Defining parameters
Level: | \( N \) | \(=\) | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2535.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 392 | 156 | 236 |
Cusp forms | 336 | 156 | 180 |
Eisenstein series | 56 | 0 | 56 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)