Properties

Label 2535.2.k
Level $2535$
Weight $2$
Character orbit 2535.k
Rep. character $\chi_{2535}(1282,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $308$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(i)\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 784 308 476
Cusp forms 672 308 364
Eisenstein series 112 0 112

Trace form

\( 308 q - 308 q^{4} - 8 q^{5} + 8 q^{11} - 16 q^{12} - 4 q^{15} + 308 q^{16} + 28 q^{17} + 4 q^{18} - 8 q^{21} + 24 q^{22} - 16 q^{23} + 12 q^{25} + 16 q^{31} - 28 q^{34} - 32 q^{37} + 56 q^{40} - 4 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)