Properties

Label 253.3.c.a.208.9
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(208,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.208");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.9
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.36

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64438i q^{2} -0.454888 q^{3} -2.99272 q^{4} -5.27954 q^{5} +1.20289i q^{6} +3.36948i q^{7} -2.66362i q^{8} -8.79308 q^{9} +13.9611i q^{10} +(4.03808 - 10.2320i) q^{11} +1.36135 q^{12} +22.4414i q^{13} +8.91017 q^{14} +2.40160 q^{15} -19.0145 q^{16} +19.8649i q^{17} +23.2522i q^{18} +10.9596i q^{19} +15.8002 q^{20} -1.53274i q^{21} +(-27.0573 - 10.6782i) q^{22} +4.79583 q^{23} +1.21165i q^{24} +2.87357 q^{25} +59.3436 q^{26} +8.09385 q^{27} -10.0839i q^{28} +7.02213i q^{29} -6.35073i q^{30} -27.2934 q^{31} +39.6270i q^{32} +(-1.83687 + 4.65441i) q^{33} +52.5303 q^{34} -17.7893i q^{35} +26.3152 q^{36} -62.0799 q^{37} +28.9813 q^{38} -10.2083i q^{39} +14.0627i q^{40} -20.1654i q^{41} -4.05313 q^{42} -79.7326i q^{43} +(-12.0849 + 30.6216i) q^{44} +46.4234 q^{45} -12.6820i q^{46} +8.66460 q^{47} +8.64946 q^{48} +37.6466 q^{49} -7.59879i q^{50} -9.03631i q^{51} -67.1610i q^{52} -67.8010 q^{53} -21.4032i q^{54} +(-21.3192 + 54.0203i) q^{55} +8.97502 q^{56} -4.98538i q^{57} +18.5691 q^{58} -8.14834 q^{59} -7.18732 q^{60} +81.2608i q^{61} +72.1740i q^{62} -29.6281i q^{63} +28.7307 q^{64} -118.480i q^{65} +(12.3080 + 4.85738i) q^{66} -37.3264 q^{67} -59.4502i q^{68} -2.18157 q^{69} -47.0416 q^{70} -48.1210 q^{71} +23.4214i q^{72} +34.8727i q^{73} +164.163i q^{74} -1.30715 q^{75} -32.7990i q^{76} +(34.4765 + 13.6062i) q^{77} -26.9947 q^{78} -75.0277i q^{79} +100.388 q^{80} +75.4559 q^{81} -53.3248 q^{82} -22.7069i q^{83} +4.58705i q^{84} -104.878i q^{85} -210.843 q^{86} -3.19428i q^{87} +(-27.2542 - 10.7559i) q^{88} -172.233 q^{89} -122.761i q^{90} -75.6160 q^{91} -14.3526 q^{92} +12.4154 q^{93} -22.9125i q^{94} -57.8616i q^{95} -18.0258i q^{96} +27.8833 q^{97} -99.5518i q^{98} +(-35.5071 + 89.9708i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.64438i 1.32219i −0.750303 0.661094i \(-0.770092\pi\)
0.750303 0.661094i \(-0.229908\pi\)
\(3\) −0.454888 −0.151629 −0.0758146 0.997122i \(-0.524156\pi\)
−0.0758146 + 0.997122i \(0.524156\pi\)
\(4\) −2.99272 −0.748181
\(5\) −5.27954 −1.05591 −0.527954 0.849273i \(-0.677041\pi\)
−0.527954 + 0.849273i \(0.677041\pi\)
\(6\) 1.20289i 0.200482i
\(7\) 3.36948i 0.481354i 0.970605 + 0.240677i \(0.0773695\pi\)
−0.970605 + 0.240677i \(0.922630\pi\)
\(8\) 2.66362i 0.332952i
\(9\) −8.79308 −0.977009
\(10\) 13.9611i 1.39611i
\(11\) 4.03808 10.2320i 0.367098 0.930182i
\(12\) 1.36135 0.113446
\(13\) 22.4414i 1.72626i 0.504978 + 0.863132i \(0.331500\pi\)
−0.504978 + 0.863132i \(0.668500\pi\)
\(14\) 8.91017 0.636441
\(15\) 2.40160 0.160107
\(16\) −19.0145 −1.18841
\(17\) 19.8649i 1.16852i 0.811565 + 0.584262i \(0.198616\pi\)
−0.811565 + 0.584262i \(0.801384\pi\)
\(18\) 23.2522i 1.29179i
\(19\) 10.9596i 0.576820i 0.957507 + 0.288410i \(0.0931266\pi\)
−0.957507 + 0.288410i \(0.906873\pi\)
\(20\) 15.8002 0.790010
\(21\) 1.53274i 0.0729874i
\(22\) −27.0573 10.6782i −1.22988 0.485373i
\(23\) 4.79583 0.208514
\(24\) 1.21165i 0.0504853i
\(25\) 2.87357 0.114943
\(26\) 59.3436 2.28245
\(27\) 8.09385 0.299772
\(28\) 10.0839i 0.360140i
\(29\) 7.02213i 0.242142i 0.992644 + 0.121071i \(0.0386329\pi\)
−0.992644 + 0.121071i \(0.961367\pi\)
\(30\) 6.35073i 0.211691i
\(31\) −27.2934 −0.880433 −0.440216 0.897892i \(-0.645098\pi\)
−0.440216 + 0.897892i \(0.645098\pi\)
\(32\) 39.6270i 1.23834i
\(33\) −1.83687 + 4.65441i −0.0556628 + 0.141043i
\(34\) 52.5303 1.54501
\(35\) 17.7893i 0.508266i
\(36\) 26.3152 0.730979
\(37\) −62.0799 −1.67783 −0.838917 0.544259i \(-0.816811\pi\)
−0.838917 + 0.544259i \(0.816811\pi\)
\(38\) 28.9813 0.762665
\(39\) 10.2083i 0.261752i
\(40\) 14.0627i 0.351567i
\(41\) 20.1654i 0.491839i −0.969290 0.245919i \(-0.920910\pi\)
0.969290 0.245919i \(-0.0790898\pi\)
\(42\) −4.05313 −0.0965031
\(43\) 79.7326i 1.85425i −0.374756 0.927124i \(-0.622273\pi\)
0.374756 0.927124i \(-0.377727\pi\)
\(44\) −12.0849 + 30.6216i −0.274656 + 0.695944i
\(45\) 46.4234 1.03163
\(46\) 12.6820i 0.275695i
\(47\) 8.66460 0.184353 0.0921766 0.995743i \(-0.470618\pi\)
0.0921766 + 0.995743i \(0.470618\pi\)
\(48\) 8.64946 0.180197
\(49\) 37.6466 0.768298
\(50\) 7.59879i 0.151976i
\(51\) 9.03631i 0.177183i
\(52\) 67.1610i 1.29156i
\(53\) −67.8010 −1.27926 −0.639632 0.768682i \(-0.720913\pi\)
−0.639632 + 0.768682i \(0.720913\pi\)
\(54\) 21.4032i 0.396355i
\(55\) −21.3192 + 54.0203i −0.387622 + 0.982187i
\(56\) 8.97502 0.160268
\(57\) 4.98538i 0.0874628i
\(58\) 18.5691 0.320158
\(59\) −8.14834 −0.138108 −0.0690538 0.997613i \(-0.521998\pi\)
−0.0690538 + 0.997613i \(0.521998\pi\)
\(60\) −7.18732 −0.119789
\(61\) 81.2608i 1.33214i 0.745888 + 0.666072i \(0.232026\pi\)
−0.745888 + 0.666072i \(0.767974\pi\)
\(62\) 72.1740i 1.16410i
\(63\) 29.6281i 0.470287i
\(64\) 28.7307 0.448917
\(65\) 118.480i 1.82278i
\(66\) 12.3080 + 4.85738i 0.186485 + 0.0735967i
\(67\) −37.3264 −0.557110 −0.278555 0.960420i \(-0.589855\pi\)
−0.278555 + 0.960420i \(0.589855\pi\)
\(68\) 59.4502i 0.874268i
\(69\) −2.18157 −0.0316169
\(70\) −47.0416 −0.672023
\(71\) −48.1210 −0.677760 −0.338880 0.940830i \(-0.610048\pi\)
−0.338880 + 0.940830i \(0.610048\pi\)
\(72\) 23.4214i 0.325297i
