Properties

Label 2535.2.ch
Level $2535$
Weight $2$
Character orbit 2535.ch
Rep. character $\chi_{2535}(112,\cdot)$
Character field $\Q(\zeta_{52})$
Dimension $4368$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.ch (of order \(52\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 845 \)
Character field: \(\Q(\zeta_{52})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 8832 4368 4464
Cusp forms 8640 4368 4272
Eisenstein series 192 0 192

Trace form

\( 4368 q + 364 q^{4} - 8 q^{5} + 8 q^{11} + 12 q^{13} - 4 q^{15} - 364 q^{16} + 28 q^{17} + 4 q^{18} - 8 q^{21} + 40 q^{22} - 4 q^{25} + 16 q^{31} - 28 q^{34} - 32 q^{37} - 8 q^{39} + 40 q^{40} - 4 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)