Properties

Label 2535.2.bw
Level $2535$
Weight $2$
Character orbit 2535.bw
Rep. character $\chi_{2535}(16,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $2928$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.bw (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{39})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 8832 2928 5904
Cusp forms 8640 2928 5712
Eisenstein series 192 0 192

Trace form

\( 2928 q - 2 q^{3} + 124 q^{4} + 2 q^{7} + 122 q^{9} - 4 q^{10} + 8 q^{11} + 8 q^{12} + 68 q^{13} - 24 q^{14} + 136 q^{16} + 4 q^{17} + 8 q^{20} - 12 q^{21} + 108 q^{22} + 12 q^{23} - 24 q^{24} - 244 q^{25}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)