\(73\) 34.8727i 0.477708i 0.971055 + 0.238854i \(0.0767718\pi\)
−0.971055 + 0.238854i \(0.923228\pi\)
\(74\) 164.163i 2.21841i
\(75\) −1.30715 −0.0174287
\(76\) 32.7990i 0.431566i
\(77\) 34.4765 + 13.6062i 0.447747 + 0.176704i
\(78\) −26.9947 −0.346085
\(79\) 75.0277i 0.949717i −0.880062 0.474859i \(-0.842499\pi\)
0.880062 0.474859i \(-0.157501\pi\)
\(80\) 100.388 1.25485
\(81\) 75.4559 0.931554
\(82\) −53.3248 −0.650303
\(83\) 22.7069i 0.273577i −0.990600 0.136789i \(-0.956322\pi\)
0.990600 0.136789i \(-0.0436781\pi\)
\(84\) 4.58705i 0.0546078i
\(85\) 104.878i 1.23386i
\(86\) −210.843 −2.45166
\(87\) 3.19428i 0.0367159i
\(88\) −27.2542 10.7559i −0.309706 0.122226i
\(89\) −172.233 −1.93520 −0.967598 0.252494i \(-0.918749\pi\)
−0.967598 + 0.252494i \(0.918749\pi\)
\(90\) 122.761i 1.36401i
\(91\) −75.6160 −0.830945
\(92\) −14.3526 −0.156006
\(93\) 12.4154 0.133499
\(94\) 22.9125i 0.243750i
\(95\) 57.8616i 0.609069i
\(96\) 18.0258i 0.187769i
\(97\) 27.8833 0.287457 0.143728 0.989617i \(-0.454091\pi\)
0.143728 + 0.989617i \(0.454091\pi\)
\(98\) 99.5518i 1.01583i
\(99\) −35.5071 + 89.9708i −0.358658 + 0.908796i
\(100\) −8.59979 −0.0859979
\(101\) 103.827i 1.02799i −0.857794 0.513994i \(-0.828165\pi\)
0.857794 0.513994i \(-0.171835\pi\)
\(102\) −23.8954 −0.234269
\(103\) −67.1661 −0.652098 −0.326049 0.945353i \(-0.605717\pi\)
−0.326049 + 0.945353i \(0.605717\pi\)
\(104\) 59.7754 0.574764
\(105\) 8.09214i 0.0770680i
\(106\) 179.291i 1.69143i
\(107\) 143.527i 1.34138i 0.741739 + 0.670689i \(0.234002\pi\)
−0.741739 + 0.670689i \(0.765998\pi\)
\(108\) −24.2227 −0.224284
\(109\) 20.0854i 0.184270i 0.995747 + 0.0921348i \(0.0293691\pi\)
−0.995747 + 0.0921348i \(0.970631\pi\)
\(110\) 142.850 + 56.3760i 1.29864 + 0.512509i
\(111\) 28.2394 0.254409
\(112\) 64.0690i 0.572045i
\(113\) 61.9410 0.548151 0.274075 0.961708i \(-0.411628\pi\)
0.274075 + 0.961708i \(0.411628\pi\)
\(114\) −13.1832 −0.115642
\(115\) −25.3198 −0.220172
\(116\) 21.0153i 0.181166i
\(117\) 197.329i 1.68657i
\(118\) 21.5473i 0.182604i
\(119\) −66.9345 −0.562474
\(120\) 6.39695i 0.0533079i
\(121\) −88.3878 82.6353i −0.730478 0.682936i
\(122\) 214.884 1.76134
\(123\) 9.17299i 0.0745771i
\(124\) 81.6816 0.658723
\(125\) 116.817 0.934539
\(126\) −78.3478 −0.621808
\(127\) 91.0968i 0.717298i 0.933473 + 0.358649i \(0.116762\pi\)
−0.933473 + 0.358649i \(0.883238\pi\)
\(128\) 82.5333i 0.644791i
\(129\) 36.2694i 0.281158i
\(130\) −313.307 −2.41005
\(131\) 162.629i 1.24145i −0.784030 0.620723i \(-0.786839\pi\)
0.784030 0.620723i \(-0.213161\pi\)
\(132\) 5.49725 13.9294i 0.0416458 0.105526i
\(133\) −36.9281 −0.277655
\(134\) 98.7050i 0.736604i
\(135\) −42.7318 −0.316532
\(136\) 52.9126 0.389063
\(137\) 238.747 1.74268 0.871339 0.490681i \(-0.163252\pi\)
0.871339 + 0.490681i \(0.163252\pi\)
\(138\) 5.76888i 0.0418035i
\(139\) 140.887i 1.01357i 0.862071 + 0.506787i \(0.169167\pi\)
−0.862071 + 0.506787i \(0.830833\pi\)
\(140\) 53.2385i 0.380275i
\(141\) −3.94142 −0.0279533
\(142\) 127.250i 0.896126i
\(143\) 229.621 + 90.6203i 1.60574 + 0.633708i
\(144\) 167.196 1.16108
\(145\) 37.0736i 0.255680i
\(146\) 92.2165 0.631620
\(147\) −17.1250 −0.116496
\(148\) 185.788 1.25532
\(149\) 158.479i 1.06362i 0.846864 + 0.531810i \(0.178488\pi\)
−0.846864 + 0.531810i \(0.821512\pi\)
\(150\) 3.45660i 0.0230440i
\(151\) 37.9137i 0.251084i −0.992088 0.125542i \(-0.959933\pi\)
0.992088 0.125542i \(-0.0400670\pi\)
\(152\) 29.1922 0.192054
\(153\) 174.674i 1.14166i
\(154\) 35.9800 91.1689i 0.233636 0.592006i
\(155\) 144.097 0.929656
\(156\) 30.5507i 0.195838i
\(157\) 100.149 0.637891 0.318946 0.947773i \(-0.396671\pi\)
0.318946 + 0.947773i \(0.396671\pi\)
\(158\) −198.401 −1.25570
\(159\) 30.8418 0.193974
\(160\) 209.212i 1.30758i
\(161\) 16.1595i 0.100369i
\(162\) 199.534i 1.23169i
\(163\) 309.680 1.89988 0.949940 0.312433i \(-0.101144\pi\)
0.949940 + 0.312433i \(0.101144\pi\)
\(164\) 60.3494i 0.367984i
\(165\) 9.69785 24.5732i 0.0587748 0.148928i
\(166\) −60.0456 −0.361720
\(167\) 136.995i 0.820331i 0.912011 + 0.410166i \(0.134529\pi\)
−0.912011 + 0.410166i \(0.865471\pi\)
\(168\) −4.08262 −0.0243013
\(169\) −334.618 −1.97999
\(170\) −277.336 −1.63139
\(171\) 96.3685i 0.563558i
\(172\) 238.618i 1.38731i
\(173\) 240.397i 1.38958i −0.719212 0.694790i \(-0.755497\pi\)
0.719212 0.694790i \(-0.244503\pi\)
\(174\) −8.44687 −0.0485453
\(175\) 9.68243i 0.0553282i
\(176\) −76.7821 + 194.556i −0.436262 + 1.10543i
\(177\) 3.70658 0.0209411
\(178\) 455.447i 2.55869i
\(179\) 256.995 1.43572 0.717862 0.696185i \(-0.245121\pi\)
0.717862 + 0.696185i \(0.245121\pi\)
\(180\) −138.932 −0.771847
\(181\) −329.196 −1.81876 −0.909382 0.415961i \(-0.863445\pi\)
−0.909382 + 0.415961i \(0.863445\pi\)
\(182\) 199.957i 1.09866i
\(183\) 36.9645i 0.201992i
\(184\) 12.7743i 0.0694254i
\(185\) 327.753 1.77164
\(186\) 32.8311i 0.176511i
\(187\) 203.258 + 80.2161i 1.08694 + 0.428963i
\(188\) −25.9307 −0.137929
\(189\) 27.2721i 0.144297i
\(190\) −153.008 −0.805304
\(191\) −95.0930 −0.497869 −0.248935 0.968520i \(-0.580080\pi\)
−0.248935 + 0.968520i \(0.580080\pi\)
\(192\) −13.0692 −0.0680689
\(193\) 3.95422i 0.0204882i −0.999948 0.0102441i \(-0.996739\pi\)
0.999948 0.0102441i \(-0.00326086\pi\)
\(194\) 73.7340i 0.380072i
\(195\) 53.8953i 0.276386i
\(196\) −112.666 −0.574826
\(197\) 82.2187i 0.417354i 0.977985 + 0.208677i \(0.0669157\pi\)
−0.977985 + 0.208677i \(0.933084\pi\)
