Properties

Label 255.4.a.e
Level $255$
Weight $4$
Character orbit 255.a
Self dual yes
Analytic conductor $15.045$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [255,4,Mod(1,255)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(255, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("255.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 255 = 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 255.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0454870515\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 3 q^{3} + (\beta + 2) q^{4} - 5 q^{5} - 3 \beta q^{6} + (\beta - 13) q^{7} + (5 \beta - 10) q^{8} + 9 q^{9} + 5 \beta q^{10} + (5 \beta - 3) q^{11} + (3 \beta + 6) q^{12} + (4 \beta - 8) q^{13} + \cdots + (45 \beta - 27) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 6 q^{3} + 5 q^{4} - 10 q^{5} - 3 q^{6} - 25 q^{7} - 15 q^{8} + 18 q^{9} + 5 q^{10} - q^{11} + 15 q^{12} - 12 q^{13} - 8 q^{14} - 30 q^{15} - 135 q^{16} - 34 q^{17} - 9 q^{18} - 117 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.70156
−2.70156
−3.70156 3.00000 5.70156 −5.00000 −11.1047 −9.29844 8.50781 9.00000 18.5078
1.2 2.70156 3.00000 −0.701562 −5.00000 8.10469 −15.7016 −23.5078 9.00000 −13.5078
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 255.4.a.e 2
3.b odd 2 1 765.4.a.g 2
5.b even 2 1 1275.4.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
255.4.a.e 2 1.a even 1 1 trivial
765.4.a.g 2 3.b odd 2 1
1275.4.a.n 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} - 10 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(255))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 10 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 25T + 146 \) Copy content Toggle raw display
$11$ \( T^{2} + T - 256 \) Copy content Toggle raw display
$13$ \( T^{2} + 12T - 128 \) Copy content Toggle raw display
$17$ \( (T + 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 117T + 3412 \) Copy content Toggle raw display
$23$ \( T^{2} - 40T - 2224 \) Copy content Toggle raw display
$29$ \( T^{2} - 13T - 12514 \) Copy content Toggle raw display
$31$ \( T^{2} + 120T - 2304 \) Copy content Toggle raw display
$37$ \( T^{2} + 157T - 20498 \) Copy content Toggle raw display
$41$ \( T^{2} + 469T + 14308 \) Copy content Toggle raw display
$43$ \( T^{2} + 134T - 34912 \) Copy content Toggle raw display
$47$ \( T^{2} - 181T + 1784 \) Copy content Toggle raw display
$53$ \( T^{2} + 297T - 2558 \) Copy content Toggle raw display
$59$ \( T^{2} - 24T - 19700 \) Copy content Toggle raw display
$61$ \( T^{2} + 422T - 211360 \) Copy content Toggle raw display
$67$ \( T^{2} + 888T + 169420 \) Copy content Toggle raw display
$71$ \( T^{2} + 174T - 394272 \) Copy content Toggle raw display
$73$ \( T^{2} - 383T - 1468 \) Copy content Toggle raw display
$79$ \( T^{2} + 1282 T + 371480 \) Copy content Toggle raw display
$83$ \( T^{2} + 896T - 61696 \) Copy content Toggle raw display
$89$ \( T^{2} + 1388 T + 244820 \) Copy content Toggle raw display
$97$ \( T^{2} - 458 T - 1443280 \) Copy content Toggle raw display
show more
show less