\)
0.993285 0.115695i \(-0.0369094\pi\)
\(942\) 520.721i 0.552782i
\(943\) 84.5452i 0.0896556i
\(944\) −370.941 −0.392946
\(945\) 197.500i 0.208995i
\(946\) 1740.06 259.334i 1.83939 0.274137i
\(947\) 1628.47 1.71961 0.859806 0.510620i \(-0.170584\pi\)
0.859806 + 0.510620i \(0.170584\pi\)
\(948\) 647.860i 0.683397i
\(949\) 228.609 0.240894
\(950\) 314.980 0.331558
\(951\) 171.998 0.180860
\(952\) 141.446i 0.148578i
\(953\) 616.501i 0.646906i −0.946244 0.323453i \(-0.895156\pi\)
0.946244 0.323453i \(-0.104844\pi\)
\(954\) 1041.92i 1.09216i
\(955\) 25.7156 0.0269273
\(956\) 14.4385i 0.0151030i
\(957\) 9.21314 + 61.8177i 0.00962711 + 0.0645953i
\(958\) 1148.67 1.19903
\(959\) 220.793i 0.230232i
\(960\) 143.146 0.149111
\(961\) 23.1101 0.0240480
\(962\) 163.454 0.169911
\(963\) 1404.88i 1.45886i
\(964\) 271.642i 0.281786i
\(965\) 440.085i 0.456047i
\(966\) 99.1430 0.102632
\(967\) 572.952i 0.592505i 0.955110 + 0.296253i \(0.0957370\pi\)
−0.955110 + 0.296253i \(0.904263\pi\)
\(968\) 32.4517 + 106.453i 0.0335245 + 0.109972i
\(969\) −144.399 −0.149019
\(970\) 882.584i 0.909880i
\(971\) 645.379 0.664654 0.332327 0.943164i \(-0.392166\pi\)
0.332327 + 0.943164i \(0.392166\pi\)
\(972\) −988.835 −1.01732
\(973\) −313.350 −0.322045
\(974\) 550.201i 0.564888i
\(975\) 79.7155i 0.0817595i
\(976\) 1067.25i 1.09350i
\(977\) 1497.06 1.53231 0.766153 0.642658i \(-0.222168\pi\)
0.766153 + 0.642658i \(0.222168\pi\)
\(978\) 571.118i 0.583966i
\(979\) −831.973 + 123.995i −0.849819 + 0.126655i
\(980\) −82.5910 −0.0842765
\(981\) 1014.31i 1.03395i
\(982\) −138.784 −0.141328
\(983\) 1233.58 1.25491 0.627457 0.778651i \(-0.284096\pi\)
0.627457 + 0.778651i \(0.284096\pi\)
\(984\) −18.9879 −0.0192966
\(985\) 140.550i 0.142691i
\(986\) 351.626i 0.356619i
\(987\) 558.720i 0.566079i
\(988\) −64.8282 −0.0656156
\(989\) 265.934i 0.268892i
\(990\) 59.1208 + 396.684i 0.0597180 + 0.400691i
\(991\) 789.236 0.796403 0.398202 0.917298i \(-0.369634\pi\)
0.398202 + 0.917298i \(0.369634\pi\)
\(992\) 1438.49i 1.45009i
\(993\) −214.415 −0.215927
\(994\) 1208.00 1.21529
\(995\) −250.011 −0.251267
\(996\) 167.375i 0.168048i
\(997\) 872.590i 0.875216i −0.899166 0.437608i \(-0.855826\pi\)
0.899166 0.437608i \(-0.144174\pi\)
\(998\) 2607.57i 2.61280i
\(999\) −360.786 −0.361148
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.7 44
11.10 odd 2 inner 253.3.c.a.208.38 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.7 44 1.1 even 1 trivial
253.3.c.a.208.38 yes 44 11.10 odd 2 inner