\(198\) 237.917 + 93.8942i 1.20160 + 0.474213i
\(199\) 60.0739 0.301879 0.150939 0.988543i \(-0.451770\pi\)
0.150939 + 0.988543i \(0.451770\pi\)
\(200\) 7.65409i 0.0382705i
\(201\) 16.9793 0.0844742
\(202\) −274.557 −1.35919
\(203\) −23.6609 −0.116556
\(204\) 27.0432i 0.132565i
\(205\) 106.464i 0.519337i
\(206\) 177.612i 0.862196i
\(207\) −42.1701 −0.203720
\(208\) 426.713i 2.05150i
\(209\) 112.138 + 44.2557i 0.536548 + 0.211750i
\(210\) 21.3987 0.101898
\(211\) 165.026i 0.782112i −0.920367 0.391056i \(-0.872110\pi\)
0.920367 0.391056i \(-0.127890\pi\)
\(212\) 202.909 0.957120
\(213\) 21.8896 0.102768
\(214\) 379.541 1.77355
\(215\) 420.952i 1.95792i
\(216\) 21.5589i 0.0998099i
\(217\) 91.9646i 0.423800i
\(218\) 53.1133 0.243639
\(219\) 15.8632i 0.0724346i
\(220\) 63.8025 161.668i 0.290011 0.734854i
\(221\) −445.797 −2.01718
\(222\) 74.6755i 0.336376i
\(223\) 319.714 1.43370 0.716848 0.697229i \(-0.245584\pi\)
0.716848 + 0.697229i \(0.245584\pi\)
\(224\) −133.522 −0.596082
\(225\) −25.2675 −0.112300
\(226\) 163.795i 0.724758i
\(227\) 63.1393i 0.278147i −0.990282 0.139073i \(-0.955588\pi\)
0.990282 0.139073i \(-0.0444124\pi\)
\(228\) 14.9199i 0.0654380i
\(229\) −317.443 −1.38621 −0.693107 0.720834i \(-0.743759\pi\)
−0.693107 + 0.720834i \(0.743759\pi\)
\(230\) 66.9551i 0.291109i
\(231\) −15.6830 6.18931i −0.0678916 0.0267935i
\(232\) 18.7043 0.0806219
\(233\) 356.067i 1.52818i −0.645108 0.764091i \(-0.723188\pi\)
0.645108 0.764091i \(-0.276812\pi\)
\(234\) −521.813 −2.22997
\(235\) −45.7451 −0.194660
\(236\) 24.3857 0.103329
\(237\) 34.1292i 0.144005i
\(238\) 177.000i 0.743697i
\(239\) 348.412i 1.45779i 0.684624 + 0.728896i \(0.259966\pi\)
−0.684624 + 0.728896i \(0.740034\pi\)
\(240\) −45.6652 −0.190272
\(241\) 294.330i 1.22129i 0.791905 + 0.610644i \(0.209089\pi\)
−0.791905 + 0.610644i \(0.790911\pi\)
\(242\) −218.519 + 233.731i −0.902970 + 0.965829i
\(243\) −107.169 −0.441023
\(244\) 243.191i 0.996684i
\(245\) −198.757 −0.811252
\(246\) 24.2568 0.0986050
\(247\) −245.949 −0.995744
\(248\) 72.6993i 0.293142i
\(249\) 10.3291i 0.0414823i
\(250\) 308.909i 1.23564i
\(251\) −280.050 −1.11574 −0.557869 0.829929i \(-0.688381\pi\)
−0.557869 + 0.829929i \(0.688381\pi\)
\(252\) 88.6687i 0.351860i
\(253\) 19.3660 49.0710i 0.0765453 0.193956i
\(254\) 240.894 0.948402
\(255\) 47.7076i 0.187089i
\(256\) 333.172 1.30145
\(257\) −419.365 −1.63177 −0.815885 0.578215i \(-0.803750\pi\)
−0.815885 + 0.578215i \(0.803750\pi\)
\(258\) 95.9099 0.371744
\(259\) 209.177i 0.807633i
\(260\) 354.579i 1.36377i
\(261\) 61.7461i 0.236575i
\(262\) −430.053 −1.64143
\(263\) 14.6952i 0.0558752i 0.999610 + 0.0279376i \(0.00889397\pi\)
−0.999610 + 0.0279376i \(0.991106\pi\)
\(264\) 12.3976 + 4.89273i 0.0469606 + 0.0185331i
\(265\) 357.958 1.35079
\(266\) 97.6518i 0.367112i
\(267\) 78.3465 0.293432
\(268\) 111.707 0.416819
\(269\) −61.4090 −0.228286 −0.114143 0.993464i \(-0.536412\pi\)
−0.114143 + 0.993464i \(0.536412\pi\)
\(270\) 112.999i 0.418515i
\(271\) 106.118i 0.391579i 0.980646 + 0.195789i \(0.0627269\pi\)
−0.980646 + 0.195789i \(0.937273\pi\)
\(272\) 377.722i 1.38868i
\(273\) 34.3968 0.125996
\(274\) 631.337i 2.30415i
\(275\) 11.6037 29.4024i 0.0421953 0.106918i
\(276\) 6.52882 0.0236551
\(277\) 6.81722i 0.0246109i 0.999924 + 0.0123054i \(0.00391704\pi\)
−0.999924 + 0.0123054i \(0.996083\pi\)
\(278\) 372.558 1.34014
\(279\) 239.993 0.860190
\(280\) −47.3840 −0.169228
\(281\) 39.3407i 0.140003i −0.997547 0.0700013i \(-0.977700\pi\)
0.997547 0.0700013i \(-0.0223003\pi\)
\(282\) 10.4226i 0.0369596i
\(283\) 242.404i 0.856550i 0.903648 + 0.428275i \(0.140879\pi\)
−0.903648 + 0.428275i \(0.859121\pi\)
\(284\) 144.013 0.507087
\(285\) 26.3205i 0.0923527i
\(286\) 239.634 607.204i 0.837881 2.12309i
\(287\) 67.9469 0.236749
\(288\) 348.443i 1.20987i
\(289\) −105.615 −0.365450
\(290\) −98.0366 −0.338057
\(291\) −12.6838 −0.0435869
\(292\) 104.364i 0.357412i
\(293\) 314.967i 1.07497i −0.843273 0.537486i \(-0.819374\pi\)
0.843273 0.537486i \(-0.180626\pi\)
\(294\) 45.2849i 0.154030i
\(295\) 43.0195 0.145829
\(296\) 165.357i 0.558639i
\(297\) 32.6836 82.8163i 0.110046 0.278843i
\(298\) 419.079 1.40630
\(299\) 107.625i 0.359951i
\(300\) 3.91194 0.0130398
\(301\) 268.658 0.892550
\(302\) −100.258 −0.331981
\(303\) 47.2295i 0.155873i
\(304\) 208.391i 0.685497i
\(305\) 429.020i 1.40662i
\(306\) −461.903 −1.50949
\(307\) 248.876i 0.810670i 0.914168 + 0.405335i \(0.132845\pi\)
−0.914168 + 0.405335i \(0.867155\pi\)
\(308\) −103.179 40.7197i −0.334996 0.132207i
\(309\) 30.5530 0.0988771
\(310\) 381.046i 1.22918i
\(311\) 413.852 1.33071 0.665357 0.746525i \(-0.268279\pi\)
0.665357 + 0.746525i \(0.268279\pi\)
\(312\) −27.1911 −0.0871510
\(313\) −216.030 −0.690191 −0.345095 0.938568i \(-0.612153\pi\)
−0.345095 + 0.938568i \(0.612153\pi\)
\(314\) 264.831i 0.843412i
\(315\) 156.423i 0.496580i
\(316\) 224.537i 0.710560i
\(317\) 106.613 0.336318 0.168159 0.985760i \(-0.446218\pi\)
0.168159 + 0.985760i \(0.446218\pi\)
\(318\) 81.5574i 0.256470i
\(319\) 71.8504 + 28.3559i 0.225236 + 0.0888900i
\(320\) −151.685 −0.474015
\(321\) 65.2889i 0.203392i
\(322\) 42.7317 0.132707
\(323\) −217.711 −0.674029
\(324\) −225.819 −0.696971
\(325\) 64.4870i 0.198422i
\(326\) 818.911i 2.51200i
\(327\) 9.13659i 0.0279407i
\(328\) −53.7129 −0.163759
\(329\) 29.1952i 0.0887392i
\(330\) −64.9807 25.6448i −0.196911 0.0777114i
