Properties

Label 2535.2.bp
Level $2535$
Weight $2$
Character orbit 2535.bp
Rep. character $\chi_{2535}(64,\cdot)$
Character field $\Q(\zeta_{26})$
Dimension $2208$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.bp (of order \(26\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 845 \)
Character field: \(\Q(\zeta_{26})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 4416 2208 2208
Cusp forms 4320 2208 2112
Eisenstein series 96 0 96

Trace form

\( 2208 q - 188 q^{4} + 184 q^{9} + 4 q^{10} + 8 q^{14} - 180 q^{16} - 12 q^{25} + 4 q^{26} + 32 q^{29} - 52 q^{31} + 12 q^{35} + 188 q^{36} - 66 q^{40} - 60 q^{49} + 16 q^{51} + 86 q^{55} + 64 q^{56} + 208 q^{59}+ \cdots - 68 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)