Defining parameters
Level: | \( N \) | \(=\) | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2535.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 784 | 204 | 580 |
Cusp forms | 672 | 204 | 468 |
Eisenstein series | 112 | 0 | 112 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)