\(331\) −487.825 −1.47379 −0.736895 0.676007i \(-0.763709\pi\)
−0.736895 + 0.676007i \(0.763709\pi\)
\(332\) 67.9554i 0.204685i
\(333\) 545.873 1.63926
\(334\) 362.267 1.08463
\(335\) 197.066 0.588257
\(336\) 29.1442i 0.0867387i
\(337\) 2.71785i 0.00806483i 0.999992 + 0.00403242i \(0.00128356\pi\)
−0.999992 + 0.00403242i \(0.998716\pi\)
\(338\) 884.855i 2.61791i
\(339\) −28.1762 −0.0831157
\(340\) 313.870i 0.923147i
\(341\) −110.213 + 279.266i −0.323205 + 0.818963i
\(342\) −254.834 −0.745130
\(343\) 291.954i 0.851178i
\(344\) −212.377 −0.617376
\(345\) 11.5177 0.0333845
\(346\) −635.701 −1.83729
\(347\) 486.217i 1.40120i −0.713553 0.700601i \(-0.752915\pi\)
0.713553 0.700601i \(-0.247085\pi\)
\(348\) 9.55959i 0.0274701i
\(349\) 100.542i 0.288085i −0.989571 0.144043i \(-0.953990\pi\)
0.989571 0.144043i \(-0.0460102\pi\)
\(350\) 25.6040 0.0731543
\(351\) 181.638i 0.517486i
\(352\) 405.464 + 160.017i 1.15189 + 0.454594i
\(353\) 337.433 0.955902 0.477951 0.878387i \(-0.341380\pi\)
0.477951 + 0.878387i \(0.341380\pi\)
\(354\) 9.80160i 0.0276881i
\(355\) 254.057 0.715653
\(356\) 515.444 1.44788
\(357\) 30.4477 0.0852876
\(358\) 679.590i 1.89830i
\(359\) 14.8353i 0.0413238i 0.999787 + 0.0206619i \(0.00657736\pi\)
−0.999787 + 0.0206619i \(0.993423\pi\)
\(360\) 123.654i 0.343484i
\(361\) 240.888 0.667279
\(362\) 870.519i 2.40475i
\(363\) 40.2065 + 37.5898i 0.110762 + 0.103553i
\(364\) 226.298 0.621697
\(365\) 184.112i 0.504416i
\(366\) −97.7481 −0.267071
\(367\) −210.753 −0.574260 −0.287130 0.957892i \(-0.592701\pi\)
−0.287130 + 0.957892i \(0.592701\pi\)
\(368\) −91.1903 −0.247800
\(369\) 177.316i 0.480531i
\(370\) 866.703i 2.34244i
\(371\) 228.454i 0.615779i
\(372\) −37.1560 −0.0998816
\(373\) 73.1502i 0.196113i 0.995181 + 0.0980566i \(0.0312626\pi\)
−0.995181 + 0.0980566i \(0.968737\pi\)
\(374\) 212.122 537.490i 0.567170 1.43714i
\(375\) −53.1388 −0.141704
\(376\) 23.0792i 0.0613808i
\(377\) −157.587 −0.418002
\(378\) 72.1176 0.190787
\(379\) −149.197 −0.393659 −0.196830 0.980438i \(-0.563065\pi\)
−0.196830 + 0.980438i \(0.563065\pi\)
\(380\) 173.164i 0.455694i
\(381\) 41.4388i 0.108763i
\(382\) 251.462i 0.658277i
\(383\) −392.978 −1.02605 −0.513026 0.858373i \(-0.671476\pi\)
−0.513026 + 0.858373i \(0.671476\pi\)
\(384\) 37.5434i 0.0977692i
\(385\) −182.020 71.8347i −0.472780 0.186584i
\(386\) −10.4565 −0.0270893
\(387\) 701.095i 1.81162i
\(388\) −83.4470 −0.215070
\(389\) 234.577 0.603027 0.301513 0.953462i \(-0.402508\pi\)
0.301513 + 0.953462i \(0.402508\pi\)
\(390\) 142.519 0.365435
\(391\) 95.2688i 0.243654i
\(392\) 100.276i 0.255807i
\(393\) 73.9782i 0.188240i
\(394\) 217.417 0.551820
\(395\) 396.112i 1.00281i
\(396\) 106.263 269.258i 0.268341 0.679944i
\(397\) 52.5622 0.132398 0.0661992 0.997806i \(-0.478913\pi\)
0.0661992 + 0.997806i \(0.478913\pi\)
\(398\) 158.858i 0.399141i
\(399\) 16.7981 0.0421006
\(400\) −54.6395 −0.136599
\(401\) 173.510 0.432693 0.216347 0.976317i \(-0.430586\pi\)
0.216347 + 0.976317i \(0.430586\pi\)
\(402\) 44.8997i 0.111691i
\(403\) 612.503i 1.51986i
\(404\) 310.725i 0.769120i
\(405\) −398.373 −0.983636
\(406\) 62.5684i 0.154109i
\(407\) −250.684 + 635.202i −0.615930 + 1.56069i
\(408\) −24.0693 −0.0589934
\(409\) 760.092i 1.85842i 0.369557 + 0.929208i \(0.379509\pi\)
−0.369557 + 0.929208i \(0.620491\pi\)
\(410\) 281.531 0.686660
\(411\) −108.603 −0.264241
\(412\) 201.009 0.487887
\(413\) 27.4557i 0.0664787i
\(414\) 111.514i 0.269357i
\(415\) 119.882i 0.288872i
\(416\) −889.287 −2.13771
\(417\) 64.0877i 0.153688i
\(418\) 117.029 296.536i 0.279973 0.709417i
\(419\) −457.479 −1.09183 −0.545917 0.837839i \(-0.683819\pi\)
−0.545917 + 0.837839i \(0.683819\pi\)
\(420\) 24.2175i 0.0576608i
\(421\) −612.397 −1.45462 −0.727312 0.686307i \(-0.759231\pi\)
−0.727312 + 0.686307i \(0.759231\pi\)
\(422\) −436.390 −1.03410
\(423\) −76.1885 −0.180115
\(424\) 180.596i 0.425934i
\(425\) 57.0832i 0.134313i
\(426\) 57.8844i 0.135879i
\(427\) −273.807 −0.641233
\(428\) 429.538i 1.00359i
\(429\) −104.452 41.2221i −0.243477 0.0960887i
\(430\) 1113.15 2.58873
\(431\) 861.768i 1.99946i 0.0231917 + 0.999731i \(0.492617\pi\)
−0.0231917 + 0.999731i \(0.507383\pi\)
\(432\) −153.901 −0.356251
\(433\) 153.723 0.355019 0.177509 0.984119i \(-0.443196\pi\)
0.177509 + 0.984119i \(0.443196\pi\)
\(434\) −243.189 −0.560343
\(435\) 16.8643i 0.0387686i
\(436\) 60.1100i 0.137867i
\(437\) 52.5603i 0.120275i
\(438\) −41.9482 −0.0957721
\(439\) 627.662i 1.42975i 0.699250 + 0.714877i \(0.253517\pi\)
−0.699250 + 0.714877i \(0.746483\pi\)
\(440\) 143.890 + 56.7863i 0.327022 + 0.129060i
\(441\) −331.029 −0.750634
\(442\) 1178.86i 2.66709i
\(443\) 330.907 0.746969 0.373484 0.927636i \(-0.378163\pi\)
0.373484 + 0.927636i \(0.378163\pi\)
\(444\) −84.5126 −0.190344
\(445\) 909.309 2.04339
\(446\) 845.444i 1.89562i
\(447\) 72.0903i 0.161276i
\(448\) 96.8075i 0.216088i
\(449\) −563.117 −1.25416 −0.627079 0.778955i \(-0.715750\pi\)
−0.627079 + 0.778955i \(0.715750\pi\)
\(450\) 66.8168i 0.148482i
\(451\) −206.332 81.4294i −0.457500 0.180553i
\(452\) −185.372 −0.410116
\(453\) 17.2465i 0.0380717i
\(454\) −166.964 −0.367762
\(455\) 399.218 0.877402
\(456\) −13.2792 −0.0291210
\(457\) 309.789i 0.677876i 0.940809 + 0.338938i \(0.110068\pi\)
−0.940809 + 0.338938i \(0.889932\pi\)
\(458\) 839.439i 1.83284i
\(459\) 160.784i 0.350291i
\(460\) 75.7751 0.164729
