Defining parameters
Level: | \( N \) | \(=\) | \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2548.cq (of order \(21\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 637 \) |
Character field: | \(\Q(\zeta_{21})\) | ||
Sturm bound: | \(784\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2548, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4776 | 780 | 3996 |
Cusp forms | 4632 | 780 | 3852 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2548, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2548, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2548, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(637, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1274, [\chi])\)\(^{\oplus 2}\)