Properties

Label 2548.2.ep
Level 25482548
Weight 22
Character orbit 2548.ep
Rep. character χ2548(33,)\chi_{2548}(33,\cdot)
Character field Q(ζ84)\Q(\zeta_{84})
Dimension 15601560
Sturm bound 784784

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2548=227213 2548 = 2^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2548.ep (of order 8484 and degree 2424)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 637 637
Character field: Q(ζ84)\Q(\zeta_{84})
Sturm bound: 784784

Dimensions

The following table gives the dimensions of various subspaces of M2(2548,[χ])M_{2}(2548, [\chi]).

Total New Old
Modular forms 9552 1560 7992
Cusp forms 9264 1560 7704
Eisenstein series 288 0 288

Trace form

1560q2q7+256q94q11+26q19+2q214q2916q31+24q33+16q3548q3736q39+30q4112q43+70q45+174q4714q49+12q53++20q99+O(q100) 1560 q - 2 q^{7} + 256 q^{9} - 4 q^{11} + 26 q^{19} + 2 q^{21} - 4 q^{29} - 16 q^{31} + 24 q^{33} + 16 q^{35} - 48 q^{37} - 36 q^{39} + 30 q^{41} - 12 q^{43} + 70 q^{45} + 174 q^{47} - 14 q^{49} + 12 q^{53}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2548,[χ])S_{2}^{\mathrm{new}}(2548, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2548,[χ])S_{2}^{\mathrm{old}}(2548, [\chi]) into lower level spaces

S2old(2548,[χ]) S_{2}^{\mathrm{old}}(2548, [\chi]) \simeq S2new(637,[χ])S_{2}^{\mathrm{new}}(637, [\chi])3^{\oplus 3}\oplusS2new(1274,[χ])S_{2}^{\mathrm{new}}(1274, [\chi])2^{\oplus 2}