\(461\) 397.876i 0.863073i −0.902096 0.431536i \(-0.857972\pi\)
0.902096 0.431536i \(-0.142028\pi\)
\(462\) −16.3669 + 41.4716i −0.0354261 + 0.0897654i
\(463\) 383.461 0.828210 0.414105 0.910229i \(-0.364095\pi\)
0.414105 + 0.910229i \(0.364095\pi\)
\(464\) 133.522i 0.287763i
\(465\) −65.5478 −0.140963
\(466\) −941.574 −2.02054
\(467\) 149.479 0.320084 0.160042 0.987110i \(-0.448837\pi\)
0.160042 + 0.987110i \(0.448837\pi\)
\(468\) 590.552i 1.26186i
\(469\) 125.771i 0.268167i
\(470\) 120.967i 0.257377i
\(471\) −45.5565 −0.0967230
\(472\) 21.7041i 0.0459832i
\(473\) −815.825 321.967i −1.72479 0.680691i
\(474\) 90.2503 0.190402
\(475\) 31.4931i 0.0663013i
\(476\) 200.316 0.420833
\(477\) 596.179 1.24985
\(478\) 921.333 1.92748
\(479\) 157.152i 0.328084i 0.986453 + 0.164042i \(0.0524532\pi\)
−0.986453 + 0.164042i \(0.947547\pi\)
\(480\) 95.1682i 0.198267i
\(481\) 1393.16i 2.89639i
\(482\) 778.320 1.61477
\(483\) 7.35074i 0.0152189i
\(484\) 264.520 + 247.305i 0.546529 + 0.510960i
\(485\) −147.211 −0.303528
\(486\) 283.394i 0.583116i
\(487\) 552.835 1.13518 0.567592 0.823310i \(-0.307875\pi\)
0.567592 + 0.823310i \(0.307875\pi\)
\(488\) 216.448 0.443540
\(489\) −140.870 −0.288077
\(490\) 525.588i 1.07263i
\(491\) 644.523i 1.31267i −0.754468 0.656337i \(-0.772105\pi\)
0.754468 0.656337i \(-0.227895\pi\)
\(492\) 27.4522i 0.0557972i
\(493\) −139.494 −0.282949
\(494\) 650.381i 1.31656i
\(495\) 187.461 475.005i 0.378710 0.959605i
\(496\) 518.971 1.04631
\(497\) 162.143i 0.326243i
\(498\) 27.3140 0.0548474
\(499\) −626.170 −1.25485 −0.627425 0.778677i \(-0.715891\pi\)
−0.627425 + 0.778677i \(0.715891\pi\)
\(500\) −349.602 −0.699204
\(501\) 62.3175i 0.124386i
\(502\) 740.558i 1.47521i
\(503\) 163.928i 0.325900i 0.986634 + 0.162950i \(0.0521010\pi\)
−0.986634 + 0.162950i \(0.947899\pi\)
\(504\) −78.9180 −0.156583
\(505\) 548.158i 1.08546i
\(506\) −129.762 51.2108i −0.256447 0.101207i
\(507\) 152.214 0.300224
\(508\) 272.628i 0.536668i
\(509\) −108.759 −0.213672 −0.106836 0.994277i \(-0.534072\pi\)
−0.106836 + 0.994277i \(0.534072\pi\)
\(510\) 126.157 0.247366
\(511\) −117.503 −0.229947
\(512\) 550.898i 1.07597i
\(513\) 88.7053i 0.172915i
\(514\) 1108.96i 2.15751i
\(515\) 354.606 0.688556
\(516\) 108.544i 0.210357i
\(517\) 34.9883 88.6562i 0.0676757 0.171482i
\(518\) −553.143 −1.06784
\(519\) 109.354i 0.210701i
\(520\) −315.587 −0.606898
\(521\) 264.615 0.507899 0.253949 0.967218i \(-0.418270\pi\)
0.253949 + 0.967218i \(0.418270\pi\)
\(522\) −163.280 −0.312797
\(523\) 163.170i 0.311989i 0.987758 + 0.155994i \(0.0498582\pi\)
−0.987758 + 0.155994i \(0.950142\pi\)
\(524\) 486.705i 0.928826i
\(525\) 4.40442i 0.00838937i
\(526\) 38.8596 0.0738775
\(527\) 542.181i 1.02881i
\(528\) 34.9272 88.5014i 0.0661501 0.167616i
\(529\) 23.0000 0.0434783
\(530\) 946.576i 1.78599i
\(531\) 71.6490 0.134932
\(532\) 110.516 0.207736
\(533\) 452.540 0.849043
\(534\) 207.177i 0.387973i
\(535\) 757.759i 1.41637i
\(536\) 99.4233i 0.185491i
\(537\) −116.904 −0.217698
\(538\) 162.388i 0.301837i
\(539\) 152.020 385.200i 0.282041 0.714657i
\(540\) 127.885 0.236823
\(541\) 37.0332i 0.0684532i 0.999414 + 0.0342266i \(0.0108968\pi\)
−0.999414 + 0.0342266i \(0.989103\pi\)
\(542\) 280.616 0.517741
\(543\) 149.747 0.275778
\(544\) −787.187 −1.44704
\(545\) 106.042i 0.194572i
\(546\) 90.9580i 0.166590i
\(547\) 617.049i 1.12806i −0.825754 0.564030i \(-0.809250\pi\)
0.825754 0.564030i \(-0.190750\pi\)
\(548\) −714.504 −1.30384
\(549\) 714.532i 1.30152i
\(550\) −77.7509 30.6845i −0.141365 0.0557901i
\(551\) −76.9596 −0.139673
\(552\) 5.81086i 0.0105269i
\(553\) 252.804 0.457151
\(554\) 18.0273 0.0325402
\(555\) −149.091 −0.268632
\(556\) 421.635i 0.758337i
\(557\) 437.527i 0.785507i −0.919644 0.392753i \(-0.871523\pi\)
0.919644 0.392753i \(-0.128477\pi\)
\(558\) 634.632i 1.13733i
\(559\) 1789.31 3.20092
\(560\) 338.255i 0.604027i
\(561\) −92.4595 36.4893i −0.164812 0.0650434i
\(562\) −104.032 −0.185110
\(563\) 86.5060i 0.153652i 0.997045 + 0.0768260i \(0.0244786\pi\)
−0.997045 + 0.0768260i \(0.975521\pi\)
\(564\) 11.7956 0.0209141
\(565\) −327.020 −0.578797
\(566\) 641.007 1.13252
\(567\) 254.247i 0.448408i
\(568\) 128.176i 0.225662i
\(569\) 34.6783i 0.0609460i 0.999536 + 0.0304730i \(0.00970136\pi\)
−0.999536 + 0.0304730i \(0.990299\pi\)
\(570\) 69.6014 0.122108
\(571\) 624.331i 1.09340i −0.837329 0.546700i \(-0.815884\pi\)
0.837329 0.546700i \(-0.184116\pi\)
\(572\) −687.191 271.201i −1.20138 0.474128i
\(573\) 43.2567 0.0754916
\(574\) 179.677i 0.313026i
\(575\) 13.7812 0.0239672
\(576\) −252.631 −0.438596
\(577\) 914.406 1.58476 0.792380 0.610028i \(-0.208842\pi\)
0.792380 + 0.610028i \(0.208842\pi\)
\(578\) 279.286i 0.483193i
\(579\) 1.79873i 0.00310661i
\(580\) 110.951i 0.191295i
\(581\) 76.5104 0.131688
\(582\) 33.5407i 0.0576300i
\(583\) −273.786 + 693.740i −0.469615 + 1.18995i
\(584\) 92.8876 0.159054
\(585\) 1041.81i 1.78087i
\(586\) −832.891 −1.42131
\(587\) 407.276 0.693827 0.346913 0.937897i \(-0.387230\pi\)
0.346913 + 0.937897i \(0.387230\pi\)
\(588\) 51.2503 0.0871604
\(589\) 299.124i 0.507851i
\(590\) 113.760i 0.192813i
\(591\) 37.4003i 0.0632831i
\(592\) 1180.42 1.99395
\(593\) 468.218i 0.789575i 0.918772 + 0.394788i \(0.129182\pi\)
−0.918772 + 0.394788i \(0.870818\pi\)
\(594\) −218.998 86.4278i −0.368683 0.145501i
\(595\) 353.383 0.593922
\(596\) 474.284i 0.795779i
\(597\) −27.3269 −0.0457737
\(598\) 284.602 0.475923
