Properties

Label 2535.2.bm
Level $2535$
Weight $2$
Character orbit 2535.bm
Rep. character $\chi_{2535}(418,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $616$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.bm (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 1568 616 952
Cusp forms 1344 616 728
Eisenstein series 224 0 224

Trace form

\( 616 q + 308 q^{4} + 8 q^{5} - 8 q^{11} - 32 q^{12} + 4 q^{15} - 308 q^{16} + 20 q^{17} + 8 q^{18} - 24 q^{19} + 8 q^{21} + 36 q^{22} + 16 q^{23} + 36 q^{25} + 8 q^{31} + 60 q^{32} - 12 q^{33} + 4 q^{34}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)