Properties

Label 2535.2.i
Level $2535$
Weight $2$
Character orbit 2535.i
Rep. character $\chi_{2535}(991,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $204$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 784 204 580
Cusp forms 672 204 468
Eisenstein series 112 0 112

Trace form

\( 204 q - 2 q^{3} - 100 q^{4} + 2 q^{7} - 102 q^{9} - 4 q^{10} + 8 q^{11} + 8 q^{12} + 8 q^{14} - 88 q^{16} - 12 q^{17} + 8 q^{20} - 12 q^{21} - 12 q^{22} + 12 q^{23} - 24 q^{24} + 204 q^{25} + 4 q^{27} + 36 q^{28}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)