\(599\) 389.781 0.650720 0.325360 0.945590i \(-0.394514\pi\)
0.325360 + 0.945590i \(0.394514\pi\)
\(600\) 3.48175i 0.00580292i
\(601\) 242.869i 0.404108i 0.979374 + 0.202054i \(0.0647617\pi\)
−0.979374 + 0.202054i \(0.935238\pi\)
\(602\) 710.432i 1.18012i
\(603\) 328.214 0.544301
\(604\) 113.465i 0.187856i
\(605\) 466.647 + 436.277i 0.771318 + 0.721118i
\(606\) 124.893 0.206093
\(607\) 191.841i 0.316048i −0.987435 0.158024i \(-0.949488\pi\)
0.987435 0.158024i \(-0.0505123\pi\)
\(608\) −434.295 −0.714302
\(609\) 10.7631 0.0176733
\(610\) −1134.49 −1.85982
\(611\) 194.446i 0.318242i
\(612\) 522.750i 0.854167i
\(613\) 394.349i 0.643310i 0.946857 + 0.321655i \(0.104239\pi\)
−0.946857 + 0.321655i \(0.895761\pi\)
\(614\) 658.121 1.07186
\(615\) 48.4292i 0.0787466i
\(616\) 36.2418 91.8324i 0.0588341 0.149079i
\(617\) −395.046 −0.640269 −0.320135 0.947372i \(-0.603728\pi\)
−0.320135 + 0.947372i \(0.603728\pi\)
\(618\) 80.7937i 0.130734i
\(619\) −667.080 −1.07767 −0.538837 0.842410i \(-0.681136\pi\)
−0.538837 + 0.842410i \(0.681136\pi\)
\(620\) −431.242 −0.695551
\(621\) 38.8168 0.0625069
\(622\) 1094.38i 1.75945i
\(623\) 580.334i 0.931515i
\(624\) 194.106i 0.311068i
\(625\) −688.582 −1.10173
\(626\) 571.264i 0.912562i
\(627\) −51.0104 20.1314i −0.0813563 0.0321074i
\(628\) −299.718 −0.477258
\(629\) 1233.21i 1.96059i
\(630\) 413.641 0.656573
\(631\) −824.427 −1.30654 −0.653270 0.757125i \(-0.726603\pi\)
−0.653270 + 0.757125i \(0.726603\pi\)
\(632\) −199.845 −0.316211
\(633\) 75.0681i 0.118591i
\(634\) 281.924i 0.444675i
\(635\) 480.950i 0.757401i
\(636\) −92.3010 −0.145127
\(637\) 844.844i 1.32629i
\(638\) 74.9837 190.000i 0.117529 0.297805i
\(639\) 423.131 0.662178
\(640\) 435.738i 0.680841i
\(641\) 327.978 0.511666 0.255833 0.966721i \(-0.417650\pi\)
0.255833 + 0.966721i \(0.417650\pi\)
\(642\) −172.648 −0.268923
\(643\) −916.240 −1.42495 −0.712473 0.701700i \(-0.752425\pi\)
−0.712473 + 0.701700i \(0.752425\pi\)
\(644\) 48.3608i 0.0750944i
\(645\) 191.486i 0.296877i
\(646\) 575.710i 0.891192i
\(647\) −808.584 −1.24974 −0.624872 0.780727i \(-0.714849\pi\)
−0.624872 + 0.780727i \(0.714849\pi\)
\(648\) 200.986i 0.310163i
\(649\) −32.9037 + 83.3739i −0.0506990 + 0.128465i
\(650\) 170.528 0.262350
\(651\) 41.8336i 0.0642605i
\(652\) −926.787 −1.42145
\(653\) −67.5021 −0.103372 −0.0516861 0.998663i \(-0.516460\pi\)
−0.0516861 + 0.998663i \(0.516460\pi\)
\(654\) −24.1606 −0.0369428
\(655\) 858.609i 1.31085i
\(656\) 383.435i 0.584504i
\(657\) 306.638i 0.466725i
\(658\) 77.2031 0.117330
\(659\) 731.633i 1.11022i −0.831778 0.555109i \(-0.812677\pi\)
0.831778 0.555109i \(-0.187323\pi\)
\(660\) −29.0230 + 73.5407i −0.0439742 + 0.111425i
\(661\) −99.6613 −0.150774 −0.0753868 0.997154i \(-0.524019\pi\)
−0.0753868 + 0.997154i \(0.524019\pi\)
\(662\) 1289.99i 1.94863i
\(663\) 202.788 0.305864
\(664\) −60.4825 −0.0910881
\(665\) 194.963 0.293178
\(666\) 1443.49i 2.16741i
\(667\) 33.6769i 0.0504902i
\(668\) 409.989i 0.613756i
\(669\) −145.434 −0.217390
\(670\) 521.117i 0.777787i
\(671\) 831.460 + 328.137i 1.23914 + 0.489027i
\(672\) 60.7377 0.0903835
\(673\) 711.611i 1.05737i 0.848818 + 0.528685i \(0.177315\pi\)
−0.848818 + 0.528685i \(0.822685\pi\)
\(674\) 7.18701 0.0106632
\(675\) 23.2582 0.0344567
\(676\) 1001.42 1.48139
\(677\) 878.449i 1.29756i −0.760976 0.648780i \(-0.775279\pi\)
0.760976 0.648780i \(-0.224721\pi\)
\(678\) 74.5085i 0.109895i
\(679\) 93.9523i 0.138369i
\(680\) −279.354 −0.410815
\(681\) 28.7213i 0.0421752i
\(682\) 738.485 + 291.445i 1.08282 + 0.427338i
\(683\) −907.649 −1.32892 −0.664458 0.747326i \(-0.731337\pi\)
−0.664458 + 0.747326i \(0.731337\pi\)
\(684\) 288.404i 0.421643i
\(685\) −1260.47 −1.84011
\(686\) 772.036 1.12542
\(687\) 144.401 0.210191
\(688\) 1516.08i 2.20360i
\(689\) 1521.55i 2.20835i
\(690\) 30.4570i 0.0441406i
\(691\) −571.677 −0.827318 −0.413659 0.910432i \(-0.635749\pi\)
−0.413659 + 0.910432i \(0.635749\pi\)
\(692\) 719.443i 1.03966i
\(693\) −303.155 119.641i −0.437453 0.172642i
\(694\) −1285.74 −1.85265
\(695\) 743.818i 1.07024i
\(696\) −8.50835 −0.0122246
\(697\) 400.584 0.574726
\(698\) −265.870 −0.380903
\(699\) 161.970i 0.231717i
\(700\) 28.9768i 0.0413955i
\(701\) 1183.80i 1.68874i 0.535763 + 0.844368i \(0.320024\pi\)
−0.535763 + 0.844368i \(0.679976\pi\)
\(702\) 480.318 0.684214
\(703\) 680.370i 0.967809i
\(704\) 116.017 293.973i 0.164797 0.417575i
\(705\) 20.8089 0.0295162
\(706\) 892.300i 1.26388i
\(707\) 349.842 0.494826
\(708\) −11.0928 −0.0156678
\(709\) 21.1559 0.0298391 0.0149195 0.999889i \(-0.495251\pi\)
0.0149195 + 0.999889i \(0.495251\pi\)
\(710\) 671.821i 0.946227i
\(711\) 659.724i 0.927882i
\(712\) 458.762i 0.644329i
\(713\) −130.895 −0.183583
\(714\) 80.5151i 0.112766i
\(715\) −1212.29 478.434i −1.69551 0.669138i
\(716\) −769.114 −1.07418
\(717\) 158.489i 0.221044i
\(718\) 39.2300 0.0546379
\(719\) −869.740 −1.20965 −0.604826 0.796357i \(-0.706757\pi\)
−0.604826 + 0.796357i \(0.706757\pi\)
\(720\) −882.718 −1.22600
\(721\) 226.315i 0.313890i
\(722\) 636.997i 0.882268i
\(723\) 133.887i 0.185183i
\(724\) 985.193 1.36076
\(725\) 20.1786i 0.0278325i
\(726\) 99.4015 106.321i 0.136917 0.146448i
\(727\) 698.088 0.960231 0.480116 0.877205i \(-0.340595\pi\)
0.480116 + 0.877205i \(0.340595\pi\)
\(728\) 201.412i 0.276665i
\(729\) −630.353 −0.864682
\(730\) −486.861 −0.666933
\(731\) 1583.88 2.16673
\(732\) 110.625i 0.151126i
