Properties

Label 2548.2.ep
Level $2548$
Weight $2$
Character orbit 2548.ep
Rep. character $\chi_{2548}(33,\cdot)$
Character field $\Q(\zeta_{84})$
Dimension $1560$
Sturm bound $784$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.ep (of order \(84\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 637 \)
Character field: \(\Q(\zeta_{84})\)
Sturm bound: \(784\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2548, [\chi])\).

Total New Old
Modular forms 9552 1560 7992
Cusp forms 9264 1560 7704
Eisenstein series 288 0 288

Trace form

\( 1560 q - 2 q^{7} + 256 q^{9} - 4 q^{11} + 26 q^{19} + 2 q^{21} - 4 q^{29} - 16 q^{31} + 24 q^{33} + 16 q^{35} - 48 q^{37} - 36 q^{39} + 30 q^{41} - 12 q^{43} + 70 q^{45} + 174 q^{47} - 14 q^{49} + 12 q^{53}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2548, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2548, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2548, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(637, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1274, [\chi])\)\(^{\oplus 2}\)