\(733\) 1278.80i 1.74461i −0.488963 0.872305i \(-0.662625\pi\)
0.488963 0.872305i \(-0.337375\pi\)
\(734\) 557.311i 0.759280i
\(735\) 90.4120 0.123010
\(736\) 190.044i 0.258213i
\(737\) −150.727 + 381.924i −0.204514 + 0.518214i
\(738\) 468.889 0.635352
\(739\) 4.10955i 0.00556096i 0.999996 + 0.00278048i \(0.000885055\pi\)
−0.999996 + 0.00278048i \(0.999115\pi\)
\(740\) −980.875 −1.32551
\(741\) 111.879 0.150984
\(742\) −604.118 −0.814176
\(743\) 551.840i 0.742719i 0.928489 + 0.371359i \(0.121108\pi\)
−0.928489 + 0.371359i \(0.878892\pi\)
\(744\) 33.0700i 0.0444489i
\(745\) 836.698i 1.12308i
\(746\) 193.437 0.259298
\(747\) 199.663i 0.267287i
\(748\) −608.295 240.065i −0.813228 0.320942i
\(749\) −483.613 −0.645678
\(750\) 140.519i 0.187359i
\(751\) 449.725 0.598834 0.299417 0.954122i \(-0.403208\pi\)
0.299417 + 0.954122i \(0.403208\pi\)
\(752\) −164.753 −0.219086
\(753\) 127.391 0.169178
\(754\) 416.718i 0.552676i
\(755\) 200.167i 0.265122i
\(756\) 81.6178i 0.107960i
\(757\) 668.376 0.882928 0.441464 0.897279i \(-0.354459\pi\)
0.441464 + 0.897279i \(0.354459\pi\)
\(758\) 394.533i 0.520492i
\(759\) −8.80933 + 22.3218i −0.0116065 + 0.0294095i
\(760\) −154.121 −0.202791
\(761\) 784.223i 1.03052i −0.857035 0.515258i \(-0.827696\pi\)
0.857035 0.515258i \(-0.172304\pi\)
\(762\) −109.580 −0.143806
\(763\) −67.6773 −0.0886990
\(764\) 284.587 0.372496
\(765\) 922.198i 1.20549i
\(766\) 1039.18i 1.35663i
\(767\) 182.861i 0.238410i
\(768\) −151.556 −0.197338
\(769\) 802.816i 1.04397i 0.852953 + 0.521987i \(0.174809\pi\)
−0.852953 + 0.521987i \(0.825191\pi\)
\(770\) −189.958 + 481.330i −0.246699 + 0.625104i
\(771\) 190.764 0.247424
\(772\) 11.8339i 0.0153289i
\(773\) 249.905 0.323292 0.161646 0.986849i \(-0.448320\pi\)
0.161646 + 0.986849i \(0.448320\pi\)
\(774\) 1853.96 2.39530
\(775\) −78.4295 −0.101199
\(776\) 74.2706i 0.0957095i
\(777\) 95.1521i 0.122461i
\(778\) 620.311i 0.797315i
\(779\) 221.004 0.283702
\(780\) 161.294i 0.206787i
\(781\) −194.316 + 492.374i −0.248805 + 0.630440i
\(782\) 251.927 0.322157
\(783\) 56.8361i 0.0725876i
\(784\) −715.831 −0.913050
\(785\) −528.740 −0.673555
\(786\) 195.626 0.248888
\(787\) 195.664i 0.248621i −0.992243 0.124310i \(-0.960328\pi\)
0.992243 0.124310i \(-0.0396718\pi\)
\(788\) 246.058i 0.312256i
\(789\) 6.68465i 0.00847231i
\(790\) 1047.47 1.32591
\(791\) 208.709i 0.263855i
\(792\) 239.648 + 94.5775i 0.302586 + 0.119416i
\(793\) −1823.61 −2.29963
\(794\) 138.994i 0.175056i
\(795\) −162.831 −0.204819
\(796\) −179.785 −0.225860
\(797\) 724.449 0.908970 0.454485 0.890755i \(-0.349823\pi\)
0.454485 + 0.890755i \(0.349823\pi\)
\(798\) 44.4206i 0.0556649i
\(799\) 172.122i 0.215421i
\(800\) 113.871i 0.142339i
\(801\) 1514.45 1.89070
\(802\) 458.826i 0.572102i
\(803\) 356.818 + 140.819i 0.444356 + 0.175366i
\(804\) −50.8144 −0.0632020
\(805\) 85.3146i 0.105981i
\(806\) −1619.69 −2.00954
\(807\) 27.9342 0.0346149
\(808\) −276.555 −0.342271
\(809\) 127.278i 0.157327i −0.996901 0.0786637i \(-0.974935\pi\)
0.996901 0.0786637i \(-0.0250653\pi\)
\(810\) 1053.45i 1.30055i
\(811\) 193.493i 0.238586i −0.992859 0.119293i \(-0.961937\pi\)
0.992859 0.119293i \(-0.0380628\pi\)
\(812\) 70.8106 0.0872051
\(813\) 48.2717i 0.0593748i
\(814\) 1679.71 + 662.902i 2.06353 + 0.814375i
\(815\) −1634.97 −2.00610
\(816\) 171.821i 0.210565i
\(817\) 873.836 1.06957
\(818\) 2009.97 2.45717
\(819\) 664.897 0.811840
\(820\) 318.617i 0.388558i
\(821\) 575.808i 0.701350i −0.936497 0.350675i \(-0.885952\pi\)
0.936497 0.350675i \(-0.114048\pi\)
\(822\) 287.187i 0.349376i
\(823\) −861.354 −1.04660 −0.523301 0.852148i \(-0.675300\pi\)
−0.523301 + 0.852148i \(0.675300\pi\)
\(824\) 178.905i 0.217118i
\(825\) −5.27838 + 13.3748i −0.00639804 + 0.0162118i
\(826\) −72.6032 −0.0878973
\(827\) 935.136i 1.13076i −0.824831 0.565379i \(-0.808730\pi\)
0.824831 0.565379i \(-0.191270\pi\)
\(828\) 126.203 0.152420
\(829\) 77.1026 0.0930068 0.0465034 0.998918i \(-0.485192\pi\)
0.0465034 + 0.998918i \(0.485192\pi\)
\(830\) 317.013 0.381943
\(831\) 3.10107i 0.00373173i
\(832\) 644.758i 0.774949i
\(833\) 747.847i 0.897775i
\(834\) −169.472 −0.203204
\(835\) 723.273i 0.866195i
\(836\) −335.599 132.445i −0.401435 0.158427i
\(837\) −220.909 −0.263929
\(838\) 1209.75i 1.44361i
\(839\) 524.474 0.625118 0.312559 0.949898i \(-0.398814\pi\)
0.312559 + 0.949898i \(0.398814\pi\)
\(840\) 21.5544 0.0256600
\(841\) 791.690 0.941367
\(842\) 1619.41i 1.92329i
\(843\) 17.8956i 0.0212285i
\(844\) 493.876i 0.585161i
\(845\) 1766.63 2.09069
\(846\) 201.471i 0.238145i
\(847\) 278.438 297.821i 0.328734 0.351619i
\(848\) 1289.20 1.52028
\(849\) 110.266i 0.129878i
\(850\) 150.949 0.177588
\(851\) −297.725 −0.349853
\(852\) −65.5096 −0.0768892
\(853\) 1361.85i 1.59655i 0.602296 + 0.798273i \(0.294253\pi\)
−0.602296 + 0.798273i \(0.705747\pi\)
\(854\) 724.047i 0.847831i
\(855\) 508.781i 0.595066i
\(856\) 382.303 0.446615
\(857\) 833.610i 0.972708i −0.873762 0.486354i \(-0.838327\pi\)
0.873762 0.486354i \(-0.161673\pi\)
\(858\) −109.007 + 276.210i −0.127047 + 0.321923i
\(859\) 951.816 1.10805 0.554025 0.832500i \(-0.313091\pi\)
0.554025 + 0.832500i \(0.313091\pi\)
\(860\) 1259.79i 1.46487i
\(861\) −30.9082 −0.0358980
\(862\) 2278.84 2.64366
\(863\) −1265.77 −1.46671 −0.733354 0.679847i \(-0.762046\pi\)
−0.733354 + 0.679847i \(0.762046\pi\)
\(864\) 320.735i 0.371221i
\(865\) 1269.19i 1.46727i
\(866\) 406.501i 0.469401i
\(867\) 48.0430 0.0554129
\(868\) 275.225i 0.317079i
\(869\) −767.683 302.968i −0.883410 0.348640i
\(870\) 44.5956 0.0512594
\(871\) 837.657i 0.961719i
\(872\) 53.4998 0.0613530
\(873\) −245.180 −0.280848
\(874\) 138.989 0.159027
\(875\) 393.614i 0.449845i
\(876\) 47.4741i 0.0541941i
\(877\) 877.758i 1.00086i 0.865776 + 0.500432i \(0.166826\pi\)
−0.865776 + 0.500432i \(0.833174\pi\)
\(878\) 1659.77 1.89040
\(879\) 143.275i 0.162997i
\(880\) 405.374 1027.17i 0.460653 1.16724i
\(881\) −840.848 −0.954425 −0.477213 0.878788i \(-0.658353\pi\)
−0.477213 + 0.878788i \(0.658353\pi\)
\(882\) 875.366i 0.992479i
\(883\) −236.068 −0.267348 −0.133674 0.991025i \(-0.542678\pi\)
−0.133674 + 0.991025i \(0.542678\pi\)
\(884\) 1334.15 1.50922
\(885\) −19.5691 −0.0221119
\(886\) 875.043i 0.987633i
\(887\) 1676.00i 1.88952i 0.327766 + 0.944759i \(0.393704\pi\)
−0.327766 + 0.944759i \(0.606296\pi\)
\(888\) 75.2190i 0.0847061i
\(889\) −306.949 −0.345274
\(890\) 2404.55i 2.70175i
\(891\) 304.697 772.065i 0.341972 0.866515i
\(892\) −956.816 −1.07266
\(893\) 94.9604i 0.106339i
\(894\) −190.634 −0.213237
\(895\) −1356.81 −1.51599
\(896\) −278.094 −0.310373
\(897\) 48.9574i 0.0545791i
\(898\) 1489.09i 1.65823i
\(899\) 191.658i 0.213190i
\(900\) 75.6186 0.0840207
\(901\) 1346.86i 1.49485i
\(902\) −215.330 + 545.620i −0.238725 + 0.604900i
\(903\) −122.209 −0.135337
\(904\) 164.987i 0.182508i
\(905\) 1738.01 1.92045
\(906\) 45.6062 0.0503380
\(907\) −1253.85 −1.38242 −0.691209 0.722655i \(-0.742921\pi\)
−0.691209 + 0.722655i \(0.742921\pi\)
\(908\) 188.958i 0.208104i
\(909\) 912.957i 1.00435i
\(910\) 1055.68i 1.16009i
\(911\) −556.770 −0.611163 −0.305582 0.952166i \(-0.598851\pi\)
−0.305582 + 0.952166i \(0.598851\pi\)
\(912\) 94.7945i 0.103941i
\(913\) −232.337 91.6923i −0.254476 0.100430i
\(914\) 819.200 0.896280
\(915\) 195.156i 0.213285i
\(916\) 950.019 1.03714
\(917\) 547.977 0.597576
\(918\) 425.173 0.463151
\(919\) 1392.60i 1.51534i 0.652637 + 0.757671i \(0.273663\pi\)
−0.652637 + 0.757671i \(0.726337\pi\)
\(920\) 67.4423i 0.0733069i
\(921\) 113.211i 0.122921i
\(922\) −1052.13 −1.14114
\(923\) 1079.90i 1.16999i
\(924\) 46.9347 + 18.5229i 0.0507952 + 0.0200464i
\(925\) −178.391 −0.192855
\(926\) 1014.02i 1.09505i
\(927\) 590.596 0.637105
\(928\) −278.266 −0.299855
\(929\) −914.021 −0.983876 −0.491938 0.870630i \(-0.663711\pi\)
−0.491938 + 0.870630i \(0.663711\pi\)
\(930\) 173.333i 0.186380i
\(931\) 412.591i 0.443170i
\(932\) 1065.61i 1.14336i
\(933\) −188.256 −0.201775
\(934\) 395.279i 0.423211i
\(935\) −1073.11 423.504i −1.14771 0.452946i
\(936\) −525.610 −0.561549
\(937\) 174.963i 0.186727i 0.995632 + 0.0933635i \(0.0297619\pi\)
−0.995632 + 0.0933635i \(0.970238\pi\)
\(938\) −332.584 −0.354568
\(939\) 98.2692 0.104653
\(940\) 136.902 0.145641
\(941\) 782.715i 0.831791i −0.909412 0.415895i \(-0.863468\pi\)
0.909412 0.415895i \(-0.136532\pi\)
\(942\) 120.469i 0.127886i
\(943\) 96.7098i 0.102555i
\(944\) 154.937 0.164128
\(945\) 143.984i 0.152364i
\(946\) −851.401 + 2157.35i −0.900001 + 2.28049i
\(947\) 918.953 0.970383 0.485192 0.874408i \(-0.338750\pi\)
0.485192 + 0.874408i \(0.338750\pi\)
\(948\) 102.139i 0.107742i
\(949\) −782.593 −0.824651
\(950\) 83.2796 0.0876628
\(951\) −48.4968 −0.0509956
\(952\) 178.288i 0.187277i
\(953\) 68.9236i 0.0723228i 0.999346 + 0.0361614i \(0.0115130\pi\)
−0.999346 + 0.0361614i \(0.988487\pi\)
\(954\) 1576.52i 1.65254i
\(955\) 502.048 0.525704
\(956\) 1042.70i 1.09069i
\(957\) −32.6839 12.8988i −0.0341524 0.0134783i
\(958\) 415.569 0.433788
\(959\) 804.453i 0.838846i
\(960\) 68.9996 0.0718746
\(961\) −216.070 −0.224838
\(962\) −3684.04 −3.82957
\(963\) 1262.05i 1.31054i
\(964\) 880.849i 0.913744i
\(965\) 20.8765i 0.0216337i
\(966\) −19.4381 −0.0201223
\(967\) 190.073i 0.196559i 0.995159 + 0.0982797i \(0.0313340\pi\)
−0.995159 + 0.0982797i \(0.968666\pi\)
\(968\) −220.109 + 235.432i −0.227385 + 0.243214i
\(969\) 99.0342 0.102202
\(970\) 389.282i 0.401321i
\(971\) −74.5118 −0.0767372 −0.0383686 0.999264i \(-0.512216\pi\)
−0.0383686 + 0.999264i \(0.512216\pi\)
\(972\) 320.726 0.329965
\(973\) −474.716 −0.487889
\(974\) 1461.90i 1.50093i
\(975\) 29.3343i 0.0300865i
\(976\) 1545.13i 1.58313i
\(977\) −463.833 −0.474752 −0.237376 0.971418i \(-0.576287\pi\)
−0.237376 + 0.971418i \(0.576287\pi\)
\(978\) 372.513i 0.380892i
\(979\) −695.489 + 1762.28i −0.710407 + 1.80009i
\(980\) 594.824 0.606963
\(981\) 176.612i 0.180033i
\(982\) −1704.36 −1.73560
\(983\) 568.136 0.577962 0.288981 0.957335i \(-0.406684\pi\)
0.288981 + 0.957335i \(0.406684\pi\)
\(984\) 24.4333 0.0248306
\(985\) 434.077i 0.440688i
\(986\) 368.874i 0.374112i
\(987\) 13.2805i 0.0134555i
\(988\) 736.056 0.744996
\(989\) 382.384i 0.386637i
\(990\) −1256.09 495.719i −1.26878 0.500726i
\(991\) 51.0375 0.0515010 0.0257505 0.999668i \(-0.491802\pi\)
0.0257505 + 0.999668i \(0.491802\pi\)
\(992\) 1081.56i 1.09028i
\(993\) 221.905 0.223470
\(994\) −428.766 −0.431354
\(995\) −317.163 −0.318756
\(996\) 30.9121i 0.0310362i
\(997\) 616.536i 0.618391i 0.950999 + 0.309195i \(0.100060\pi\)
−0.950999 + 0.309195i \(0.899940\pi\)
\(998\) 1655.83i 1.65915i
\(999\) −502.466 −0.502969
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.9 44
11.10 odd 2 inner 253.3.c.a.208.36 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.9 44 1.1 even 1 trivial
253.3.c.a.208.36 yes 44 11.10 odd 2 inner